Files
Aaru.Checksums.Native/adler32_avx2.c

151 lines
4.9 KiB
C
Raw Normal View History

2021-09-28 22:30:57 +01:00
//
// Created by claunia on 28/9/21.
//
#include <immintrin.h>
#include <stdint.h>
#include "library.h"
#include "adler32.h"
#include "simd.h"
AVX2 void adler32_avx2(uint16_t* sum1, uint16_t* sum2, const unsigned char* buf, size_t len)
{
uint32_t s1 = *sum1;
uint32_t s2 = *sum2;
/*
* Process the data in blocks.
*/
const unsigned BLOCK_SIZE = 1 << 5;
size_t blocks = len / BLOCK_SIZE;
len -= blocks * BLOCK_SIZE;
while(blocks)
{
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
if(n > blocks) n = (unsigned)blocks;
blocks -= n;
const __m256i tap = _mm256_set_epi8(1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32);
const __m256i zero = _mm256_setzero_si256();
const __m256i ones = _mm256_set1_epi16(1);
/*
* Process n blocks of data. At most NMAX data bytes can be
* processed before s2 must be reduced modulo BASE.
*/
__m256i v_ps = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, (s1 * n));
__m256i v_s2 = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, s2);
__m256i v_s1 = _mm256_setzero_si256();
do {
/*
* Load 32 input bytes.
*/
const __m256i bytes = _mm256_lddqu_si256((__m256i*)(buf));
/*
* Add previous block byte sum to v_ps.
*/
v_ps = _mm256_add_epi32(v_ps, v_s1);
/*
* Horizontally add the bytes for s1, multiply-adds the
* bytes by [ 32, 31, 30, ... ] for s2.
*/
v_s1 = _mm256_add_epi32(v_s1, _mm256_sad_epu8(bytes, zero));
const __m256i mad = _mm256_maddubs_epi16(bytes, tap);
v_s2 = _mm256_add_epi32(v_s2, _mm256_madd_epi16(mad, ones));
buf += BLOCK_SIZE;
} while(--n);
__m128i sum = _mm_add_epi32(_mm256_castsi256_si128(v_s1), _mm256_extracti128_si256(v_s1, 1));
__m128i hi = _mm_unpackhi_epi64(sum, sum);
sum = _mm_add_epi32(hi, sum);
hi = _mm_shuffle_epi32(sum, 177);
sum = _mm_add_epi32(sum, hi);
s1 += _mm_cvtsi128_si32(sum);
v_s2 = _mm256_add_epi32(v_s2, _mm256_slli_epi32(v_ps, 5));
sum = _mm_add_epi32(_mm256_castsi256_si128(v_s2), _mm256_extracti128_si256(v_s2, 1));
hi = _mm_unpackhi_epi64(sum, sum);
sum = _mm_add_epi32(hi, sum);
hi = _mm_shuffle_epi32(sum, 177);
sum = _mm_add_epi32(sum, hi);
s2 = _mm_cvtsi128_si32(sum);
/*
* Reduce.
*/
s1 %= ADLER_MODULE;
s2 %= ADLER_MODULE;
}
/*
* Handle leftover data.
*/
if(len)
{
if(len >= 16)
{
s2 += (s1 += *buf++);
s2 += (s1 += *buf++);
s2 += (s1 += *buf++);
s2 += (s1 += *buf++);
s2 += (s1 += *buf++);
s2 += (s1 += *buf++);
s2 += (s1 += *buf++);
s2 += (s1 += *buf++);
s2 += (s1 += *buf++);
s2 += (s1 += *buf++);
s2 += (s1 += *buf++);
s2 += (s1 += *buf++);
s2 += (s1 += *buf++);
s2 += (s1 += *buf++);
s2 += (s1 += *buf++);
s2 += (s1 += *buf++);
len -= 16;
}
while(len--) { s2 += (s1 += *buf++); }
if(s1 >= ADLER_MODULE) s1 -= ADLER_MODULE;
s2 %= ADLER_MODULE;
}
/*
* Return the recombined sums.
*/
*sum1 = s1 & 0xFFFF;
*sum2 = s2 & 0xFFFF;
}