/* This file is part of libmspack. * (C) 2003-2013 Stuart Caie. * * The LZX method was created by Jonathan Forbes and Tomi Poutanen, adapted * by Microsoft Corporation. * * libmspack is free software; you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License (LGPL) version 2.1 * * For further details, see the file COPYING.LIB distributed with libmspack */ /* Microsoft's LZX document (in cab-sdk.exe) and their implementation * of the com.ms.util.cab Java package do not concur. * * In the LZX document, there is a table showing the correlation between * window size and the number of position slots. It states that the 1MB * window = 40 slots and the 2MB window = 42 slots. In the implementation, * 1MB = 42 slots, 2MB = 50 slots. The actual calculation is 'find the * first slot whose position base is equal to or more than the required * window size'. This would explain why other tables in the document refer * to 50 slots rather than 42. * * The constant NUM_PRIMARY_LENGTHS used in the decompression pseudocode * is not defined in the specification. * * The LZX document does not state the uncompressed block has an * uncompressed length field. Where does this length field come from, so * we can know how large the block is? The implementation has it as the 24 * bits following after the 3 blocktype bits, before the alignment * padding. * * The LZX document states that aligned offset blocks have their aligned * offset huffman tree AFTER the main and length trees. The implementation * suggests that the aligned offset tree is BEFORE the main and length * trees. * * The LZX document decoding algorithm states that, in an aligned offset * block, if an extra_bits value is 1, 2 or 3, then that number of bits * should be read and the result added to the match offset. This is * correct for 1 and 2, but not 3, where just a huffman symbol (using the * aligned tree) should be read. * * Regarding the E8 preprocessing, the LZX document states 'No translation * may be performed on the last 6 bytes of the input block'. This is * correct. However, the pseudocode provided checks for the *E8 leader* * up to the last 6 bytes. If the leader appears between -10 and -7 bytes * from the end, this would cause the next four bytes to be modified, at * least one of which would be in the last 6 bytes, which is not allowed * according to the spec. * * The specification states that the huffman trees must always contain at * least one element. However, many CAB files contain blocks where the * length tree is completely empty (because there are no matches), and * this is expected to succeed. * * The errors in LZX documentation appear have been corrected in the * new documentation for the LZX DELTA format. * * http://msdn.microsoft.com/en-us/library/cc483133.aspx * * However, this is a different format, an extension of regular LZX. * I have noticed the following differences, there may be more: * * The maximum window size has increased from 2MB to 32MB. This also * increases the maximum number of position slots, etc. * * If the match length is 257 (the maximum possible), this signals * a further length decoding step, that allows for matches up to * 33024 bytes long. * * The format now allows for "reference data", supplied by the caller. * If match offsets go further back than the number of bytes * decompressed so far, that is them accessing the reference data. */ using System; using System.IO; namespace LibMSPackSharp.Compression { public class LZX { #region LZX compression / decompression definitions // Some constants defined by the LZX specification public const int LZX_MIN_MATCH = 2; public const int LZX_MAX_MATCH = 257; public const int LZX_NUM_CHARS = 256; public const int LZX_PRETREE_NUM_ELEMENTS = 20; public const int LZX_ALIGNED_NUM_ELEMENTS = 8; // Aligned offset tree #elements public const int LZX_NUM_PRIMARY_LENGTHS = 7; // This one missing from spec! public const int LZX_NUM_SECONDARY_LENGTHS = 249; // Length tree #elements // LZX huffman defines: tweak tablebits as desired public const int LZX_PRETREE_MAXSYMBOLS = LZX_PRETREE_NUM_ELEMENTS; public const byte LZX_PRETREE_TABLEBITS = 6; public const int LZX_MAINTREE_MAXSYMBOLS = LZX_NUM_CHARS + 290 * 8; public const byte LZX_MAINTREE_TABLEBITS = 12; public const int LZX_LENGTH_MAXSYMBOLS = LZX_NUM_SECONDARY_LENGTHS + 1; public const byte LZX_LENGTH_TABLEBITS = 12; public const int LZX_ALIGNED_MAXSYMBOLS = LZX_ALIGNED_NUM_ELEMENTS; public const byte LZX_ALIGNED_TABLEBITS = 7; public const int LZX_LENTABLE_SAFETY = 64; // Table decoding overruns are allowed public const int LZX_FRAME_SIZE = 32768; // The size of a frame in LZX #endregion #region LZX static data tables /* LZX static data tables: * * LZX uses 'position slots' to represent match offsets. For every match, * a small 'position slot' number and a small offset from that slot are * encoded instead of one large offset. * * The number of slots is decided by how many are needed to encode the * largest offset for a given window size. This is easy when the gap between * slots is less than 128Kb, it's a linear relationship. But when extra_bits * reaches its limit of 17 (because LZX can only ensure reading 17 bits of * data at a time), we can only jump 128Kb at a time and have to start * using more and more position slots as each window size doubles. * * position_base[] is an index to the position slot bases * * extra_bits[] states how many bits of offset-from-base data is needed. * * They are