Files
NDecrypt/NDecrypt.Core/CommonOperations.cs
2025-09-30 18:09:17 -04:00

300 lines
10 KiB
C#

using System;
using System.IO;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;
using SabreTools.IO.Extensions;
namespace NDecrypt.Core
{
public static class CommonOperations
{
#region AES
/// <summary>
/// Create AES decryption cipher and intialize
/// </summary>
/// <param name="key">Byte array representation of 128-bit encryption key</param>
/// <param name="iv">AES initial value for counter</param>
/// <returns>Initialized AES cipher</returns>
public static IBufferedCipher CreateAESDecryptionCipher(byte[] key, byte[] iv)
{
if (key.Length != 16)
throw new ArgumentOutOfRangeException(nameof(key));
var keyParam = new KeyParameter(key);
var cipher = CipherUtilities.GetCipher("AES/CTR");
cipher.Init(forEncryption: false, new ParametersWithIV(keyParam, iv));
return cipher;
}
/// <summary>
/// Create AES encryption cipher and intialize
/// </summary>
/// <param name="key">Byte array representation of 128-bit encryption key</param>
/// <param name="iv">AES initial value for counter</param>
/// <returns>Initialized AES cipher</returns>
public static IBufferedCipher CreateAESEncryptionCipher(byte[] key, byte[] iv)
{
if (key.Length != 16)
throw new ArgumentOutOfRangeException(nameof(key));
var keyParam = new KeyParameter(key);
var cipher = CipherUtilities.GetCipher("AES/CTR");
cipher.Init(forEncryption: true, new ParametersWithIV(keyParam, iv));
return cipher;
}
/// <summary>
/// Perform an AES operation using an existing cipher
/// </summary>
public static void PerformAESOperation(uint size,
IBufferedCipher cipher,
Stream input,
Stream output,
Action<string>? progress)
{
// Get MiB-aligned block count and extra byte count
int blockCount = (int)((long)size / (1024 * 1024));
int extraBytes = (int)((long)size % (1024 * 1024));
// Process MiB-aligned data
if (blockCount > 0)
{
for (int i = 0; i < blockCount; i++)
{
byte[] readBytes = input.ReadBytes(1024 * 1024);
byte[] processedBytes = cipher.ProcessBytes(readBytes);
output.Write(processedBytes);
output.Flush();
progress?.Invoke($"{i} / {blockCount + 1} MB");
}
}
// Process additional data
if (extraBytes > 0)
{
byte[] readBytes = input.ReadBytes(extraBytes);
byte[] finalBytes = cipher.DoFinal(readBytes);
output.Write(finalBytes);
output.Flush();
}
progress?.Invoke($"{blockCount + 1} / {blockCount + 1} MB... Done!\r\n");
}
/// <summary>
/// Perform an AES operation using two existing ciphers
/// </summary>
public static void PerformAESOperation(uint size,
IBufferedCipher firstCipher,
IBufferedCipher secondCipher,
Stream input,
Stream output,
Action<string> progress)
{
// Get MiB-aligned block count and extra byte count
int blockCount = (int)((long)size / (1024 * 1024));
int extraBytes = (int)((long)size % (1024 * 1024));
// Process MiB-aligned data
if (blockCount > 0)
{
for (int i = 0; i < blockCount; i++)
{
byte[] readBytes = input.ReadBytes(1024 * 1024);
byte[] firstProcessedBytes = firstCipher.ProcessBytes(readBytes);
byte[] secondProcessedBytes = secondCipher.ProcessBytes(firstProcessedBytes);
output.Write(secondProcessedBytes);
output.Flush();
progress($"{i} / {blockCount + 1} MB");
}
}
// Process additional data
if (extraBytes > 0)
{
byte[] readBytes = input.ReadBytes(extraBytes);
byte[] firstFinalBytes = firstCipher.DoFinal(readBytes);
byte[] secondFinalBytes = secondCipher.DoFinal(firstFinalBytes);
output.Write(secondFinalBytes);
output.Flush();
}
progress($"{blockCount + 1} / {blockCount + 1} MB... Done!\r\n");
}
#endregion
// TODO: Remove when IO updated
#region Byte Arrays
/// <summary>
/// Add an integer value to a number represented by a byte array
/// </summary>
/// <param name="self">Byte array to add to</param>
/// <param name="add">Amount to add</param>
/// <returns>Byte array representing the new value</returns>
