Add ARM SIMD VMULL implementation of CRC64.

This commit is contained in:
2021-10-12 01:45:37 +01:00
parent ee776e95f8
commit d3bb34dc58
8 changed files with 416 additions and 116 deletions

View File

@@ -26,6 +26,6 @@ if("${CMAKE_BUILD_TYPE}" MATCHES "Release")
endif()
endif()
add_library("Aaru.Checksums.Native" SHARED adler32.h adler32.c crc16.h crc16.c crc16_ccitt.h crc16_ccitt.c crc32.c crc32.h crc64.c crc64.h fletcher16.h fletcher16.c fletcher32.h fletcher32.c library.h spamsum.c spamsum.h crc32_clmul.c crc64_clmul.c simd.c simd.h adler32_ssse3.c adler32_avx2.c adler32_neon.c crc32_arm_simd.c crc32_vmull.c crc32_simd.h)
add_library("Aaru.Checksums.Native" SHARED adler32.h adler32.c crc16.h crc16.c crc16_ccitt.h crc16_ccitt.c crc32.c crc32.h crc64.c crc64.h fletcher16.h fletcher16.c fletcher32.h fletcher32.c library.h spamsum.c spamsum.h crc32_clmul.c crc64_clmul.c simd.c simd.h adler32_ssse3.c adler32_avx2.c adler32_neon.c crc32_arm_simd.c crc32_vmull.c crc32_simd.h arm_vmull.c arm_vmull.h crc64_vmull.c)
add_subdirectory(tests)

140
arm_vmull.c Normal file
View File

@@ -0,0 +1,140 @@
//
// Created by claunia on 12/10/21.
//
#if defined(__aarch64__) || defined(_M_ARM64) || defined(__arm__) || defined(_M_ARM)
#include <arm_neon.h>
#include "library.h"
#include "arm_vmull.h"
#include "simd.h"
TARGET_WITH_CRYPTO static uint64x2_t sse2neon_vmull_p64_crypto(uint64x1_t _a, uint64x1_t _b)
{
poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0);
poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0);
return vreinterpretq_u64_p128(vmull_p64(a, b));
}
TARGET_WITH_SIMD uint64x2_t sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
{
// Wraps vmull_p64
if(have_arm_crypto()) return sse2neon_vmull_p64_crypto(_a, _b);
// ARMv7 polyfill
// ARMv7/some A64 lacks vmull_p64, but it has vmull_p8.
//
// vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a
// 64-bit->128-bit polynomial multiply.
//
// It needs some work and is somewhat slow, but it is still faster than all
// known scalar methods.
//
// Algorithm adapted to C from
// https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted
// from "Fast Software Polynomial Multiplication on ARM Processors Using the
// NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab
// (https://hal.inria.fr/hal-01506572)
poly8x8_t a = vreinterpret_p8_u64(_a);
poly8x8_t b = vreinterpret_p8_u64(_b);
// Masks
uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff), vcreate_u8(0x00000000ffffffff));
uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff), vcreate_u8(0x0000000000000000));
// Do the multiplies, rotating with vext to get all combinations
uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0
uint8x16_t e = vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1
uint8x16_t f = vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0
uint8x16_t g = vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2
uint8x16_t h = vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0
uint8x16_t i = vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3
uint8x16_t j = vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0
uint8x16_t k = vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4
// Add cross products
uint8x16_t l = veorq_u8(e, f); // L = E + F
uint8x16_t m = veorq_u8(g, h); // M = G + H
uint8x16_t n = veorq_u8(i, j); // N = I + J
// Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL
// instructions.
#if defined(__aarch64__)
uint8x16_t lm_p0 = vreinterpretq_u8_u64(vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
uint8x16_t lm_p1 = vreinterpretq_u8_u64(vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
uint8x16_t nk_p0 = vreinterpretq_u8_u64(vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
uint8x16_t nk_p1 = vreinterpretq_u8_u64(vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
#else
uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m));
uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m));
uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k));
uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k));
#endif
// t0 = (L) (P0 + P1) << 8
// t1 = (M) (P2 + P3) << 16
uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1);
uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32);
uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h);
// t2 = (N) (P4 + P5) << 24
// t3 = (K) (P6 + P7) << 32
uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1);
uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00);
uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h);
// De-interleave
#if defined(__aarch64__)
uint8x16_t t0 = vreinterpretq_u8_u64(vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
uint8x16_t t1 = vreinterpretq_u8_u64(vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
uint8x16_t t2 = vreinterpretq_u8_u64(vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
uint8x16_t t3 = vreinterpretq_u8_u64(vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
#else
uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h));
uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h));
uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h));
uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h));
#endif
// Shift the cross products
uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8
uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16
uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24
uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32
// Accumulate the products
uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift);
uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift);
uint8x16_t mix = veorq_u8(d, cross1);
uint8x16_t r = veorq_u8(mix, cross2);
return vreinterpretq_u64_u8(r);
}
TARGET_WITH_SIMD uint64x2_t mm_shuffle_epi8(uint64x2_t a, uint64x2_t b)
{
uint8x16_t tbl = vreinterpretq_u8_u64(a); // input a
uint8x16_t idx = vreinterpretq_u8_u64(b); // input b
uint8x16_t idx_masked = vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits
#if defined(__aarch64__)
return vreinterpretq_u64_u8(vqtbl1q_u8(tbl, idx_masked));
#else
// use this line if testing on aarch64
uint8x8x2_t a_split = {vget_low_u8(tbl), vget_high_u8(tbl)};
return vreinterpretq_u64_u8(
vcombine_u8(vtbl2_u8(a_split, vget_low_u8(idx_masked)), vtbl2_u8(a_split, vget_high_u8(idx_masked))));
#endif
}
TARGET_WITH_SIMD uint64x2_t mm_srli_si128(uint64x2_t a, int imm)
{
uint8x16_t tmp[2] = {vreinterpretq_u8_u64(a), vdupq_n_u8(0)};
return vreinterpretq_u64_u8(vld1q_u8(((uint8_t const*)tmp) + imm));
}
TARGET_WITH_SIMD uint64x2_t mm_slli_si128(uint64x2_t a, int imm)
{
uint8x16_t tmp[2] = {vdupq_n_u8(0), vreinterpretq_u8_u64(a)};
return vreinterpretq_u64_u8(vld1q_u8(((uint8_t const*)tmp) + (16 - imm)));
}
#endif

