Files
BinaryObjectScanner/BurnOutSharp.Wrappers/MicrosoftCabinet.cs
2022-12-22 16:02:10 -08:00

1032 lines
38 KiB
C#

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using BurnOutSharp.Utilities;
namespace BurnOutSharp.Wrappers
{
public class MicrosoftCabinet : WrapperBase
{
#region Pass-Through Properties
#region Header
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.Signature"/>
public uint Signature => _cabinet.Header.Signature;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.Reserved1"/>
public uint Reserved1 => _cabinet.Header.Reserved1;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.CabinetSize"/>
public uint CabinetSize => _cabinet.Header.CabinetSize;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.Reserved2"/>
public uint Reserved2 => _cabinet.Header.Reserved2;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.FilesOffset"/>
public uint FilesOffset => _cabinet.Header.FilesOffset;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.Reserved3"/>
public uint Reserved3 => _cabinet.Header.Reserved3;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.VersionMinor"/>
public byte VersionMinor => _cabinet.Header.VersionMinor;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.VersionMajor"/>
public byte VersionMajor => _cabinet.Header.VersionMajor;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.FolderCount"/>
public ushort FolderCount => _cabinet.Header.FolderCount;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.FileCount"/>
public ushort FileCount => _cabinet.Header.FileCount;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.FileCount"/>
public Models.MicrosoftCabinet.HeaderFlags Flags => _cabinet.Header.Flags;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.SetID"/>
public ushort SetID => _cabinet.Header.SetID;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.CabinetIndex"/>
public ushort CabinetIndex => _cabinet.Header.CabinetIndex;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.HeaderReservedSize"/>
public ushort HeaderReservedSize => _cabinet.Header.HeaderReservedSize;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.FolderReservedSize"/>
public byte FolderReservedSize => _cabinet.Header.FolderReservedSize;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.DataReservedSize"/>
public byte DataReservedSize => _cabinet.Header.DataReservedSize;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.ReservedData"/>
public byte[] ReservedData => _cabinet.Header.ReservedData;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.CabinetPrev"/>
public string CabinetPrev => _cabinet.Header.CabinetPrev;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.DiskPrev"/>
public string DiskPrev => _cabinet.Header.DiskPrev;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.CabinetNext"/>
public string CabinetNext => _cabinet.Header.CabinetNext;
/// <inheritdoc cref="Models.MicrosoftCabinet.CFHEADER.DiskNext"/>
public string DiskNext => _cabinet.Header.DiskNext;
#endregion
#region Folders
/// <inheritdoc cref="Models.MicrosoftCabinet.Cabinet.Folders"/>
public Models.MicrosoftCabinet.CFFOLDER[] Folders => _cabinet.Folders;
#endregion
#region Files
/// <inheritdoc cref="Models.MicrosoftCabinet.Cabinet.Files"/>
public Models.MicrosoftCabinet.CFFILE[] Files => _cabinet.Files;
#endregion
#endregion
#region Instance Variables
/// <summary>
/// Internal representation of the cabinet
/// </summary>
private Models.MicrosoftCabinet.Cabinet _cabinet;
#endregion
#region Constructors
/// <summary>
/// Private constructor
/// </summary>
private MicrosoftCabinet() { }
/// <summary>
/// Create a Microsoft Cabinet from a byte array and offset
/// </summary>
/// <param name="data">Byte array representing the cabinet</param>
/// <param name="offset">Offset within the array to parse</param>
/// <returns>A cabinet wrapper on success, null on failure</returns>
public static MicrosoftCabinet Create(byte[] data, int offset)
{
// If the data is invalid
if (data == null)
return null;
// If the offset is out of bounds
if (offset < 0 || offset >= data.Length)
return null;
// Create a memory stream and use that
MemoryStream dataStream = new MemoryStream(data, offset, data.Length - offset);
return Create(dataStream);
}
/// <summary>
/// Create a Microsoft Cabinet from a Stream
/// </summary>
/// <param name="data">Stream representing the cabinet</param>
/// <returns>A cabinet wrapper on success, null on failure</returns>
public static MicrosoftCabinet Create(Stream data)
{
// If the data is invalid
if (data == null || data.Length == 0 || !data.CanSeek || !data.CanRead)
return null;
var cabinet = Builders.MicrosoftCabinet.ParseCabinet(data);
if (cabinet == null)
return null;
var wrapper = new MicrosoftCabinet
{
_cabinet = cabinet,
_dataSource = DataSource.Stream,
_streamData = data,
};
return wrapper;
}
#endregion
#region Checksumming
/// <summary>
/// The computation and verification of checksums found in CFDATA structure entries cabinet files is
/// done by using a function described by the following mathematical notation. When checksums are
/// not supplied by the cabinet file creating application, the checksum field is set to 0 (zero). Cabinet
/// extracting applications do not compute or verify the checksum if the field is set to 0 (zero).
