Files
BinaryObjectScanner/BurnOutSharp.Compression/MSZIP.cs
2022-12-28 14:18:50 -08:00

617 lines
23 KiB
C#

using System;
using System.Collections.Generic;
using BurnOutSharp.Models.Compression.MSZIP;
using BurnOutSharp.Utilities;
using ICSharpCode.SharpZipLib.Zip.Compression;
namespace BurnOutSharp.Compression
{
public class MSZIP
{
// TODO: Implement MSZIP decompression
// The below is a first attempt at implementation that is not working. It likely needs to be replaced by
// a zlib wrapper and/or a proper implementation
#region Constants
/// <summary>
/// Maximum Huffman code bit count
/// </summary>
private const int MAX_BITS = 16;
#endregion
#region Properties
/// <summary>
/// Match lengths for literal codes 257..285
/// </summary>
/// <remarks>Each value here is the lower bound for lengths represented</remarks>
private static Dictionary<int, int> LiteralLengths
{
get
{
// If we have cached length mappings, use those
if (_literalLengths != null)
return _literalLengths;
// Otherwise, build it from scratch
_literalLengths = new Dictionary<int, int>
{
[257] = 3,
[258] = 4,
[259] = 5,
[260] = 6,
[261] = 7,
[262] = 8,
[263] = 9,
[264] = 10,
[265] = 11, // 11,12
[266] = 13, // 13,14
[267] = 15, // 15,16
[268] = 17, // 17,18
[269] = 19, // 19-22
[270] = 23, // 23-26
[271] = 27, // 27-30
[272] = 31, // 31-34
[273] = 35, // 35-42
[274] = 43, // 43-50
[275] = 51, // 51-58
[276] = 59, // 59-66
[277] = 67, // 67-82
[278] = 83, // 83-98
[279] = 99, // 99-114
[280] = 115, // 115-130
[281] = 131, // 131-162
[282] = 163, // 163-194
[283] = 195, // 195-226
[284] = 227, // 227-257
[285] = 258,
};
return _literalLengths;
}
}
/// <summary>
/// Extra bits for literal codes 257..285
/// </summary>
private static Dictionary<int, int> LiteralExtraBits
{
get
{
// If we have cached bit mappings, use those
if (_literalExtraBits != null)
return _literalExtraBits;
// Otherwise, build it from scratch
_literalExtraBits = new Dictionary<int, int>();
// Literal Value 257 - 264, 0 bits
for (int i = 257; i < 265; i++)
_literalExtraBits[i] = 0;
// Literal Value 265 - 268, 1 bit
for (int i = 265; i < 269; i++)
_literalExtraBits[i] = 1;
// Literal Value 269 - 272, 2 bits
for (int i = 269; i < 273; i++)
_literalExtraBits[i] = 2;
// Literal Value 273 - 276, 3 bits
for (int i = 273; i < 277; i++)
_literalExtraBits[i] = 3;
// Literal Value 277 - 280, 4 bits
for (int i = 277; i < 281; i++)
_literalExtraBits[i] = 4;
// Literal Value 281 - 284, 5 bits
for (int i = 281; i < 285; i++)
_literalExtraBits[i] = 5;
// Literal Value 285, 0 bits
_literalExtraBits[285] = 0;
return _literalExtraBits;
}
}
/// <summary>
/// Match offsets for distance codes 0..29
/// </summary>
/// <remarks>Each value here is the lower bound for lengths represented</remarks>
public static readonly int[] DistanceOffsets = new int[30]
{
1, 2, 3, 4, 5, 7, 9, 13, 17, 25,
33, 49, 65, 97, 129, 193, 257, 385, 513, 769,
1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577,
};
/// <summary>
/// Extra bits for distance codes 0..29
/// </summary>
private static readonly int[] DistanceExtraBits = new int[30]
{
0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
};
/// <summary>
/// The order of the bit length Huffman code lengths
/// </summary>
private static readonly int[] BitLengthOrder = new int[19]
{
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15,
};
#endregion
#region Instance Variables
/// <summary>
/// Match lengths for literal codes 257..285
/// </summary>
private static Dictionary<int, int> _literalLengths = null;
/// <summary>
/// Extra bits for literal codes 257..285
/// </summary>
private static Dictionary<int, int> _literalExtraBits = null;
#endregion
#region Parsing
/// <summary>
/// Read the block header from the block data, if possible
/// </summary>
/// <param name="data">BitStream representing the block</param>
/// <param name="offset">Offset within the array to parse</param>
/// <returns>Filled block header on success, null on error</returns>
private static Models.Compression.MSZIP.BlockHeader AsBlockHeader(BitStream data)
