Files
SabreTools.Models/Compression/LZX/UncompressedBlock.cs
2023-09-04 21:14:41 -04:00

67 lines
2.6 KiB
C#

namespace SabreTools.Models.Compression.LZX
{
/// <summary>
/// Following the generic block header, an uncompressed block begins with 1 to 16 bits of zero padding
/// to align the bit buffer on a 16-bit boundary. At this point, the bitstream ends and a byte stream
/// begins. Following the zero padding, new 32-bit values for R0, R1, and R2 are output in little-endian
/// form, followed by the uncompressed data bytes themselves. Finally, if the uncompressed data length
/// is odd, one extra byte of zero padding is encoded to realign the following bitstream.
///
/// Then the bitstream of byte-swapped 16-bit integers resumes for the next Block Type field (if there
/// are subsequent blocks).
///
/// The decoded R0, R1, and R2 values are used as initial repeated offset values to decode the
/// subsequent compressed block if present.
/// </summary>
/// <see href="https://interoperability.blob.core.windows.net/files/MS-PATCH/%5bMS-PATCH%5d.pdf"/>
public class UncompressedBlock
{
/// <summary>
/// Generic block header
/// </summary>
#if NET48
public BlockHeader Header;
#else
public BlockHeader? Header;
#endif
/// <summary>
/// Padding to align following field on 16-bit boundary
/// </summary>
/// <remarks>Bits have a value of zero</remarks>
public ushort PaddingBits;
/// <summary>
/// Least significant to most significant byte (little-endian DWORD ([MS-DTYP]))
/// </summary>
/// <remarks>Encoded directly in the byte stream, not in the bitstream of byte-swapped 16-bit words</remarks>
public uint R0;
/// <summary>
/// Least significant to most significant byte (little-endian DWORD)
/// </summary>
/// <remarks>Encoded directly in the byte stream, not in the bitstream of byte-swapped 16-bit words</remarks>
public uint R1;
/// <summary>
/// Least significant to most significant byte (little-endian DWORD)
/// </summary>
/// <remarks>Encoded directly in the byte stream, not in the bitstream of byte-swapped 16-bit words</remarks>
public uint R2;
/// <summary>
/// Can use the direct memcpy function, as specified in [IEEE1003.1]
/// </summary>
/// <remarks>Encoded directly in the byte stream, not in the bitstream of byte-swapped 16-bit words</remarks>
#if NET48
public byte[] RawDataBytes;
#else
public byte[]? RawDataBytes;
#endif
/// <summary>
/// Only if uncompressed size is odd
/// </summary>
public byte AlignmentByte;
}
}