/// </summary>
private static uint ChecksumData(byte[] data)
{
uint[] C = new uint[4]
{
S(data, 1, data.Length),
S(data, 2, data.Length),
S(data, 3, data.Length),
S(data, 4, data.Length),
};
return C[0] ^ C[1] ^ C[2] ^ C[3];
}
/// <summary>
/// Individual algorithmic step
/// </summary>
private static uint S(byte[] a, int b, int x)
{
int n = a.Length;
if (x < 4 && b > n % 4)
return 0;
else if (x < 4 && b <= n % 4)
return a[n - b + 1];
else // if (x >= 4)
return a[n - x + b] ^ S(a, b, x - 4);
}
#endregion
#region Compression
#region LZX
// TODO: Implement LZX decompression
#endregion
#region MSZIP
#region Constants
/// <summary>
/// Maximum Huffman code bit count
/// </summary>
private const int MAX_BITS = 16;
#endregion
#region Properties
/// <summary>
/// Match lengths for literal codes 257..285
/// </summary>
/// <remarks>Each value here is the lower bound for lengths represented</remarks>
private static Dictionary<int, int> LiteralLengths
{
get
{
// If we have cached length mappings, use those
if (_literalLengths != null)
return _literalLengths;
// Otherwise, build it from scratch
_literalLengths = new Dictionary<int, int>
{
[257] = 3,
[258] = 4,
[259] = 5,
[260] = 6,
[261] = 7,
[262] = 8,
[263] = 9,
[264] = 10,
[265] = 11, // 11,12
[266] = 13, // 13,14
[267] = 15, // 15,16
[268] = 17, // 17,18
[269] = 19, // 19-22
[270] = 23, // 23-26
[271] = 27, // 27-30
[272] = 31, // 31-34
[273] = 35, // 35-42
[274] = 43, // 43-50
[275] = 51, // 51-58
[276] = 59, // 59-66
[277] = 67, // 67-82
[278] = 83, // 83-98
[279] = 99, // 99-114
[280] = 115, // 115-130
[281] = 131, // 131-162
[282] = 163, // 163-194
[283] = 195, // 195-226
[284] = 227, // 227-257
[285] = 258,
};
return _literalLengths;
}
}
/// <summary>
/// Extra bits for literal codes 257..285
/// </summary>
private static Dictionary<int, int> LiteralExtraBits
{
get
{
// If we have cached bit mappings, use those
if (_literalExtraBits != null)
return _literalExtraBits;
// Otherwise, build it from scratch
_literalExtraBits = new Dictionary<int, int>();
// Literal Value 257 - 264, 0 bits
for (int i = 257; i < 265; i++)
_literalExtraBits[i] = 0;
// Literal Value 265 - 268, 1 bit
for (int i = 265; i < 269; i++)
_literalExtraBits[i] = 1;
// Literal Value 269 - 272, 2 bits
for (int i = 269; i < 273; i++)
_literalExtraBits[i] = 2;
// Literal Value 273 - 276, 3 bits
for (int i = 273; i < 277; i++)
_literalExtraBits[i] = 3;
// Literal Value 277 - 280, 4 bits
for (int i = 277; i < 281; i++)
_literalExtraBits[i] = 4;
// Literal Value 281 - 284, 5 bits
for (int i = 281; i < 285; i++)
_literalExtraBits[i] = 5;
// Literal Value 285, 0 bits
_literalExtraBits[285] = 0;
return _literalExtraBits;
}
}
/// <summary>
/// Match offsets for distance codes 0..29
/// </summary>
/// <remarks>Each value here is the lower bound for lengths represented</remarks>
public static readonly int[] DistanceOffsets = new int[30]
{
1, 2, 3, 4, 5, 7, 9, 13, 17, 25,
33, 49, 65, 97, 129, 193, 257, 385, 513, 769,
1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577,
};
/// <summary>
/// Extra bits for distance codes 0..29