{
// If the data is invalid
if (data == null)
return null;
var header = new Models.Compression.MSZIP.BlockHeader();
header.Signature = data.ReadAlignedUInt16();
if (header.Signature != 0x4B43)
return null;
return header;
}
/// <summary>
/// Read the deflate block header from the block data, if possible
/// </summary>
/// <param name="data">Byte array representing the block</param>
/// <param name="offset">Offset within the array to parse</param>
/// <returns>Filled deflate block header on success, null on error</returns>
private static Models.Compression.MSZIP.DeflateBlockHeader AsDeflateBlockHeader(BitStream data)
{
// If the data is invalid
if (data == null)
return null;
var header = new Models.Compression.MSZIP.DeflateBlockHeader();
header.BFINAL = data.ReadBits(1)[0];
header.BTYPE = (Models.Compression.MSZIP.CompressionType)data.ReadBits(2).AsByte();
return header;
}
/// <summary>
/// Read the block header from the block data, if possible
/// </summary>
/// <param name="data">Byte array representing the block</param>
/// <param name="offset">Offset within the array to parse</param>
/// <returns>Filled dynamic Huffman compressed block header on success, null on error</returns>
private static Models.Compression.MSZIP.DynamicHuffmanCompressedBlockHeader AsDynamicHuffmanCompressedBlockHeader(BitStream data)
{
// If the data is invalid
if (data == null)
return null;
var header = new Models.Compression.MSZIP.DynamicHuffmanCompressedBlockHeader();
// # of Literal/Length codes - 257
ushort HLIT = (ushort)(data.ReadBits(5).AsUInt16() + 257);
// # of Distance codes - 1
byte HDIST = (byte)(data.ReadBits(5).AsByte() + 1);
// HCLEN, # of Code Length codes - 4
byte HCLEN = (byte)(data.ReadBits(4).AsByte() + 4);
// (HCLEN + 4) x 3 bits: code lengths for the code length
// alphabet given just above
//
// These code lengths are interpreted as 3-bit integers
// (0-7); as above, a code length of 0 means the
// corresponding symbol (literal/ length or distance code
// length) is not used.
int[] bitLengths = new int[19];
for (byte i = 0; i < HCLEN; i++)
bitLengths[BitLengthOrder[i]] = data.ReadBits(3).AsByte();
// Code length Huffman code
int[] bitLengthTable = CreateTable(19, 7, bitLengths, 1 << 7);
// HLIT + 257 code lengths for the literal/length alphabet,
// encoded using the code length Huffman code
header.LiteralLengths = BuildHuffmanTree(data, HLIT, bitLengths, bitLengthTable);
// HDIST + 1 code lengths for the distance alphabet,
// encoded using the code length Huffman code
header.DistanceCodes = BuildHuffmanTree(data, HDIST, bitLengths, bitLengthTable);
return header;
}
/// <summary>
/// Read the block header from the block data, if possible
/// </summary>
/// <param name="data">Byte array representing the block</param>
/// <param name="offset">Offset within the array to parse</param>
/// <returns>Filled non-compressed block header on success, null on error</returns>
private static Models.Compression.MSZIP.NonCompressedBlockHeader AsNonCompressedBlockHeader(BitStream data)
{
// If the data is invalid
if (data == null)
return null;
var header = new Models.Compression.MSZIP.NonCompressedBlockHeader();
header.LEN = data.ReadAlignedUInt16();
header.NLEN = data.ReadAlignedUInt16();
if (header.LEN != (~header.NLEN & 0xFFFF))
return null;
return header;
}
#endregion
#region Helpers
/// <summary>
/// The alphabet for code lengths is as follows
/// </summary>
private static int[] BuildHuffmanTree(BitStream data, ushort codeCount, int[] bitLengths, int[] decodingTable)
{
// Setup the huffman tree
int[] tree = new int[codeCount];
// Setup the loop variables
int lastCode = 0, repeatLength = 0;
for (int i = 0; i < codeCount; i++)
{
// TODO: Fix so we only read the number of bits we need
int nextCode = data.ReadBits(7).AsUInt16();
int symbol = decodingTable[nextCode];
if (bitLengths[symbol] > 7)
_ = data.ReadBits(decodingTable[symbol] - 7);
// Represent code lengths of 0 - 15
if (symbol > 0 && symbol <= 15)
{
lastCode = symbol;
tree[i] = symbol;
}
// Copy the previous code length 3 - 6 times.