18
arm_vmull.h Normal file
View File

@@ -0,0 +1,18 @@
//
// Created by claunia on 12/10/21.
//
#ifndef AARU_CHECKSUMS_NATIVE__ARM_VMULL_H_
#define AARU_CHECKSUMS_NATIVE__ARM_VMULL_H_
#if defined(__aarch64__) || defined(_M_ARM64) || defined(__arm__) || defined(_M_ARM)
TARGET_WITH_CRYPTO static uint64x2_t sse2neon_vmull_p64_crypto(uint64x1_t _a, uint64x1_t _b);
TARGET_WITH_SIMD uint64x2_t sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b);
TARGET_WITH_SIMD uint64x2_t mm_shuffle_epi8(uint64x2_t a, uint64x2_t b);
TARGET_WITH_SIMD uint64x2_t mm_srli_si128(uint64x2_t a, int imm);
TARGET_WITH_SIMD uint64x2_t mm_slli_si128(uint64x2_t a, int imm);
#endif
#endif // AARU_CHECKSUMS_NATIVE__ARM_VMULL_H_

View File

@@ -11,121 +11,7 @@
#include "library.h"
#include "crc32.h"
#include "crc32_simd.h"
TARGET_WITH_CRYPTO static uint64x2_t sse2neon_vmull_p64_crypto(uint64x1_t _a, uint64x1_t _b)
{
poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0);
poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0);
return vreinterpretq_u64_p128(vmull_p64(a, b));
}
FORCE_INLINE TARGET_WITH_SIMD uint64x2_t sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
{
// Wraps vmull_p64
if(have_arm_crypto()) return sse2neon_vmull_p64_crypto(_a, _b);
// ARMv7 polyfill
// ARMv7/some A64 lacks vmull_p64, but it has vmull_p8.
//
// vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a
// 64-bit->128-bit polynomial multiply.
//
// It needs some work and is somewhat slow, but it is still faster than all
// known scalar methods.
//
// Algorithm adapted to C from
// https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted
// from "Fast Software Polynomial Multiplication on ARM Processors Using the
// NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab
// (https://hal.inria.fr/hal-01506572)
poly8x8_t a = vreinterpret_p8_u64(_a);
poly8x8_t b = vreinterpret_p8_u64(_b);
// Masks
uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff), vcreate_u8(0x00000000ffffffff));
uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff), vcreate_u8(0x0000000000000000));
// Do the multiplies, rotating with vext to get all combinations
uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0
uint8x16_t e = vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1
uint8x16_t f = vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0
uint8x16_t g = vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2
uint8x16_t h = vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0
uint8x16_t i = vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3
uint8x16_t j = vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0
uint8x16_t k = vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4
// Add cross products
uint8x16_t l = veorq_u8(e, f); // L = E + F
uint8x16_t m = veorq_u8(g, h); // M = G + H
uint8x16_t n = veorq_u8(i, j); // N = I + J
// Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL
// instructions.
#if defined(__aarch64__)
uint8x16_t lm_p0 = vreinterpretq_u8_u64(vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
uint8x16_t lm_p1 = vreinterpretq_u8_u64(vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
uint8x16_t nk_p0 = vreinterpretq_u8_u64(vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
uint8x16_t nk_p1 = vreinterpretq_u8_u64(vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
#else
uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m));
uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m));
uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k));
uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k));
#endif
// t0 = (L) (P0 + P1) << 8
// t1 = (M) (P2 + P3) << 16
uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1);
uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32);
uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h);
// t2 = (N) (P4 + P5) << 24
// t3 = (K) (P6 + P7) << 32
uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1);
uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00);
uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h);
// De-interleave
#if defined(__aarch64__)
uint8x16_t t0 = vreinterpretq_u8_u64(vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
uint8x16_t t1 = vreinterpretq_u8_u64(vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
uint8x16_t t2 = vreinterpretq_u8_u64(vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
uint8x16_t t3 = vreinterpretq_u8_u64(vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
#else
uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h));
uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h));
uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h));
uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h));
#endif
// Shift the cross products
uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8
uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16
uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24
uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32
// Accumulate the products
uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift);
uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift);
uint8x16_t mix = veorq_u8(d, cross1);
uint8x16_t r = veorq_u8(mix, cross2);
return vreinterpretq_u64_u8(r);
}
FORCE_INLINE TARGET_WITH_SIMD uint64x2_t mm_shuffle_epi8(uint64x2_t a, uint64x2_t b)
{
uint8x16_t tbl = vreinterpretq_u8_u64(a); // input a
uint8x16_t idx = vreinterpretq_u8_u64(b); // input b
uint8x16_t idx_masked = vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits
#if defined(__aarch64__)
return vreinterpretq_u64_u8(vqtbl1q_u8(tbl, idx_masked));
#else
// use this line if testing on aarch64
uint8x8x2_t a_split = {vget_low_u8(tbl), vget_high_u8(tbl)};
return vreinterpretq_u64_u8(
vcombine_u8(vtbl2_u8(a_split, vget_low_u8(idx_masked)), vtbl2_u8(a_split, vget_high_u8(idx_masked))));
#endif
}
#include "arm_vmull.h"
/*
* somewhat surprisingly the "naive" way of doing this, ie. with a flag and a cond. branch,

View File

@@ -47,6 +47,14 @@ AARU_EXPORT int AARU_CALL crc64_update(crc64_ctx* ctx, const uint8_t* data, uint
}
#endif
#if defined(__aarch64__) || defined(_M_ARM64) || defined(__arm__) || defined(_M_ARM)
if(have_neon())
{
ctx->crc = ~crc64_vmull(~ctx->crc, data, len);
return 0;
}
#endif
// Unroll according to Intel slicing by uint8_t
// http://www.intel.com/technology/comms/perfnet/download/CRC_generators.pdf
// http://sourceforge.net/projects/slicing-by-8/

View File

@@ -244,3 +244,7 @@ AARU_EXPORT void AARU_CALL crc64_slicing(uint64_t* crc, const uint8_t* dat
defined(__i386__) || defined(__THW_INTEL) || defined(_M_IX86)
AARU_EXPORT uint64_t AARU_CALL crc64_clmul(uint64_t crc, const uint8_t* data, long length);
#endif
#if defined(__aarch64__) || defined(_M_ARM64) || defined(__arm__) || defined(_M_ARM)
AARU_EXPORT TARGET_WITH_SIMD uint64_t AARU_CALL crc64_vmull(uint64_t crc, const uint8_t* data, long length);
#endif