/// </summary>
private static readonly int[] DistanceExtraBits = new int[30]
{
0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
};
/// <summary>
/// The order of the bit length Huffman code lengths
/// </summary>
private static readonly int[] BitLengthOrder = new int[19]
{
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15,
};
#endregion
#region Instance Variables
/// <summary>
/// Match lengths for literal codes 257..285
/// </summary>
private static Dictionary<int, int> _literalLengths = null;
/// <summary>
/// Extra bits for literal codes 257..285
/// </summary>
private static Dictionary<int, int> _literalExtraBits = null;
#endregion
#region Parsing
/// <summary>
/// Read the block header from the block data, if possible
/// </summary>
/// <param name="data">BitStream representing the block</param>
/// <param name="offset">Offset within the array to parse</param>
/// <returns>Filled block header on success, null on error</returns>
private static Models.MicrosoftCabinet.MSZIP.BlockHeader AsBlockHeader(BitStream data)
{
// If the data is invalid
if (data == null)
return null;
var header = new Models.MicrosoftCabinet.MSZIP.BlockHeader();
header.Signature = data.ReadAlignedUInt16();
if (header.Signature != 0x4B43)
return null;
return header;
}
/// <summary>
/// Read the deflate block header from the block data, if possible
/// </summary>
/// <param name="data">Byte array representing the block</param>
/// <param name="offset">Offset within the array to parse</param>
/// <returns>Filled deflate block header on success, null on error</returns>
private static Models.MicrosoftCabinet.MSZIP.DeflateBlockHeader AsDeflateBlockHeader(BitStream data)
{
// If the data is invalid
if (data == null)
return null;
var header = new Models.MicrosoftCabinet.MSZIP.DeflateBlockHeader();
header.BFINAL = data.ReadBits(1)[0];
header.BTYPE = (Models.MicrosoftCabinet.DeflateCompressionType)data.ReadBits(2).AsByte();
return header;
}
/// <summary>
/// Read the block header from the block data, if possible
/// </summary>
/// <param name="data">Byte array representing the block</param>
/// <param name="offset">Offset within the array to parse</param>
/// <returns>Filled dynamic Huffman compressed block header on success, null on error</returns>
private static Models.MicrosoftCabinet.MSZIP.DynamicHuffmanCompressedBlockHeader AsDynamicHuffmanCompressedBlockHeader(BitStream data)
{
// If the data is invalid
if (data == null)
return null;
var header = new Models.MicrosoftCabinet.MSZIP.DynamicHuffmanCompressedBlockHeader();
// # of Literal/Length codes - 257
ushort HLIT = (ushort)(data.ReadBits(5).AsUInt16() + 257);
// # of Distance codes - 1
byte HDIST = (byte)(data.ReadBits(5).AsByte() + 1);
// HCLEN, # of Code Length codes - 4
byte HCLEN = (byte)(data.ReadBits(4).AsByte() + 4);
// (HCLEN + 4) x 3 bits: code lengths for the code length
// alphabet given just above
//
// These code lengths are interpreted as 3-bit integers
// (0-7); as above, a code length of 0 means the
// corresponding symbol (literal/ length or distance code
// length) is not used.