// The next 2 bits indicate repeat length (0 = 3, ... , 3 = 6)
// Example: Codes 8, 16 (+2 bits 11), 16 (+2 bits 10) will expand to 12 code lengths of 8 (1 + 6 + 5)
else if (symbol == 16)
{
repeatLength = data.ReadBits(2).AsByte();
repeatLength += 2;
symbol = lastCode;
}
// Repeat a code length of 0 for 3 - 10 times.
// (3 bits of length)
else if (symbol == 17)
{
repeatLength = data.ReadBits(3).AsByte();
repeatLength += 3;
symbol = 0;
}
// Repeat a code length of 0 for 11 - 138 times
// (7 bits of length)
else if (symbol == 18)
{
repeatLength = data.ReadBits(7).AsByte();
repeatLength += 11;
symbol = 0;
}
// Everything else
else
{
throw new ArgumentOutOfRangeException();
}
// If we had a repeat length
for (; repeatLength > 0; repeatLength--)
{
tree[i++] = symbol;
}
}
return tree;
}
/// <summary>
/// This function was originally coded by David Tritscher.
///
/// It builds a fast huffman decoding table from a canonical huffman code lengths table.
/// </summary>
/// <param name="maxSymbols">Total number of symbols in this huffman tree.</param>
/// <param name="bitCount">Any symbols with a code length of bitCount or less can be decoded in one lookup of the table.</param>
/// <param name="lengths">A table to get code lengths from [0 to maxSymbols-1]</param>
/// <returns>The table with decoded symbols and pointers.</returns>
/// <see href="https://github.com/mnadareski/LibMSPackSharp/blob/master/LibMSPackSharp/Compression/CompressionStream.ReadHuff.cs"/>
private static int[] CreateTable(int maxSymbols, int bitCount, int[] lengths, int distanceSize)
{
int[] table = new int[distanceSize];
ushort sym, next_symbol;
uint leaf, fill;
uint reverse;
byte bit_num;
uint pos = 0; // The current position in the decode table
uint table_mask = (uint)1 << bitCount;
uint bit_mask = table_mask >> 1; // Don't do 0 length codes
// Fill entries for codes short enough for a direct mapping
for (bit_num = 1; bit_num <= bitCount; bit_num++)
{
for (sym = 0; sym < maxSymbols; sym++)
{
if (lengths[sym] != bit_num)
continue;
// Reverse the significant bits
fill = (uint)lengths[sym];
reverse = pos >> (int)(bitCount - fill);
leaf = 0;
do
{
leaf <<= 1;
leaf |= reverse & 1;
reverse >>= 1;
} while (--fill > 0);
if ((pos += bit_mask) > table_mask)
return null; // Table overrun
// Fill all possible lookups of this symbol with the symbol itself
fill = bit_mask;
next_symbol = (ushort)(1 << bit_num);
do
{
table[leaf] = sym;
leaf += next_symbol;
} while (--fill > 0);
}
bit_mask >>= 1;
}
// Exit with success if table is now complete
if (pos == table_mask)
return table;
// Mark all remaining table entries as unused
for (sym = (ushort)pos; sym < table_mask; sym++)
{
reverse = sym;
leaf = 0;
fill = (uint)bitCount;
do
{
leaf <<= 1;
leaf |= reverse & 1;
reverse >>= 1;
} while (--fill > 0);
table[leaf] = 0xFFFF;
}
// next_symbol = base of allocation for long codes
next_symbol = ((table_mask >> 1) < maxSymbols) ? (ushort)maxSymbols : (ushort)(table_mask >> 1);
// Give ourselves room for codes to grow by up to 16 more bits.
// codes now start at bit bitCount+16 and end at (bitCount+16-codelength)
pos <<= 16;
table_mask <<= 16;
bit_mask = 1 << 15;
for (bit_num = (byte)(bitCount + 1); bit_num <= MAX_BITS; bit_num++)
{
for (sym = 0; sym < maxSymbols; sym++)
{
if (lengths[sym] != bit_num)
continue;
if (pos >= table_mask)
return null; // Table overflow
// leaf = the first bitCount of the code, reversed
reverse = pos >> 16;
leaf = 0;
fill = (uint)bitCount;
do
{
leaf <<= 1;
leaf |= reverse & 1;
reverse >>= 1;
} while (--fill > 0);
for (fill = 0; fill < (bit_num - bitCount); fill++)
{
// If this path hasn't been taken yet, 'allocate' two entries
if (table[leaf] == 0xFFFF)
{
table[(next_symbol << 1)] = 0xFFFF;
table[(next_symbol << 1) + 1] = 0xFFFF;
table[leaf] = (ushort)next_symbol++;
}
// Follow the path and select either left or right for next bit
leaf = (uint)(table[leaf] << 1);
if (((pos >> (15 - (int)fill)) & 1) != 0)
leaf++;
}
table[leaf] = sym;
pos += bit_mask;
}
bit_mask >>= 1;
}
// Full table?