164
crc64_vmull.c Normal file
View File

@@ -0,0 +1,164 @@
//
// Created by claunia on 12/10/21.
//
#if defined(__aarch64__) || defined(_M_ARM64) || defined(__arm__) || defined(_M_ARM)
#include <arm_neon.h>
#include <glob.h>
#include <stdint.h>
#include "library.h"
#include "arm_vmull.h"
#include "crc64.h"
static const uint8_t shuffleMasks[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x8f, 0x8e, 0x8d, 0x8c, 0x8b, 0x8a, 0x89, 0x88, 0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80,
};
TARGET_WITH_SIMD FORCE_INLINE void shiftRight128(uint64x2_t in, size_t n, uint64x2_t* outLeft, uint64x2_t* outRight)
{
const uint64x2_t maskA =
vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)(const uint64x2_t*)(shuffleMasks + (16 - n))));
uint64x2_t b = vreinterpretq_u64_u8(vceqq_u8(vreinterpretq_u8_u64(vreinterpretq_u64_u32(vdupq_n_u32(0))),
vreinterpretq_u8_u64(vreinterpretq_u64_u32(vdupq_n_u32(0)))));
const uint64x2_t maskB = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(maskA), vreinterpretq_u32_u64(b)));
*outLeft = mm_shuffle_epi8(in, maskB);
*outRight = mm_shuffle_epi8(in, maskA);
}
TARGET_WITH_SIMD FORCE_INLINE uint64x2_t fold(uint64x2_t in, uint64x2_t foldConstants)
{
return veorq_u64(sse2neon_vmull_p64(vget_low_u64(in), vget_low_u64(foldConstants)),
sse2neon_vmull_p64(vget_high_u64(in), vget_high_u64(foldConstants)));
}
AARU_EXPORT TARGET_WITH_SIMD uint64_t AARU_CALL crc64_vmull(uint64_t crc, const uint8_t* data, long length)
{
const uint64_t k1 = 0xe05dd497ca393ae4; // bitReflect(expMod65(128 + 64, poly, 1)) << 1;
const uint64_t k2 = 0xdabe95afc7875f40; // bitReflect(expMod65(128, poly, 1)) << 1;
const uint64_t mu = 0x9c3e466c172963d5; // (bitReflect(div129by65(poly)) << 1) | 1;
const uint64_t p = 0x92d8af2baf0e1e85; // (bitReflect(poly) << 1) | 1;
const uint64x2_t foldConstants1 = vcombine_u64(vcreate_u64(k1), vcreate_u64(k2));
const uint64x2_t foldConstants2 = vcombine_u64(vcreate_u64(mu), vcreate_u64(p));
const uint8_t* end = data + length;
// Align pointers
const uint64x2_t* alignedData = (const uint64x2_t*)((uintptr_t)data & ~(uintptr_t)15);
const uint64x2_t* alignedEnd = (const uint64x2_t*)(((uintptr_t)end + 15) & ~(uintptr_t)15);
const size_t leadInSize = data - (const uint8_t*)alignedData;
const size_t leadOutSize = (const uint8_t*)alignedEnd - end;
const size_t alignedLength = alignedEnd - alignedData;
const uint64x2_t leadInMask =
vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)(const uint64x2_t*)(shuffleMasks + (16 - leadInSize))));
uint64x2_t a = vreinterpretq_u64_u32(vdupq_n_u32(0));
uint64x2_t b = vreinterpretq_u64_u32(
vld1q_u32((const uint32_t*)alignedData)); // Use a signed shift right to create a mask with the sign bit
const uint64x2_t data0 =
vreinterpretq_u64_u8(vbslq_u8(vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_u64(leadInMask), 7)),
vreinterpretq_u8_u64(b),
vreinterpretq_u8_u64(a)));
const uint64x2_t initialCrc = vsetq_lane_u64(~crc, vdupq_n_u64(0), 0);