int[] bitLengths = new int[19];
for (ulong i = 0; i < HCLEN; i++)
bitLengths[BitLengthOrder[i]] = data.ReadBits(3).AsByte();
// Code length Huffman code
int[] bitLengthTable = CreateTable(bitLengths);
// HLIT + 257 code lengths for the literal/length alphabet,
// encoded using the code length Huffman code
header.LiteralLengths = BuildHuffmanTree(data, HLIT, bitLengthTable);
// HDIST + 1 code lengths for the distance alphabet,
// encoded using the code length Huffman code
header.DistanceCodes = BuildHuffmanTree(data, HDIST, bitLengthTable);
return header;
}
/// <summary>
/// Read the block header from the block data, if possible
/// </summary>
/// <param name="data">Byte array representing the block</param>
/// <param name="offset">Offset within the array to parse</param>
/// <returns>Filled non-compressed block header on success, null on error</returns>
private static Models.MicrosoftCabinet.MSZIP.NonCompressedBlockHeader AsNonCompressedBlockHeader(BitStream data)
{
// If the data is invalid
if (data == null)
return null;
var header = new Models.MicrosoftCabinet.MSZIP.NonCompressedBlockHeader();
header.LEN = data.ReadAlignedUInt16();
header.NLEN = data.ReadAlignedUInt16();
// TODO: Confirm NLEN is 1's compliment of LEN
return header;
}
#endregion
#region Helpers
/// <summary>
/// The alphabet for code lengths is as follows
/// </summary>
private static int[] BuildHuffmanTree(BitStream data, ushort codeCount, int[] codeLengths)
{
// Setup the huffman tree
int[] tree = new int[codeCount];
// Setup the loop variables
int lastCode = 0, repeatLength = 0;
for (ulong i = 0; i < codeCount; i++)
{
int codeLength = codeLengths[data.ReadBits(7).AsUInt16()];
if (codeLengths[codeLength] > 7)
_ = data.ReadBits(codeLengths[codeLength] - 7);
// Represent code lengths of 0 - 15
if (codeLength > 0 && codeLength <= 15)
{
lastCode = codeLength;
tree[i] = codeLength;
}
// Copy the previous code length 3 - 6 times.
// The next 2 bits indicate repeat length (0 = 3, ... , 3 = 6)
// Example: Codes 8, 16 (+2 bits 11), 16 (+2 bits 10) will expand to 12 code lengths of 8 (1 + 6 + 5)
else if (codeLength == 16)
{
repeatLength = data.ReadBits(2).AsByte();
repeatLength += 2;
codeLength = lastCode;
}
// Repeat a code length of 0 for 3 - 10 times.
// (3 bits of length)
else if (codeLength == 17)
{
repeatLength = data.ReadBits(3).AsByte();
repeatLength += 3;
codeLength = 0;
}
// Repeat a code length of 0 for 11 - 138 times
// (7 bits of length)
else if (codeLength == 18)
{
repeatLength = data.ReadBits(7).AsByte();
repeatLength += 11;
codeLength = 0;
}
// Everything else
else
{
throw new ArgumentOutOfRangeException();
}
// If we had a repeat length
for (; repeatLength > 0; repeatLength--)
{
tree[i++] = codeLength;
}
}
return tree;
}
/// <summary>
/// Given this rule, we can define the Huffman code for an alphabet
/// just by giving the bit lengths of the codes for each symbol of
/// the alphabet in order; this is sufficient to determine the
/// actual codes. In our example, the code is completely defined
/// by the sequence of bit lengths (2, 1, 3, 3). The following
/// algorithm generates the codes as integers, intended to be read
/// from most- to least-significant bit. The code lengths are
/// initially in tree[I].Len; the codes are produced in
/// tree[I].Code.
/// </summary>
private static int[] CreateTable(int[] lengths)
{
// Count the number of codes for each code length. Let
// bl_count[N] be the number of codes of length N, N >= 1.
int[] bl_count = new int[259];
for (int i = 0; i < lengths.Length; i++)
{
bl_count[lengths[i]]++;
}
// Find the numerical value of the smallest code for each
// code length.
int[] next_code = new int[MAX_BITS + 1];
int code = 0;
bl_count[0] = 0;
for (int bits = 1; bits <= MAX_BITS; bits++)
{
code = (code + bl_count[bits - 1]) << 1;
next_code[bits] = code;
}
// Assign numerical values to all codes, using consecutive
// values for all codes of the same length with the base
// values determined at step 2. Codes that are never used
// (which have a bit length of zero) must not be assigned a
// value.