calculated as follows: * extra_bits[i] = 0 where i < 4 * extra_bits[i] = floor(i/2)-1 where i >= 4 && i < 36 * extra_bits[i] = 17 where i >= 36 * position_base[0] = 0 * position_base[i] = position_base[i-1] + (1 << extra_bits[i-1]) */ private static readonly uint[] position_slots = new uint[11] { 30, 32, 34, 36, 38, 42, 50, 66, 98, 162, 290 }; private static readonly byte[] extra_bits = new byte[36] { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16 }; private static readonly uint[] position_base = new uint[290] { 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 655360, 786432, 917504, 1048576, 1179648, 1310720, 1441792, 1572864, 1703936, 1835008, 1966080, 2097152, 2228224, 2359296, 2490368, 2621440, 2752512, 2883584, 3014656, 3145728, 3276800, 3407872, 3538944, 3670016, 3801088, 3932160, 4063232, 4194304, 4325376, 4456448, 4587520, 4718592, 4849664, 4980736, 5111808, 5242880, 5373952, 5505024, 5636096, 5767168, 5898240, 6029312, 6160384, 6291456, 6422528, 6553600, 6684672, 6815744, 6946816, 7077888, 7208960, 7340032, 7471104, 7602176, 7733248, 7864320, 7995392, 8126464, 8257536, 8388608, 8519680, 8650752, 8781824, 8912896, 9043968, 9175040, 9306112, 9437184, 9568256, 9699328, 9830400, 9961472, 10092544, 10223616, 10354688, 10485760, 10616832, 10747904, 10878976, 11010048, 11141120, 11272192, 11403264, 11534336, 11665408, 11796480, 11927552, 12058624, 12189696, 12320768, 12451840, 12582912, 12713984, 12845056, 12976128, 13107200, 13238272, 13369344, 13500416, 13631488, 13762560, 13893632, 14024704, 14155776, 14286848, 14417920, 14548992, 14680064, 14811136, 14942208, 15073280, 15204352, 15335424, 15466496, 15597568, 15728640, 15859712, 15990784, 16121856, 16252928, 16384000, 16515072, 16646144, 16777216, 16908288, 17039360, 17170432, 17301504, 17432576, 17563648, 17694720, 17825792, 17956864, 18087936, 18219008, 18350080, 18481152, 18612224, 18743296, 18874368, 19005440, 19136512, 19267584, 19398656, 19529728, 19660800, 19791872, 19922944, 20054016, 20185088, 20316160, 20447232, 20578304, 20709376, 20840448, 20971520, 21102592, 21233664, 21364736, 21495808, 21626880, 21757952, 21889024, 22020096, 22151168, 22282240, 22413312, 22544384, 22675456, 22806528, 22937600, 23068672, 23199744, 23330816, 23461888, 23592960, 23724032, 23855104, 23986176, 24117248, 24248320, 24379392, 24510464, 24641536, 24772608, 24903680, 25034752, 25165824, 25296896, 25427968, 25559040, 25690112, 25821184, 25952256, 26083328, 26214400, 26345472, 26476544, 26607616, 26738688, 26869760, 27000832, 27131904, 27262976, 27394048, 27525120, 27656192, 27787264, 27918336, 28049408, 28180480, 28311552, 28442624, 28573696, 28704768, 28835840, 28966912, 29097984, 29229056, 29360128, 29491200, 29622272, 29753344, 29884416, 30015488, 30146560, 30277632, 30408704, 30539776, 30670848, 30801920, 30932992, 31064064, 31195136, 31326208, 31457280, 31588352, 31719424, 31850496, 31981568, 32112640, 32243712, 32374784, 32505856, 32636928, 32768000, 32899072, 33030144, 33161216, 33292288, 33423360 }; private static void ResetState(LZXDStream lzx) { int i; lzx.R0 = 1; lzx.R1 = 1; lzx.R2 = 1; lzx.HeaderRead = 0; lzx.BlockRemaining = 0; lzx.BlockType = LZXBlockType.LZX_BLOCKTYPE_INVALID0; // Initialise tables to 0 (because deltas will be applied to them) for (i = 0; i < LZX_MAINTREE_MAXSYMBOLS; i++) { lzx.MAINTREE_len[i] = 0; } for (i = 0; i < LZX_LENGTH_MAXSYMBOLS; i++) { lzx.LENGTH_len[i] = 0; } } #endregion /// /// Allocates and initialises LZX decompression state for decoding an LZX /// stream. /// /// This routine uses system.alloc() to allocate memory. If memory /// allocation fails, or the parameters to this function are invalid, /// null is returned. /// /// /// an mspack_system structure used to read from /// the input stream and write to the output /// stream, also to allocate and free memory. /// /// an input stream with the LZX data. /// an output stream to write the decoded data to. /// /// the size of the decoding window, which must be /// between 15 and 21 inclusive for regular LZX /// data, or between 17 and 25 inclusive for /// LZX DELTA data. /// /// the interval at which the LZX bitstream is /// reset, in multiples of LZX frames (32678 /// bytes), e.g. a value of 2 indicates the input /// stream resets after every 65536 output bytes. /// A value of 0 indicates that the bitstream never /// resets, such as in CAB LZX streams. /// /// /// the number of bytes to use as an input /// bitstream buffer. /// /// /// the length in bytes of the entirely /// decompressed output stream, if known in /// advance. It is used to correctly perform the /// Intel E8 transformation, which must stop 6 /// bytes before the very end of the /// decompressed stream. It is not otherwise used /// or adhered to. If the full decompressed /// length is known in advance, set it here. /// If it is NOT known, use the value 0, and call /// lzxd_set_outputLength() once it is /// known. If never set, 4 of the final 6 bytes /// of the output stream may be incorrect. /// /// /// should be zero for all regular LZX data, /// non-zero for LZX DELTA encoded data. /// /// /// a pointer to an initialised LZXDStream structure, or null if /// there was not enough memory or parameters to the function were wrong. /// public static LZXDStream Init(SystemImpl system, FileStream input, FileStream output, int window_bits, int reset_interval, int input_buffer_size, long output_length, bool is_delta) { uint window_size = (uint)(1 << window_bits); LZXDStream