uint64x2_t R;
if(alignedLength == 1)
{
// Single data block, initial CRC possibly bleeds into zero padding
uint64x2_t crc0, crc1;
shiftRight128(initialCrc, 16 - length, &crc0, &crc1);
uint64x2_t A, B;
shiftRight128(data0, leadOutSize, &A, &B);
const uint64x2_t P = veorq_u64(A, crc0);
R = veorq_u64(sse2neon_vmull_p64(vget_low_u64(P), vget_high_u64(foldConstants1)),
veorq_u64(mm_srli_si128(P, 8), mm_slli_si128(crc1, 8)));
}
else if(alignedLength == 2)
{
const uint64x2_t data1 = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)(alignedData + 1)));
if(length < 8)
{
// Initial CRC bleeds into the zero padding
uint64x2_t crc0, crc1;
shiftRight128(initialCrc, 16 - length, &crc0, &crc1);
uint64x2_t A, B, C, D;
shiftRight128(data0, leadOutSize, &A, &B);
shiftRight128(data1, leadOutSize, &C, &D);
const uint64x2_t P = veorq_u64(veorq_u64(B, C), crc0);
R = veorq_u64(sse2neon_vmull_p64(vget_low_u64(P), vget_high_u64(foldConstants1)),
veorq_u64(mm_srli_si128(P, 8), mm_slli_si128(crc1, 8)));
}
else
{
// We can fit the initial CRC into the data without bleeding into the zero padding
uint64x2_t crc0, crc1;
shiftRight128(initialCrc, leadInSize, &crc0, &crc1);
uint64x2_t A, B, C, D;
shiftRight128(veorq_u64(data0, crc0), leadOutSize, &A, &B);
shiftRight128(veorq_u64(data1, crc1), leadOutSize, &C, &D);
const uint64x2_t P = veorq_u64(fold(A, foldConstants1), veorq_u64(B, C));
R = veorq_u64(sse2neon_vmull_p64(vget_low_u64(P), vget_high_u64(foldConstants1)), mm_srli_si128(P, 8));
}
}
else
{
alignedData++;
length -= 16 - leadInSize;
// Initial CRC can simply be added to data
uint64x2_t crc0, crc1;
shiftRight128(initialCrc, leadInSize, &crc0, &crc1);
uint64x2_t accumulator = veorq_u64(fold(veorq_u64(crc0, data0), foldConstants1), crc1);
while(length >= 32)
{
accumulator = fold(veorq_u64(vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)alignedData)), accumulator),
foldConstants1);
length -= 16;
alignedData++;
}
uint64x2_t P;
if(length == 16) P = veorq_u64(accumulator, vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)alignedData)));
else
{
const uint64x2_t end0 =
veorq_u64(accumulator, vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)alignedData)));
const uint64x2_t end1 = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)(alignedData + 1)));
uint64x2_t A, B, C, D;
shiftRight128(end0, leadOutSize, &A, &B);
shiftRight128(end1, leadOutSize, &C, &D);
P = veorq_u64(fold(A, foldConstants1),
vreinterpretq_u64_u32(vorrq_u32(vreinterpretq_u32_u64(B), vreinterpretq_u32_u64(C))));
}
R = veorq_u64(sse2neon_vmull_p64(vget_low_u64(P), vget_high_u64(foldConstants1)), mm_srli_si128(P, 8));
}
// Final Barrett reduction
const uint64x2_t T1 = sse2neon_vmull_p64(vget_low_u64(R), vget_low_u64(foldConstants2));
const uint64x2_t T2 = veorq_u64(
veorq_u64(sse2neon_vmull_p64(vget_low_u64(T1), vget_high_u64(foldConstants2)), mm_slli_si128(T1, 8)), R);
return ~vgetq_lane_u64(T2, 1);
}
#endif