int[] distances = new int[lengths.Length];
for (int n = 0; n < lengths.Length; n++)
{
int len = lengths[n];
if (len != 0)
{
distances[n] = next_code[len];
next_code[len]++;
}
}
return distances;
}
#endregion
#endregion
#region Quantum
// TODO: Implement Quantum decompression
#endregion
#endregion
#region Folders
/// <summary>
/// Get the uncompressed data associated with a folder
/// </summary>
/// <param name="folderIndex">Folder index to check</param>
/// <returns>Byte array representing the data, null on error</returns>
/// <remarks>All but uncompressed are unimplemented</remarks>
public byte[] GetUncompressedData(int folderIndex)
{
// If we have an invalid folder index
if (folderIndex < 0 || folderIndex >= Folders.Length)
return null;
// Get the folder header
var folder = Folders[folderIndex];
if (folder == null)
return null;
// If we have invalid data blocks
if (folder.DataBlocks == null || folder.DataBlocks.Count == 0)
return null;
// Store the last decompressed block for MS-ZIP
byte[] lastDecompressed = null;
List<byte> data = new List<byte>();
foreach (var dataBlock in folder.DataBlocks.OrderBy(kvp => kvp.Key).Select(kvp => kvp.Value))
{
byte[] decompressed = null;
switch (folder.CompressionType)
{
case Models.MicrosoftCabinet.CompressionType.TYPE_NONE:
decompressed = dataBlock.CompressedData;
break;
case Models.MicrosoftCabinet.CompressionType.TYPE_MSZIP:
decompressed = DecompressMSZIPData(dataBlock.CompressedData);
break;
case Models.MicrosoftCabinet.CompressionType.TYPE_QUANTUM:
// TODO: UNIMPLEMENTED
decompressed = dataBlock.CompressedData;
break;
case Models.MicrosoftCabinet.CompressionType.TYPE_LZX:
// TODO: UNIMPLEMENTED
decompressed = dataBlock.CompressedData;
break;
default:
return null;
}
lastDecompressed = decompressed;
if (decompressed != null)
data.AddRange(decompressed);
}
return data.ToArray();
}
/// <summary>
/// Decompress MSZIP data
/// </summary>
private byte[] DecompressMSZIPData(byte[] data)
{
// Create the bitstream to read from
var dataStream = new BitStream(data);
// Get the block header
var blockHeader = AsBlockHeader(dataStream);
if (blockHeader == null)
return null;
// Create the output byte array
List<byte> decodedBytes = new List<byte>();
// Create the loop variable block
Models.MicrosoftCabinet.MSZIP.DeflateBlockHeader deflateBlockHeader;
do
{
deflateBlockHeader = AsDeflateBlockHeader(dataStream);
// We should never get a reserved block
if (deflateBlockHeader.BTYPE == Models.MicrosoftCabinet.DeflateCompressionType.Reserved)
throw new Exception();
// If stored with no compression
if (deflateBlockHeader.BTYPE == Models.MicrosoftCabinet.DeflateCompressionType.NoCompression)
{
// Skip any remaining bits in current partially processed byte
dataStream.DiscardBuffer();
// Read the block header
deflateBlockHeader.BlockDataHeader = AsNonCompressedBlockHeader(dataStream);
// Copy LEN bytes of data to output
var header = deflateBlockHeader.BlockDataHeader as Models.MicrosoftCabinet.MSZIP.NonCompressedBlockHeader;
ushort length = header.LEN;
decodedBytes.AddRange(dataStream.ReadAlignedBytes(length));
}
// Otherwise
else
{
// If compressed with dynamic Huffman codes
// read representation of code trees
deflateBlockHeader.BlockDataHeader = deflateBlockHeader.BTYPE == Models.MicrosoftCabinet.DeflateCompressionType.DynamicHuffman
? (Models.MicrosoftCabinet.MSZIP.IBlockDataHeader)AsDynamicHuffmanCompressedBlockHeader(dataStream)
: (Models.MicrosoftCabinet.MSZIP.IBlockDataHeader)new Models.MicrosoftCabinet.MSZIP.FixedHuffmanCompressedBlockHeader();
var header = deflateBlockHeader.BlockDataHeader as Models.MicrosoftCabinet.MSZIP.CompressedBlockHeader;
// 9 bits per entry, 288 max symbols
int[] literalDecodeTable = CreateTable(header.LiteralLengths);
// 6 bits per entry, 32 max symbols
int[] distanceDecodeTable = CreateTable(header.DistanceCodes);
// Loop until end of block code recognized
while (true)
{
// Decode literal/length value from input stream
int symbol = literalDecodeTable[dataStream.ReadBits(9).AsUInt16()];
// Copy value (literal byte) to output stream
if (symbol < 256)
{
decodedBytes.Add((byte)symbol);
}
// End of block (256)
else if (symbol == 256)
{
break;
}
else
{
// Decode distance from input stream
ulong length = dataStream.ReadBits(LiteralExtraBits[symbol]).AsUInt64();
length += (ulong)LiteralLengths[symbol];
int code = distanceDecodeTable[length];
ulong distance = dataStream.ReadBits(DistanceExtraBits[code]).AsUInt64();
distance += (ulong)DistanceOffsets[code];
// Move backwards distance bytes in the output
// stream, and copy length bytes from this
// position to the output stream.