return pos == table_mask ? table : null;
}
#endregion
#region Folders
/// <summary>
/// Decompress MSZIP data
/// </summary>
protected byte[] DecompressMSZIPData(byte[] data)
{
// Inflater inflater = new Inflater(noHeader: true);
// inflater.SetInput(data);
// byte[] outputData = new byte[data.Length * 4];
// int read = inflater.Inflate(outputData);
// return outputData.AsSpan(0, read).ToArray();
// Create the bitstream to read from
var dataStream = new BitStream(data);
// Get the block header
var blockHeader = AsBlockHeader(dataStream);
if (blockHeader == null)
return null;
// Create the output byte array
List<byte> decodedBytes = new List<byte>();
// Create the loop variable block
Models.Compression.MSZIP.DeflateBlockHeader deflateBlockHeader;
do
{
deflateBlockHeader = AsDeflateBlockHeader(dataStream);
// We should never get a reserved block
if (deflateBlockHeader.BTYPE == Models.Compression.MSZIP.CompressionType.Reserved)
throw new InvalidOperationException();
// If stored with no compression
if (deflateBlockHeader.BTYPE == Models.Compression.MSZIP.CompressionType.NoCompression)
{
// Skip any remaining bits in current partially processed byte
dataStream.DiscardBuffer();
// Read the block header
deflateBlockHeader.BlockDataHeader = AsNonCompressedBlockHeader(dataStream);
// Copy LEN bytes of data to output
var header = deflateBlockHeader.BlockDataHeader as Models.Compression.MSZIP.NonCompressedBlockHeader;
ushort length = header.LEN;
decodedBytes.AddRange(dataStream.ReadAlignedBytes(length));
}
// Otherwise
else
{
// If compressed with dynamic Huffman codes read representation of code trees
switch (deflateBlockHeader.BTYPE)
{
case Models.Compression.MSZIP.CompressionType.FixedHuffman:
deflateBlockHeader.BlockDataHeader = new Models.Compression.MSZIP.FixedHuffmanCompressedBlockHeader();
break;
case Models.Compression.MSZIP.CompressionType.DynamicHuffman:
deflateBlockHeader.BlockDataHeader = AsDynamicHuffmanCompressedBlockHeader(dataStream);
break;
}
var header = deflateBlockHeader.BlockDataHeader as Models.Compression.MSZIP.CompressedBlockHeader;
// 9 bits per entry, 288 max symbols
int[] literalDecodeTable = CreateTable(288, 9, header.LiteralLengths, (1 << 9) + (288 * 2));
// 6 bits per entry, 32 max symbols
int[] distanceDecodeTable = CreateTable(32, 6, header.DistanceCodes, (1 << 6) + (32 * 2));
// Loop until end of block code recognized
while (true)
{
// Decode literal/length value from input stream
int symbol = literalDecodeTable[dataStream.ReadBits(7).AsUInt16()];
// Copy value (literal byte) to output stream
if (symbol < 256)
{
decodedBytes.Add((byte)symbol);
}
// End of block (256)
else if (symbol == 256)
{
break;
}
else
{
// Decode distance from input stream
ulong length = dataStream.ReadBits(LiteralExtraBits[symbol]).AsUInt64();
length += (ulong)LiteralLengths[symbol];
int code = distanceDecodeTable[length];
ulong distance = dataStream.ReadBits(DistanceExtraBits[code]).AsUInt64();
distance += (ulong)DistanceOffsets[code];
// Move backwards distance bytes in the output
// stream, and copy length bytes from this
// position to the output stream.
}
}
}
} while (!deflateBlockHeader.BFINAL);
/*
Note that a duplicated string reference may refer to a string
in a previous block; i.e., the backward distance may cross one
or more block boundaries. However a distance cannot refer past
the beginning of the output stream. (An application using a
preset dictionary might discard part of the output stream; a
distance can refer to that part of the output stream anyway)
Note also that the referenced string may overlap the current
position; for example, if the last 2 bytes decoded have values
X and Y, a string reference with <length = 5, distance = 2>
adds X,Y,X,Y,X to the output stream.
*/
return decodedBytes.ToArray();
}
#endregion
}
}