View File

@@ -283,3 +283,83 @@ TEST_F(crc64Fixture, crc64_clmul_2352bytes)
EXPECT_EQ(crc, EXPECTED_CRC64_2352BYTES);
}
#endif
#if defined(__aarch64__) || defined(_M_ARM64) || defined(__arm__) || defined(_M_ARM)
TEST_F(crc64Fixture, crc64_vmull)
{
if(!have_neon()) return;
uint64_t crc = CRC64_ECMA_SEED;
crc = ~crc64_vmull(~crc, buffer, 1048576);
crc ^= CRC64_ECMA_SEED;
EXPECT_EQ(crc, EXPECTED_CRC64);
}
TEST_F(crc64Fixture, crc64_vmull_misaligned)
{
if(!have_neon()) return;
uint64_t crc = CRC64_ECMA_SEED;
crc = ~crc64_vmull(~crc, buffer_misaligned+1, 1048576);
crc ^= CRC64_ECMA_SEED;
EXPECT_EQ(crc, EXPECTED_CRC64);
}
TEST_F(crc64Fixture, crc64_vmull_15bytes)
{
if(!have_neon()) return;
uint64_t crc = CRC64_ECMA_SEED;
crc = ~crc64_vmull(~crc, buffer, 15);
crc ^= CRC64_ECMA_SEED;
EXPECT_EQ(crc, EXPECTED_CRC64_15BYTES);
}
TEST_F(crc64Fixture, crc64_vmull_31bytes)
{
if(!have_neon()) return;
uint64_t crc = CRC64_ECMA_SEED;
crc = ~crc64_vmull(~crc, buffer, 31);
crc ^= CRC64_ECMA_SEED;
EXPECT_EQ(crc, EXPECTED_CRC64_31BYTES);
}
TEST_F(crc64Fixture, crc64_vmull_63bytes)
{
if(!have_neon()) return;
uint64_t crc = CRC64_ECMA_SEED;
crc = ~crc64_vmull(~crc, buffer, 63);
crc ^= CRC64_ECMA_SEED;
EXPECT_EQ(crc, EXPECTED_CRC64_63BYTES);
}
TEST_F(crc64Fixture, crc64_vmull_2352bytes)
{
if(!have_neon()) return;
uint64_t crc = CRC64_ECMA_SEED;
crc = ~crc64_vmull(~crc, buffer, 2352);
crc ^= CRC64_ECMA_SEED;
EXPECT_EQ(crc, EXPECTED_CRC64_2352BYTES);
}
#endif