lzx; if (system == null) return null; // LZX DELTA window sizes are between 2^17 (128KiB) and 2^25 (32MiB), // regular LZX windows are between 2^15 (32KiB) and 2^21 (2MiB) if (is_delta) { if (window_bits < 17 || window_bits > 25) return null; } else { if (window_bits < 15 || window_bits > 21) return null; } if (reset_interval < 0 || output_length < 0) { Console.WriteLine("Reset interval or output length < 0"); return null; } // Round up input buffer size to multiple of two input_buffer_size = (input_buffer_size + 1) & -2; if (input_buffer_size < 2) return null; // Allocate decompression state lzx = new LZXDStream() { // Allocate decompression window and input buffer Window = new byte[window_size], InputBuffer = new byte[input_buffer_size], Sys = system, Input = input, Output = output, Offset = 0, Length = output_length, InputBufferSize = (uint)input_buffer_size, WindowSize = (uint)(1 << window_bits), ReferenceDataSize = 0, WindowPosition = 0, FramePosition = 0, Frame = 0, ResetInterval = (uint)reset_interval, IntelFileSize = 0, IntelStarted = false, Error = Error.MSPACK_ERR_OK, NumOffsets = position_slots[window_bits - 15] << 3, IsDelta = is_delta, // e8_buf OutputPointer = 0, OutputLength = 0, }; ResetState(lzx); //INIT_BITS { lzx.InputPointer = 0; lzx.InputLength = 0; lzx.BitBuffer = 0; lzx.BitsLeft = 0; lzx.InputEnd = 0; } return lzx; } /// /// Reads LZX DELTA reference data into the window and allows /// lzxd_decompress() to reference it. /// /// Call this before the first call to lzxd_decompress(). /// /// the LZX stream to apply this reference data to /// /// an mspack_system implementation to use with the /// input param. Only read() will be called. /// /// an input file handle to read reference data using system.read(). /// /// the length of the reference data. Cannot be longer /// than the LZX window size. /// /// an error code, or MSPACK_ERR_OK if successful public static Error SetReferenceData(LZXDStream lzx, SystemImpl system, FileStream input, uint length) { if (lzx == null) return Error.MSPACK_ERR_ARGS; if (!lzx.IsDelta) { Console.WriteLine("Only LZX DELTA streams support reference data"); return Error.MSPACK_ERR_ARGS; } if (lzx.Offset != 0) { Console.WriteLine("Too late to set reference data after decoding starts"); return Error.MSPACK_ERR_ARGS; } if (length > lzx.WindowSize) { Console.WriteLine($"Reference length ({length}) is longer than the window"); return Error.MSPACK_ERR_ARGS; } if (length > 0 && (system == null || input == null)) { Console.WriteLine("Length > 0 but no system or input"); return Error.MSPACK_ERR_ARGS; } lzx.ReferenceDataSize = length; if (length > 0) { // Copy reference data int pos = (int)(lzx.WindowSize - length); int bytes = system.Read(input, lzx.Window, pos, (int)length); // Length can't be more than 2^25, so no signedness problem if (bytes < (int)length) return Error.MSPACK_ERR_READ; } lzx.ReferenceDataSize = length; return Error.MSPACK_ERR_OK; } // See description of outputLength in lzxd_init() public static void SetOutputLength(LZXDStream lzx, long outputLength) { if (lzx != null && outputLength > 0) lzx.Length = outputLength; } /// /// Decompresses entire or partial LZX streams. /// /// The number of bytes of data that should be decompressed is given as the /// out_bytes parameter. If more bytes are decoded than are needed, they /// will be kept over for a later invocation. /// /// The output bytes will be passed to the system.write() function given in /// lzxd_init(), using the output file handle given in lzxd_init(). More than /// one call may be made to system.write(). /// Input bytes will be read in as necessary using the system.read() /// function given in lzxd_init(), using the input file handle given in /// lzxd_init(). This will continue until system.read() returns 0 bytes, /// or an error. Errors will be passed out of the function as /// MSPACK_ERR_READ errors. Input streams should convey an "end of input /// stream" by refusing to supply all the bytes that LZX asks for when they /// reach the end of the stream, rather than return an error code. /// /// If any error code other than MSPACK_ERR_OK is returned, the stream /// should be considered unusable and lzxd_decompress() should not be /// called again on this stream. /// /// LZX decompression state, as allocated by lzxd_init(). /// the number of bytes of data to decompress. /// an error code, or MSPACK_ERR_OK if successful public static Error Decompress(object o, long out_bytes) { LZXDStream lzx = o as LZXDStream; if (lzx == null) return Error.MSPACK_ERR_ARGS; // Bitstream and huffman reading variables uint bit_buffer; int bits_left, i = 0; int i_ptr, i_end; ushort sym; int match_length, length_footer, extra, verbatim_bits, bytes_todo; int this_run, main_element, aligned_bits, j, warned = 0; byte[] window, buf = new byte[12]; int runsrc, rundest; uint frame_size = 0, end_frame, match_offset, window_posn; uint R0, R1, R2; // Easy answers if (lzx == null || (out_bytes < 0)) return Error.MSPACK_ERR_ARGS; if (lzx.Error != Error.MSPACK_ERR_OK) return lzx.Error; // Flush out any stored-up bytes before we begin i = lzx.OutputLength - lzx.OutputPointer; if (i > out_bytes) i = (int)out_bytes; if (i != 0) { try { lzx.Output.Write(lzx.e8_buf, lzx.OutputPointer, i); } catch { return lzx.Error = Error.MSPACK_ERR_WRITE; } lzx.OutputPointer += i; lzx.Offset += i; out_bytes -= i; } if (out_bytes == 0) return Error.MSPACK_ERR_OK; // Restore local state //RESTORE_BITS { i_ptr = lzx.InputPointer; i_end = lzx.InputLength; bit_buffer = lzx.BitBuffer; bits_left = lzx.BitsLeft; } window = lzx.Window; window_posn = lzx.WindowPosition; R0 = lzx.R0; R1 = lzx.R1; R2 = lzx.R2; end_frame = (uint)((lzx.Offset + out_bytes) / LZX_FRAME_SIZE) + 1; while (lzx.Frame < end_frame) { // Have we reached the reset interval? (if there is one?) if (lzx.ResetInterval != 0 && ((lzx.Frame % lzx.ResetInterval) == 0)) { if (lzx.BlockRemaining != 0) { // This is a file format error, we can make a best effort to extract what we can Console.WriteLine($"{lzx.BlockRemaining} bytes remaining at reset interval"); if (warned == 0) { lzx.Sys.Message(null, "WARNING; invalid reset interval detected during LZX decompression"); warned++; } } // Re-read the intel header and reset the huffman lengths ResetState(lzx); R0 = lzx.R0; R1 = lzx.R1; R2 = lzx.R2; } // LZX DELTA format has chunk_size, not present in LZX format if (lzx.IsDelta) { //ENSURE_BITS(16) { while (bits_left < (16)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } //REMOVE_BITS(16) { bit_buffer <<= (16); bits_left -= (16); } } // Read header if necessary if (lzx.HeaderRead == 0) { // Read 1 bit. if bit=0, intel filesize = 0. // if bit=1, read intel filesize (32 bits) j = 0; //READ_BITS(i, 1) { //ENSURE_BITS(1) { while (bits_left < (1)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } (i) = (int)(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (1))); //PEEK_BITS(1) //REMOVE_BITS(1) { bit_buffer <<= (1); bits_left -= (1); } } if (i != 0) { //READ_BITS(i, 16) { //ENSURE_BITS(16) { while (bits_left < (16)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } (i) = (int)(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (16))); //PEEK_BITS(16) //REMOVE_BITS(16) { bit_buffer <<= (16); bits_left -= (16); } } //READ_BITS(j, 16) { //ENSURE_BITS(16) { while (bits_left < (16)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } (j) = (int)(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (16))); //PEEK_BITS(16) //REMOVE_BITS(16) { bit_buffer <<= (16); bits_left -= (16); } } } lzx.IntelFileSize = (i << 16) | j; lzx.HeaderRead = 1; } // Calculate size of frame: all frames are 32k except the final frame // which is 32kb or less. this can only be calculated when lzx.Length // has been filled in. frame_size = LZX_FRAME_SIZE; if (lzx.Length != 0 && (lzx.Length - lzx.Offset) < frame_size) frame_size = (uint)(lzx.Length - lzx.Offset); // Decode until one more frame is available bytes_todo = (int)(lzx.FramePosition + frame_size - window_posn); while (bytes_todo > 0) { // Initialise new block, if one is needed if (lzx.BlockRemaining == 0) { // Realign if previous block was an odd-sized UNCOMPRESSED block if ((lzx.BlockType == LZXBlockType.LZX_BLOCKTYPE_UNCOMPRESSED) && (lzx.BlockLength & 1) != 0) { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } i_ptr++; } // Read block type (3 bits) and block length (24 bits) //READ_BITS(lzx.BlockType, 3) { //ENSURE_BITS(3) { while (bits_left < (3)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } }; } } (lzx.BlockType) = (LZXBlockType)(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (3))); //PEEK_BITS(3) //REMOVE_BITS(3) { bit_buffer <<= (3); bits_left -= (3); } } //READ_BITS(i, 16) { //ENSURE_BITS(16) { while (bits_left < (16)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } (i) = (int)(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (16))); //PEEK_BITS(16) //REMOVE_BITS(16) { bit_buffer <<= (16); bits_left -= (16); } } //READ_BITS(j, 8) { //ENSURE_BITS(8) { while (bits_left < (8)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } (j) = (int)(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (8))); //PEEK_BITS(8) //REMOVE_BITS(8) { bit_buffer <<= (8); bits_left -= (8); } } lzx.BlockRemaining = lzx.BlockLength = (uint)((i << 8) | j); // Console.WriteLine($"New block t{lzx.BlockType} len {lzx.BlockLength}"); // Read individual block headers switch (lzx.BlockType) { case LZXBlockType.LZX_BLOCKTYPE_ALIGNED: // Read lengths of and build aligned huffman decoding tree for (i = 0; i < 8; i++) { //READ_BITS(j, 3) { //ENSURE_BITS(3) { while (bits_left < (3)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } }; } } (j) = (int)(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (3))); //PEEK_BITS(3) //REMOVE_BITS(3) { bit_buffer <<= (3); bits_left -= (3); } } lzx.ALIGNED_len[i] = (byte)j; } //BUILD_TABLE(ALIGNED) { if (!CompressionStream.MakeDecodeTable(LZX_ALIGNED_MAXSYMBOLS, LZX_ALIGNED_TABLEBITS, lzx.ALIGNED_len, lzx.ALIGNED_table, msb: true)) { Console.WriteLine($"Failed to build ALIGNED table"); return lzx.Error = Error.MSPACK_ERR_DECRUNCH; } } // Read lengths of and build main huffman decoding tree //READ_LENGTHS(MAINTREE, 0, 256) { //STORE_BITS { lzx.InputPointer = i_ptr; lzx.InputLength = i_end; lzx.BitBuffer = bit_buffer; lzx.BitsLeft = bits_left; } if (ReadLens(lzx, lzx.MAINTREE_len, (0), (uint)(256)) != Error.MSPACK_ERR_OK) return lzx.Error; //RESTORE_BITS { i_ptr = lzx.InputPointer; i_end = lzx.InputLength; bit_buffer = lzx.BitBuffer; bits_left = lzx.BitsLeft; } } //READ_LENGTHS(MAINTREE, 256, LZX_NUM_CHARS + lzx.NumOffsets) { //STORE_BITS { lzx.InputPointer = i_ptr; lzx.InputLength = i_end; lzx.BitBuffer = bit_buffer; lzx.BitsLeft = bits_left; } if (ReadLens(lzx, lzx.MAINTREE_len, (256), (uint)(LZX_NUM_CHARS + lzx.NumOffsets)) != Error.MSPACK_ERR_OK) return lzx.Error; //RESTORE_BITS { i_ptr = lzx.InputPointer; i_end = lzx.InputLength; bit_buffer = lzx.BitBuffer; bits_left = lzx.BitsLeft; } } //BUILD_TABLE(MAINTREE) { if (!CompressionStream.MakeDecodeTable(LZX_MAINTREE_MAXSYMBOLS, LZX_MAINTREE_TABLEBITS, lzx.MAINTREE_len, lzx.MAINTREE_table, msb: true)) { Console.WriteLine($"Failed to build MAINTREE table"); return lzx.Error = Error.MSPACK_ERR_DECRUNCH; } } // If the literal 0xE8 is anywhere in the block... if (lzx.MAINTREE_len[0xE8] != 0) lzx.IntelStarted = true; // Read lengths of and build lengths huffman decoding tree //READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS) { //STORE_BITS { lzx.InputPointer = i_ptr; lzx.InputLength = i_end; lzx.BitBuffer = bit_buffer; lzx.BitsLeft = bits_left; } if (ReadLens(lzx, lzx.LENGTH_len, (0), (uint)(LZX_NUM_SECONDARY_LENGTHS)) != Error.MSPACK_ERR_OK) return lzx.Error; //RESTORE_BITS { i_ptr = lzx.InputPointer; i_end = lzx.InputLength; bit_buffer = lzx.BitBuffer; bits_left = lzx.BitsLeft; } } //BUILD_TABLE_MAYBE_EMPTY(LENGTH) { lzx.LENGTH_empty = 0; if (!CompressionStream.MakeDecodeTable(LZX_LENGTH_MAXSYMBOLS, LZX_LENGTH_TABLEBITS, lzx.LENGTH_len, lzx.LENGTH_table, msb: true)) { for (i = 0; i < LZX_LENGTH_MAXSYMBOLS; i++) { if (lzx.LENGTH_len[i] > 0) { Console.WriteLine("Failed to build TBL table"); return lzx.Error = Error.MSPACK_ERR_DECRUNCH; } } // Empty tree - allow it, but don't decode symbols with it lzx.LENGTH_empty = 1; } } break; case LZXBlockType.LZX_BLOCKTYPE_VERBATIM: // Read lengths of and build main huffman decoding tree //READ_LENGTHS(MAINTREE, 0, 256) { //STORE_BITS { lzx.InputPointer = i_ptr; lzx.InputLength = i_end; lzx.BitBuffer = bit_buffer; lzx.BitsLeft = bits_left; } if (ReadLens(lzx, lzx.MAINTREE_len, (0), (uint)(256)) != Error.MSPACK_ERR_OK) return lzx.Error; //RESTORE_BITS { i_ptr = lzx.InputPointer; i_end = lzx.InputLength; bit_buffer = lzx.BitBuffer; bits_left = lzx.BitsLeft; } } //READ_LENGTHS(MAINTREE, 256, LZX_NUM_CHARS + lzx.NumOffsets) { //STORE_BITS { lzx.InputPointer = i_ptr; lzx.InputLength = i_end; lzx.BitBuffer = bit_buffer; lzx.BitsLeft = bits_left; } if (ReadLens(lzx, lzx.MAINTREE_len, (256), (uint)(LZX_NUM_CHARS + lzx.NumOffsets)) != Error.MSPACK_ERR_OK) return lzx.Error; //RESTORE_BITS { i_ptr = lzx.InputPointer; i_end = lzx.InputLength; bit_buffer = lzx.BitBuffer; bits_left = lzx.BitsLeft; } } //BUILD_TABLE(MAINTREE) { if (!CompressionStream.MakeDecodeTable(LZX_MAINTREE_MAXSYMBOLS, LZX_MAINTREE_TABLEBITS, lzx.MAINTREE_len, lzx.MAINTREE_table, msb: true)) { Console.WriteLine($"Failed to build MAINTREE table"); return lzx.Error = Error.MSPACK_ERR_DECRUNCH; } } // If the literal 0xE8 is anywhere in the block... if (lzx.MAINTREE_len[0xE8] != 0) lzx.IntelStarted = true; // Read lengths of and build lengths huffman decoding tree //READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS) { //STORE_BITS { lzx.InputPointer = i_ptr; lzx.InputLength = i_end; lzx.BitBuffer = bit_buffer; lzx.BitsLeft = bits_left; } if (ReadLens(lzx, lzx.LENGTH_len, (0), (uint)(LZX_NUM_SECONDARY_LENGTHS)) != Error.MSPACK_ERR_OK) return lzx.Error; //RESTORE_BITS { i_ptr = lzx.InputPointer; i_end = lzx.InputLength; bit_buffer = lzx.BitBuffer; bits_left = lzx.BitsLeft; } } //BUILD_TABLE_MAYBE_EMPTY(LENGTH) { lzx.LENGTH_empty = 0; if (!CompressionStream.MakeDecodeTable(LZX_LENGTH_MAXSYMBOLS, LZX_LENGTH_TABLEBITS, lzx.LENGTH_len, lzx.LENGTH_table, msb: true)) { for (i = 0; i < LZX_LENGTH_MAXSYMBOLS; i++) { if (lzx.LENGTH_len[i] > 0) { Console.WriteLine("Failed to build TBL table"); return lzx.Error = Error.MSPACK_ERR_DECRUNCH; } } // Empty tree - allow it, but don't decode symbols with it lzx.LENGTH_empty = 1; } } break; case LZXBlockType.LZX_BLOCKTYPE_UNCOMPRESSED: // Because we can't assume otherwise lzx.IntelStarted = true; // Read 1-16 (not 0-15) bits to align to bytes if (bits_left == 0) { //ENSURE_BITS(16) { while (bits_left < (16)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } } bits_left = 0; bit_buffer = 0; // Read 12 bytes of stored R0 / R1 / R2 values for (rundest = 0, i = 0; i < 12; i++) { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } buf[rundest++] = lzx.InputBuffer[i_ptr++]; } R0 = (uint)(buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24)); R1 = (uint)(buf[4] | (buf[5] << 8) | (buf[6] << 16) | (buf[7] << 24)); R2 = (uint)(buf[8] | (buf[9] << 8) | (buf[10] << 16) | (buf[11] << 24)); break; default: Console.WriteLine("Bad block type"); return lzx.Error = Error.MSPACK_ERR_DECRUNCH; } } // Decode more of the block: // run = min(what's available, what's needed) this_run = (int)lzx.BlockRemaining; if (this_run > bytes_todo) this_run = bytes_todo; // Assume we decode exactly this_run bytes, for now bytes_todo -= this_run; lzx.BlockRemaining -= (uint)this_run; // Decode at least this_run bytes switch (lzx.BlockType) { case LZXBlockType.LZX_BLOCKTYPE_ALIGNED: case LZXBlockType.LZX_BLOCKTYPE_VERBATIM: while (this_run > 0) { //READ_HUFFSYM(MAINTREE, main_element) { //ENSURE_BITS(CompressionStream.HUFF_MAXBITS) { while (bits_left < (CompressionStream.HUFF_MAXBITS)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } sym = lzx.MAINTREE_table[(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (LZX_MAINTREE_TABLEBITS)))]; //PEEK_BITS(TABLEBITS(MAINTREE)) if (sym >= LZX_MAINTREE_MAXSYMBOLS) { //HUFF_TRAVERSE(tbl) { i = 1 << (CompressionStream.BITBUF_WIDTH - LZX_MAINTREE_TABLEBITS); do { if ((i >>= 1) == 0) return lzx.Error = Error.MSPACK_ERR_DECRUNCH; sym = lzx.MAINTREE_table[(sym << 1) | ((bit_buffer & i) != 0 ? 