/// <remarks>Assumes array values are in big-endian format</remarks>
public static byte[] Add(this byte[] self, uint add)
{
// If nothing is being added, just return
if (add == 0)
return self;
// Get the big-endian representation of the value
byte[] addBytes = BitConverter.GetBytes(add);
Array.Reverse(addBytes);
// Pad the array out to 16 bytes
byte[] paddedBytes = new byte[16];
Array.Copy(addBytes, 0, paddedBytes, 12, 4);
// If the input is empty, just return the added value
if (self.Length == 0)
return paddedBytes;
return self.Add(paddedBytes);
}
/// <summary>
/// Add two numbers represented by byte arrays
/// </summary>
/// <param name="self">Byte array to add to</param>
/// <param name="add">Amount to add</param>
/// <returns>Byte array representing the new value</returns>
/// <remarks>Assumes array values are in big-endian format</remarks>
public static byte[] Add(this byte[] self, byte[] add)
{
// If either input is empty
if (self.Length == 0 && add.Length == 0)
return [];
else if (self.Length > 0 && add.Length == 0)
return self;
else if (self.Length == 0 && add.Length > 0)
return add;
// Setup the output array
int outLength = Math.Max(self.Length, add.Length);
byte[] output = new byte[outLength];
// Loop adding with carry
uint carry = 0;
for (int i = 0; i < outLength; i++)
{
int selfIndex = self.Length - i - 1;
uint selfValue = selfIndex >= 0 ? self[selfIndex] : 0u;
int addIndex = add.Length - i - 1;
uint addValue = addIndex >= 0 ? add[addIndex] : 0u;
uint next = selfValue + addValue + carry;
carry = next >> 8;
int outputIndex = output.Length - i - 1;
output[outputIndex] = (byte)(next & 0xFF);
}
return output;
}
/// <summary>
/// Perform a rotate left on a byte array
/// </summary>
/// <param name="self">Byte array value to rotate</param>
/// <param name="numBits">Number of bits to rotate</param>
/// <returns>Rotated byte array value</returns>
/// <remarks>Assumes array values are in big-endian format</remarks>
public static byte[] RotateLeft(this byte[] self, int numBits)
{
// If either input is empty
if (self.Length == 0)
return [];
else if (numBits == 0)
return self;
byte[] output = new byte[self.Length];
Array.Copy(self, output, output.Length);
// Shift by bytes
while (numBits >= 8)
{
byte temp = output[0];
for (int i = 0; i < output.Length - 1; i++)
{
output[i] = output[i + 1];
}
output[output.Length - 1] = temp;
numBits -= 8;
}
// Shift by bits
if (numBits > 0)
{
byte bitMask = (byte)(8 - numBits), carry, wrap = 0;
for (int i = 0; i < output.Length; i++)
{
carry = (byte)((255 << bitMask & output[i]) >> bitMask);
// Make sure the first byte carries to the end
if (i == 0)
wrap = carry;
// Otherwise, move to the last byte
else
output[i - 1] |= carry;
// Shift the current bits
output[i] <<= numBits;
}
// Make sure the wrap happens
output[output.Length - 1] |= wrap;
}
return output;
}
/// <summary>
/// XOR two numbers represented by byte arrays
/// </summary>
/// <param name="self">Byte array to XOR to</param>
/// <param name="xor">Amount to XOR</param>
/// <returns>Byte array representing the new value</returns>
/// <remarks>Assumes array values are in big-endian format</remarks>
public static byte[] Xor(this byte[] self, byte[] xor)
{
// If either input is empty
if (self.Length == 0 && xor.Length == 0)
return [];
else if (self.Length > 0 && xor.Length == 0)
return self;
else if (self.Length == 0 && xor.Length > 0)
return xor;
// Setup the output array
int outLength = Math.Max(self.Length, xor.Length);
byte[] output = new byte[outLength];
// Loop XOR
for (int i = 0; i < outLength; i++)
{
int selfIndex = self.Length - i - 1;
uint selfValue = selfIndex >= 0 ? self[selfIndex] : 0u;
int xorIndex = xor.Length - i - 1;
uint xorValue = xorIndex >= 0 ? xor[xorIndex] : 0u;
uint next = selfValue ^ xorValue;
int outputIndex = output.Length - i - 1;
output[outputIndex] = (byte)(next & 0xFF);
}
return output;
}
#endregion
}
}