}
}
}
} while (!deflateBlockHeader.BFINAL);
/*
Note that a duplicated string reference may refer to a string
in a previous block; i.e., the backward distance may cross one
or more block boundaries. However a distance cannot refer past
the beginning of the output stream. (An application using a
preset dictionary might discard part of the output stream; a
distance can refer to that part of the output stream anyway)
Note also that the referenced string may overlap the current
position; for example, if the last 2 bytes decoded have values
X and Y, a string reference with <length = 5, distance = 2>
adds X,Y,X,Y,X to the output stream.
*/
return decodedBytes.ToArray();
}
#endregion
#region Files
/// <summary>
/// Extract a single file to an output directory
/// </summary>
/// <param name="fileIndex">File index to check</param>
/// <param name="outputDirectory">Output directory to use for writing</param>
/// <returns>Byte array representing the data, null on error</returns>
public bool ExtractFile(int fileIndex, string outputDirectory)
{
// If we have an invalid file index
if (fileIndex < 0 || fileIndex >= Files.Length)
return false;
// If we have an invalid output directory
if (string.IsNullOrWhiteSpace(outputDirectory))
return false;
// Ensure the directory exists
Directory.CreateDirectory(outputDirectory);
// Get the file header
var file = Files[fileIndex];
if (file == null || file.FileSize == 0)
return false;
// Create the output filename
string fileName = Path.Combine(outputDirectory, file.Name);
// Get the file data, if possible
byte[] fileData = GetFileData(fileIndex);
if (fileData == null)
return false;
// Write the file data
using (FileStream fs = File.OpenWrite(fileName))
{
fs.Write(fileData, 0, fileData.Length);
}
return true;
}
/// <summary>
/// Get the DateTime for a particular file index
/// </summary>
/// <param name="fileIndex">File index to check</param>
/// <returns>DateTime representing the file time, null on error</returns>
public DateTime? GetDateTime(int fileIndex)
{
// If we have an invalid file index
if (fileIndex < 0 || fileIndex >= Files.Length)
return null;
// Get the file header
var file = Files[fileIndex];
if (file == null)
return null;
// If we have an invalid DateTime
if (file.Date == 0 && file.Time == 0)
return null;
try
{
// Date property
int year = (file.Date >> 9) + 1980;
int month = (file.Date >> 5) & 0x0F;
int day = file.Date & 0x1F;
// Time property
int hour = file.Time >> 11;
int minute = (file.Time >> 5) & 0x3F;
int second = (file.Time << 1) & 0x3E;
return new DateTime(year, month, day, hour, minute, second);
}
catch
{
return DateTime.MinValue;
}
}
/// <summary>
/// Get the uncompressed data associated with a file
/// </summary>
/// <param name="fileIndex">File index to check</param>
/// <returns>Byte array representing the data, null on error</returns>
public byte[] GetFileData(int fileIndex)
{
// If we have an invalid file index
if (fileIndex < 0 || fileIndex >= Files.Length)
return null;
// Get the file header
var file = Files[fileIndex];
if (file == null || file.FileSize == 0)
return null;
// Get the parent folder data
byte[] folderData = GetUncompressedData((int)file.FolderIndex);
if (folderData == null)
return null;
// Get the segment that represents this file
byte[] fileData = new byte[file.FileSize];
Array.Copy(folderData, file.FolderStartOffset, fileData, 0, file.FileSize);
return fileData;
}
#endregion
#region Printing
/// <inheritdoc/>
public override void Print()
{
Console.WriteLine("Microsoft Cabinet Information:");
Console.WriteLine("-------------------------");
Console.WriteLine();
PrintHeader();
PrintFolders();
PrintFiles();
}
/// <summary>
/// Print header information
/// </summary>
private void PrintHeader()
{
Console.WriteLine(" Header Information:");
Console.WriteLine(" -------------------------");