1 : 0)]; } while (sym >= LZX_MAINTREE_MAXSYMBOLS); } } (main_element) = sym; i = lzx.MAINTREE_len[sym]; //REMOVE_BITS(i) { bit_buffer <<= (i); bits_left -= (i); } } if (main_element < LZX_NUM_CHARS) { // Literal: 0 to LZX_NUM_CHARS-1 window[window_posn++] = (byte)main_element; this_run--; } else { // Match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) main_element -= LZX_NUM_CHARS; // Get match length match_length = main_element & LZX_NUM_PRIMARY_LENGTHS; if (match_length == LZX_NUM_PRIMARY_LENGTHS) { if (lzx.LENGTH_empty != 0) { Console.WriteLine("LENGTH symbol needed but tree is empty"); return lzx.Error = Error.MSPACK_ERR_DECRUNCH; } //READ_HUFFSYM(LENGTH, length_footer) { //ENSURE_BITS(CompressionStream.HUFF_MAXBITS) { while (bits_left < (CompressionStream.HUFF_MAXBITS)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } sym = lzx.LENGTH_table[(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (LZX_LENGTH_TABLEBITS)))]; //PEEK_BITS(TABLEBITS(LENGTH)) if (sym >= LZX_LENGTH_MAXSYMBOLS) { //HUFF_TRAVERSE(LENGTH) { i = 1 << (CompressionStream.BITBUF_WIDTH - LZX_LENGTH_TABLEBITS); do { if ((i >>= 1) == 0) return lzx.Error = Error.MSPACK_ERR_DECRUNCH; sym = lzx.LENGTH_table[(sym << 1) | ((bit_buffer & i) != 0 ? 1 : 0)]; } while (sym >= LZX_LENGTH_MAXSYMBOLS); } } (length_footer) = sym; i = lzx.LENGTH_len[sym]; //REMOVE_BITS(i) { bit_buffer <<= (i); bits_left -= (i); } } match_length += length_footer; } match_length += LZX_MIN_MATCH; // Get match offset switch ((match_offset = (uint)(main_element >> 3))) { case 0: match_offset = R0; break; case 1: match_offset = R1; R1 = R0; R0 = match_offset; break; case 2: match_offset = R2; R2 = R0; R0 = match_offset; break; default: if (lzx.BlockType == LZXBlockType.LZX_BLOCKTYPE_VERBATIM) { if (match_offset == 3) { match_offset = 1; } else { extra = (match_offset >= 36) ? 17 : extra_bits[match_offset]; //READ_BITS(verbatim_bits, extra) { //ENSURE_BITS(extra) { while (bits_left < (extra)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } (verbatim_bits) = (int)(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (extra))); //PEEK_BITS(extra) //REMOVE_BITS(extra) { bit_buffer <<= (extra); bits_left -= (extra); } } match_offset = (uint)(position_base[match_offset] - 2 + verbatim_bits); } } // LZX_BLOCKTYPE_ALIGNED else { extra = (match_offset >= 36) ? 17 : extra_bits[match_offset]; match_offset = position_base[match_offset] - 2; // >3: verbatim and aligned bits if (extra > 3) { extra -= 3; //READ_BITS(verbatim_bits, extra) { //ENSURE_BITS(extra) { while (bits_left < (extra)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } (verbatim_bits) = (int)(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (extra))); //PEEK_BITS(extra) //REMOVE_BITS(extra) { bit_buffer <<= (extra); bits_left -= (extra); } } match_offset += (uint)(verbatim_bits << 3); //READ_HUFFSYM(ALIGNED, aligned_bits) { //ENSURE_BITS(CompressionStream.HUFF_MAXBITS) { while (bits_left < (CompressionStream.HUFF_MAXBITS)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } sym = lzx.ALIGNED_table[(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (LZX_ALIGNED_TABLEBITS)))]; //PEEK_BITS(TABLEBITS(ALIGNED)) if (sym >= LZX_ALIGNED_MAXSYMBOLS) { //HUFF_TRAVERSE(ALIGNED) { i = 1 << (CompressionStream.BITBUF_WIDTH - LZX_ALIGNED_TABLEBITS); do { if ((i >>= 1) == 0) return lzx.Error = Error.MSPACK_ERR_DECRUNCH; sym = lzx.ALIGNED_table[(sym << 1) | ((bit_buffer & i) != 0 ? 1 : 0)]; } while (sym >= LZX_ALIGNED_MAXSYMBOLS); } } (aligned_bits) = sym; i = lzx.ALIGNED_len[sym]; //REMOVE_BITS(i) { bit_buffer <<= (i); bits_left -= (i); } } match_offset += (uint)aligned_bits; } // 3: aligned bits only else if (extra == 3) { //READ_HUFFSYM(ALIGNED, aligned_bits) { //ENSURE_BITS(CompressionStream.HUFF_MAXBITS) { while (bits_left < (CompressionStream.HUFF_MAXBITS)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } sym = lzx.ALIGNED_table[(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (LZX_ALIGNED_TABLEBITS)))]; //PEEK_BITS(TABLEBITS(ALIGNED)) if (sym >= LZX_ALIGNED_MAXSYMBOLS) { //HUFF_TRAVERSE(ALIGNED) { i = 1 << (CompressionStream.BITBUF_WIDTH - LZX_ALIGNED_TABLEBITS); do { if ((i >>= 1) == 0) return lzx.Error = Error.MSPACK_ERR_DECRUNCH; sym = lzx.ALIGNED_table[(sym << 1) | ((bit_buffer & i) != 0 ? 1 : 0)]; } while (sym >= LZX_ALIGNED_MAXSYMBOLS); } } (aligned_bits) = sym; i = lzx.ALIGNED_len[sym]; //REMOVE_BITS(i) { bit_buffer <<= (i); bits_left -= (i); } } match_offset += (uint)aligned_bits; } // 1-2: verbatim bits only else if (extra > 0) { //READ_BITS(verbatim_bits, extra) { //ENSURE_BITS(extra) { while (bits_left < (extra)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } (verbatim_bits) = (int)(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (extra))); //PEEK_BITS(extra) //REMOVE_BITS(extra) { bit_buffer <<= (extra); bits_left -= (extra); } } match_offset += (uint)verbatim_bits; } // 0: not defined in LZX specification! else { match_offset = 1; } } // Update repeated offset LRU queue R2 = R1; R1 = R0; R0 = match_offset; break; } // LZX DELTA uses max match length to signal even longer match if (match_length == LZX_MAX_MATCH && lzx.IsDelta) { int extra_len = 0; // 4 entry huffman tree //ENSURE_BITS(3) { while (bits_left < (3)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } // '0' . 8 extra length bits if ((bit_buffer >> (CompressionStream.BITBUF_WIDTH - (1))) == 0) //PEEK_BITS(1) { //REMOVE_BITS(1) { bit_buffer <<= (1); bits_left -= (1); } //READ_BITS(extra_len, 8) { //ENSURE_BITS(8) { while (bits_left < (8)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } (extra_len) = (int)(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (8))); //PEEK_BITS(8) //REMOVE_BITS(nbits) { bit_buffer <<= (8); bits_left -= (8); } } } // '10' . 10 extra length bits + 0x100 if ((bit_buffer >> (CompressionStream.BITBUF_WIDTH - (2))) == 2) //PEEK_BITS(2) { //REMOVE_BITS(2) { bit_buffer <<= (2); bits_left -= (2); } //READ_BITS(extra_len, 10) { //ENSURE_BITS(10) { while (bits_left < (10)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } (extra_len) = (int)(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (10))); //PEEK_BITS(10) //REMOVE_BITS(10) { bit_buffer <<= (10); bits_left -= (10); } } extra_len += 0x100; } // '110' . 12 extra length bits + 0x500 if ((bit_buffer >> (CompressionStream.BITBUF_WIDTH - (3))) == 6) //PEEK_BITS(3) { //REMOVE_BITS(3) { bit_buffer <<= (3); bits_left -= (3); } //READ_BITS(extra_len, 12) { //ENSURE_BITS(12) { while (bits_left < (12)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } (extra_len) = (int)(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (12))); //PEEK_BITS(12) //REMOVE_BITS(12) { bit_buffer <<= (12); bits_left -= (12); } } extra_len += 0x500; } // '111' . 15 extra length bits else { //REMOVE_BITS(3) { bit_buffer <<= (3); bits_left -= (3); } //READ_BITS(extra_len, 15) { //ENSURE_BITS(15) { while (bits_left < (15)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } (extra_len) = (int)(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (15))); //PEEK_BITS(15) //REMOVE_BITS(15) { bit_buffer <<= (15); bits_left -= (15); } } } match_length += extra_len; } if ((window_posn + match_length) > lzx.WindowSize) { Console.WriteLine("Match ran over window wrap"); return lzx.Error = Error.MSPACK_ERR_DECRUNCH; } // Copy match rundest = (int)window_posn; i = match_length; // Does match offset wrap the window? if (match_offset > window_posn) { if (match_offset > lzx.Offset && (match_offset - window_posn) > lzx.ReferenceDataSize) { Console.WriteLine("Match offset beyond LZX stream"); return lzx.Error = Error.MSPACK_ERR_DECRUNCH; } // j = length from match offset to end of window j = (int)(match_offset - window_posn); if (j > (int)lzx.WindowSize) { Console.WriteLine("Match offset beyond window boundaries"); return lzx.Error = Error.MSPACK_ERR_DECRUNCH; } runsrc = (int)(lzx.WindowSize - j); if (j < i) { // If match goes over the window edge, do two copy runs i -= j; while (j-- > 0) { window[rundest++] = window[runsrc++]; } runsrc = 0; } while (i-- > 0) { window[rundest++] = window[runsrc++]; } } else { runsrc = (int)(rundest - match_offset); while (i-- > 0) { window[rundest++] = window[runsrc++]; } } this_run -= match_length; window_posn += (uint)match_length; } } break; case LZXBlockType.LZX_BLOCKTYPE_UNCOMPRESSED: // As this_run is limited not to wrap a frame, this also means it // won't wrap the window (as the window is a multiple of 32k) rundest = (int)window_posn; window_posn += (uint)this_run; while (this_run > 0) { if ((i = i_end - i_ptr) == 0) { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } } else { if (i > this_run) i = this_run; Array.Copy(lzx.InputBuffer, i_ptr, window, rundest, i); rundest += i; i_ptr += i; this_run -= i; } } break; default: return lzx.Error = Error.MSPACK_ERR_DECRUNCH; // Might as well } // Did the final match overrun our desired this_run length? if (this_run < 0) { if ((uint)(-this_run) > lzx.BlockRemaining) { Console.WriteLine($"Overrun went past end of block by {-this_run} ({lzx.BlockRemaining} remaining)"); return lzx.Error = Error.MSPACK_ERR_DECRUNCH; } lzx.BlockRemaining -= (uint)-this_run; } } // Streams don't extend over frame boundaries if ((window_posn - lzx.FramePosition) != frame_size) { Console.WriteLine($"Decode beyond output frame limits! {window_posn - lzx.FramePosition} != {frame_size}"); return lzx.Error = Error.MSPACK_ERR_DECRUNCH; } // Re-align input bitstream if (bits_left > 0) { //ENSURE_BITS(16) { while (bits_left < (16)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } } if ((bits_left & 15) != 0) { //REMOVE_BITS(bits_left & 15) { bit_buffer <<= (bits_left & 15); bits_left -= (bits_left & 15); } } // Check that we've used all of the previous frame first if (lzx.OutputPointer != lzx.OutputLength) { Console.WriteLine($"{lzx.OutputLength - lzx.OutputPointer} avail bytes, new {frame_size} frame"); return lzx.Error = Error.MSPACK_ERR_DECRUNCH; } // Does this intel block _really_ need decoding? if (lzx.IntelStarted && lzx.IntelFileSize != 0 && (lzx.Frame < 32768) && (frame_size > 10)) { int data = 0; int dataend = (int)(frame_size - 10); int curpos = (int)lzx.Offset; int filesize = lzx.IntelFileSize; int abs_off, rel_off; // Copy e8 block to the e8 buffer and tweak if needed lzx.OutputPointer = data; Array.Copy(lzx.Window, lzx.FramePosition, lzx.e8_buf, data, frame_size); while (data < dataend) { if (lzx.e8_buf[data++] != 0xE8) { curpos++; continue; } abs_off = lzx.e8_buf[data + 0] | (lzx.e8_buf[data + 1] << 8) | (lzx.e8_buf[data + 2] << 16) | (lzx.e8_buf[data + 3] << 24); if ((abs_off >= -curpos) && (abs_off < filesize)) { rel_off = (abs_off >= 0) ? abs_off - curpos : abs_off + filesize; lzx.e8_buf[data + 0] = (byte)rel_off; lzx.e8_buf[data + 1] = (byte)(rel_off >> 8); lzx.e8_buf[data + 2] = (byte)(rel_off >> 16); lzx.e8_buf[data + 3] = (byte)(rel_off >> 24); } data += 4; curpos += 5; } lzx.OutputLength = (int)(lzx.OutputPointer + frame_size); // Write a frame i = (int)((out_bytes < frame_size) ? out_bytes : frame_size); try { lzx.Output.Write(lzx.e8_buf, lzx.OutputPointer, i); } catch { return lzx.Error = Error.MSPACK_ERR_WRITE; } } else { lzx.OutputPointer = (int)lzx.FramePosition; lzx.OutputLength = (int)(lzx.OutputPointer + frame_size); // Write a frame i = (int)((out_bytes < frame_size) ? out_bytes : frame_size); try { lzx.Output.Write(lzx.Window, lzx.OutputPointer, i); } catch { return lzx.Error = Error.MSPACK_ERR_WRITE; } } lzx.OutputPointer += i; lzx.Offset += i; out_bytes -= i; // Advance frame start position lzx.FramePosition += frame_size; lzx.Frame++; // Wrap window / frame position pointers if (window_posn == lzx.WindowSize) window_posn = 0; if (lzx.FramePosition == lzx.WindowSize) lzx.FramePosition = 0; } if (out_bytes != 0) { Console.WriteLine("Bytes left to output"); return lzx.Error = Error.MSPACK_ERR_DECRUNCH; } // Store local state //STORE_BITS { lzx.InputPointer = i_ptr; lzx.InputLength = i_end; lzx.BitBuffer = bit_buffer; lzx.BitsLeft = bits_left; } lzx.WindowPosition = window_posn; lzx.R0 = R0; lzx.R1 = R1; lzx.R2 = R2; return Error.MSPACK_ERR_OK; } private static Error ReadLens(LZXDStream lzx, byte[] lens, uint first, uint last) { // Bit buffer and huffman symbol decode variables uint bit_buffer; int bits_left, i; ushort sym; int i_ptr, i_end; uint x, y; int z; //RESTORE_BITS { i_ptr = lzx.InputPointer; i_end = lzx.InputLength; bit_buffer = lzx.BitBuffer; bits_left = lzx.BitsLeft; } // Read lengths for pretree (20 symbols, lengths stored in fixed 4 bits) for (x = 0; x < 20; x++) { //READ_BITS(y, 4) { //ENSURE_BITS(4) { while (bits_left < (4)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } (y) = (bit_buffer >> (CompressionStream.BITBUF_WIDTH - (4))); //PEEK_BITS(4) //REMOVE_BITS(4) { bit_buffer <<= (4); bits_left -= (4); } } lzx.PRETREE_len[x] = (byte)y; } //BUILD_TABLE(PRETREE) { if (!CompressionStream.MakeDecodeTable(LZX_PRETREE_MAXSYMBOLS, LZX_PRETREE_TABLEBITS, lzx.PRETREE_len, lzx.PRETREE_table, msb: true)) { Console.WriteLine($"failed to build PRETREE table"); return lzx.Error = Error.MSPACK_ERR_DECRUNCH; } } for (x = first; x < last;) { //READ_HUFFSYM(PRETREE, z) { //ENSURE_BITS(CompressionStream.HUFF_MAXBITS) { while (bits_left < (CompressionStream.HUFF_MAXBITS)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } sym = lzx.PRETREE_table[(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (LZX_PRETREE_TABLEBITS)))]; //PEEK_BITS(TABLEBITS(PRETREE)) if (sym >= LZX_PRETREE_MAXSYMBOLS) { //HUFF_TRAVERSE(PRETREE) { i = 1 << (CompressionStream.BITBUF_WIDTH - LZX_PRETREE_TABLEBITS); do { if ((i >>= 1) == 0) return lzx.Error = Error.MSPACK_ERR_DECRUNCH; sym = lzx.PRETREE_table[(sym << 1) | ((bit_buffer & i) != 0 ? 1 : 0)]; } while (sym >= LZX_PRETREE_MAXSYMBOLS); } } (z) = sym; i = lzx.PRETREE_len[sym]; //REMOVE_BITS(i) { bit_buffer <<= (i); bits_left -= (i); } } // Code = 17, run of ([read 4 bits]+4) zeros if (z == 17) { //READ_BITS(y, 4) { //ENSURE_BITS(4) { while (bits_left < (4)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } (y) = (bit_buffer >> (CompressionStream.BITBUF_WIDTH - (4))); //PEEK_BITS(nbits) //REMOVE_BITS(4) { bit_buffer <<= (4); bits_left -= (4); } } y += 4; while (y-- != 0) { lens[x++] = 0; } } // Code = 18, run of ([read 5 bits]+20) zeros else if (z == 18) { //READ_BITS(y, 5) { //ENSURE_BITS(5) { while (bits_left < (5)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } (y) = (bit_buffer >> (CompressionStream.BITBUF_WIDTH - (5))); //PEEK_BITS(5) //REMOVE_BITS(5) { bit_buffer <<= (5); bits_left -= (5); } } y += 20; while (y-- != 0) { lens[x++] = 0; } } // Code = 19, run of ([read 1 bit]+4) [read huffman symbol] else if (z == 19) { //READ_BITS(y, 1) { //ENSURE_BITS(1) { while (bits_left < (1)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } (y) = (bit_buffer >> (CompressionStream.BITBUF_WIDTH - (1))); //PEEK_BITS(1) //REMOVE_BITS(1) { bit_buffer <<= (1); bits_left -= (1); } } y += 4; //READ_HUFFSYM(PRETREE, z) { //ENSURE_BITS(CompressionStream.HUFF_MAXBITS) { while (bits_left < (CompressionStream.HUFF_MAXBITS)) { //READ_BYTES { //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b0 = lzx.InputBuffer[i_ptr++]; //READ_IF_NEEDED { if (i_ptr >= i_end) { if (lzx.ReadInput() != Error.MSPACK_ERR_OK) return lzx.Error; i_ptr = lzx.InputPointer; i_end = lzx.InputLength; } } byte b1 = lzx.InputBuffer[i_ptr++]; //INJECT_BITS(bitdata, 16) { bit_buffer |= (uint)((b1 << 8) | b0) << (CompressionStream.BITBUF_WIDTH - (16) - bits_left); bits_left += (16); } } } } sym = lzx.PRETREE_table[(bit_buffer >> (CompressionStream.BITBUF_WIDTH - (LZX_PRETREE_TABLEBITS)))]; //PEEK_BITS(TABLEBITS(PRETREE)) if (sym >= LZX_PRETREE_MAXSYMBOLS) { //HUFF_TRAVERSE(PRETREE) { i = 1 << (CompressionStream.BITBUF_WIDTH - LZX_PRETREE_TABLEBITS); do { if ((i >>= 1) == 0) return lzx.Error = Error.MSPACK_ERR_DECRUNCH; sym = lzx.PRETREE_table[(sym << 1) | ((bit_buffer & i) != 0 ? 1 : 0)]; } while (sym >= LZX_PRETREE_MAXSYMBOLS); } } (z) = sym; i = lzx.PRETREE_len[sym]; //REMOVE_BITS(i) { bit_buffer <<= (i); bits_left -= (i); } } z = lens[x] - z; if (z < 0) z += 17; while (y-- != 0) { lens[x++] = (byte)z; } } // Code = 0 to 16, delta current length entry else { z = lens[x] - z; if (z < 0) z += 17; lens[x++] = (byte)z; } } //STORE_BITS { lzx.InputPointer = i_ptr; lzx.InputLength = i_end; lzx.BitBuffer = bit_buffer; lzx.BitsLeft = bits_left; } return Error.MSPACK_ERR_OK; } } }