Console.WriteLine($" Signature: {Signature}");
Console.WriteLine($" Reserved 1: {Reserved1}");
Console.WriteLine($" Cabinet size: {CabinetSize}");
Console.WriteLine($" Reserved 2: {Reserved2}");
Console.WriteLine($" Files offset: {FilesOffset}");
Console.WriteLine($" Reserved 3: {Reserved3}");
Console.WriteLine($" Minor version: {VersionMinor}");
Console.WriteLine($" Major version: {VersionMajor}");
Console.WriteLine($" Folder count: {FolderCount}");
Console.WriteLine($" File count: {FileCount}");
Console.WriteLine($" Flags: {Flags}");
Console.WriteLine($" Set ID: {SetID}");
Console.WriteLine($" Cabinet index: {CabinetIndex}");
if (Flags.HasFlag(Models.MicrosoftCabinet.HeaderFlags.RESERVE_PRESENT))
{
Console.WriteLine($" Header reserved size: {HeaderReservedSize}");
Console.WriteLine($" Folder reserved size: {FolderReservedSize}");
Console.WriteLine($" Data reserved size: {DataReservedSize}");
if (ReservedData == null)
Console.WriteLine($" Reserved data = [NULL]");
else
Console.WriteLine($" Reserved data = {BitConverter.ToString(ReservedData).Replace("-", " ")}");
}
if (Flags.HasFlag(Models.MicrosoftCabinet.HeaderFlags.PREV_CABINET))
{
Console.WriteLine($" Previous cabinet: {CabinetPrev}");
Console.WriteLine($" Previous disk: {DiskPrev}");
}
if (Flags.HasFlag(Models.MicrosoftCabinet.HeaderFlags.NEXT_CABINET))
{
Console.WriteLine($" Next cabinet: {CabinetNext}");
Console.WriteLine($" Next disk: {DiskNext}");
}
Console.WriteLine();
}
/// <summary>
/// Print folders information
/// </summary>
private void PrintFolders()
{
Console.WriteLine(" Folders:");
Console.WriteLine(" -------------------------");
if (FolderCount == 0 || Folders == null || Folders.Length == 0)
{
Console.WriteLine(" No folders");
}
else
{
for (int i = 0; i < Folders.Length; i++)
{
var entry = Folders[i];
Console.WriteLine($" Folder {i}");
Console.WriteLine($" Cab start offset = {entry.CabStartOffset}");
Console.WriteLine($" Data count = {entry.DataCount}");
Console.WriteLine($" Compression type = {entry.CompressionType}");
if (entry.ReservedData == null)
Console.WriteLine($" Reserved data = [NULL]");
else
Console.WriteLine($" Reserved data = {BitConverter.ToString(entry.ReservedData).Replace("-", " ")}");
Console.WriteLine();
Console.WriteLine(" Data Blocks");
Console.WriteLine(" -------------------------");
if (entry.DataBlocks == null || entry.DataBlocks.Count == 0)
{
Console.WriteLine(" No data blocks");
}
else
{
foreach (var block in entry.DataBlocks)
{
Console.WriteLine($" Data Block at offset {block.Key}");
Console.WriteLine($" Checksum = {block.Value.Checksum}");
Console.WriteLine($" Compressed size = {block.Value.CompressedSize}");
Console.WriteLine($" Uncompressed size = {block.Value.UncompressedSize}");
if (block.Value.ReservedData == null)
Console.WriteLine($" Reserved data = [NULL]");
else
Console.WriteLine($" Reserved data = {BitConverter.ToString(block.Value.ReservedData).Replace("-", " ")}");
//Console.WriteLine($" Compressed data = {BitConverter.ToString(block.Value.CompressedData).Replace("-", " ")}");
}
}
}
}
Console.WriteLine();
}
/// <summary>
/// Print files information
/// </summary>
private void PrintFiles()
{
Console.WriteLine(" Files:");
Console.WriteLine(" -------------------------");
if (FileCount == 0 || Files == null || Files.Length == 0)
{
Console.WriteLine(" No files");
}
else
{
for (int i = 0; i < Files.Length; i++)
{
var entry = Files[i];
Console.WriteLine($" File {i}");
Console.WriteLine($" File size = {entry.FileSize}");
Console.WriteLine($" Folder start offset = {entry.FolderStartOffset}");
Console.WriteLine($" Folder index = {entry.FolderIndex}");
Console.WriteLine($" Date = {entry.Date}");
Console.WriteLine($" Time = {entry.Time}");
Console.WriteLine($" Attributes = {entry.Attributes}");
Console.WriteLine($" Name = {entry.Name}");
}
}
Console.WriteLine();
}
#endregion
}
}