/* * This file is part of the Aaru Data Preservation Suite. * Copyright (c) 2019-2021 Natalia Portillo. * Copyright (C) 1995-2011 Mark Adler * Copyright (C) Jean-loup Gailly * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include #include "library.h" #include "adler32.h" #include "simd.h" AARU_EXPORT adler32_ctx* AARU_CALL adler32_init() { adler32_ctx* ctx; ctx = (adler32_ctx*)malloc(sizeof(adler32_ctx)); if(!ctx) return NULL; ctx->sum1 = 1; ctx->sum2 = 0; return ctx; } AARU_EXPORT int AARU_CALL adler32_update(adler32_ctx* ctx, const uint8_t* data, uint32_t len) { if(!ctx || !data) return -1; #if defined(__aarch64__) || defined(_M_ARM64) || ((defined(__arm__) || defined(_M_ARM)) && !defined(__MINGW32__)) if(have_neon()) { adler32_neon(&ctx->sum1, &ctx->sum2, data, len); return 0; } #endif #if defined(__x86_64__) || defined(__amd64) || defined(_M_AMD64) || defined(_M_X64) || defined(__I386__) || \ defined(__i386__) || defined(__THW_INTEL) || defined(_M_IX86) if(have_avx2()) { adler32_avx2(&ctx->sum1, &ctx->sum2, data, len); return 0; } if(have_ssse3()) { adler32_ssse3(&ctx->sum1, &ctx->sum2, data, len); return 0; } #endif adler32_slicing(&ctx->sum1, &ctx->sum2, data, len); return 0; } AARU_EXPORT void AARU_CALL adler32_slicing(uint16_t* sum1, uint16_t* sum2, const uint8_t* data, long len) { uint32_t s1 = *sum1; uint32_t s2 = *sum2; unsigned n; /* in case user likes doing a byte at a time, keep it fast */ if(len == 1) { s1 += data[0]; if(s1 >= ADLER_MODULE) s1 -= ADLER_MODULE; s2 += s1; if(s2 >= ADLER_MODULE) s2 -= ADLER_MODULE; *sum1 = s1 & 0xFFFF; *sum2 = s2 & 0xFFFF; return; } /* in case short lengths are provided, keep it somewhat fast */ if(len < 16) { while(len--) { s1 += *data++; s2 += s1; } if(s1 >= ADLER_MODULE) s1 -= ADLER_MODULE; s2 %= ADLER_MODULE; /* only added so many ADLER_MODULE's */ *sum1 = s1 & 0xFFFF; *sum2 = s2 & 0xFFFF; return; } /* do length NMAX blocks -- requires just one modulo operation */ while(len >= NMAX) { len -= NMAX; n = NMAX / 16; /* NMAX is divisible by 16 */ do { s1 += (data)[0]; s2 += s1; s1 += (data)[0 + 1]; s2 += s1; s1 += (data)[0 + 2]; s2 += s1; s1 += (data)[0 + 2 + 1]; s2 += s1; s1 += (data)[0 + 4]; s2 += s1; s1 += (data)[0 + 4 + 1]; s2 += s1; s1 += (data)[0 + 4 + 2]; s2 += s1; s1 += (data)[0 + 4 + 2 + 1]; s2 += s1; s1 += (data)[8]; s2 += s1; s1 += (data)[8 + 1]; s2 += s1; s1 += (data)[8 + 2]; s2 += s1; s1 += (data)[8 + 2 + 1]; s2 += s1; s1 += (data)[8 + 4]; s2 += s1; s1 += (data)[8 + 4 + 1]; s2 += s1; s1 += (data)[8 + 4 + 2]; s2 += s1; s1 += (data)[8 + 4 + 2 + 1]; s2 += s1; /* 16 sums unrolled */ data += 16; } while(--n); s1 %= ADLER_MODULE; s2 %= ADLER_MODULE; } /* do remaining bytes (less than NMAX, still just one modulo) */ if(len) { /* avoid modulos if none remaining */ while(len >= 16) { len -= 16; s1 += (data)[0]; s2 += s1; s1 += (data)[0 + 1]; s2 += s1; s1 += (data)[0 + 2]; s2 += s1; s1 += (data)[0 + 2 + 1]; s2 += s1; s1 += (data)[0 + 4]; s2 += s1; s1 += (data)[0 + 4 + 1]; s2 += s1; s1 += (data)[0 + 4 + 2]; s2 += s1; s1 += (data)[0 + 4 + 2 + 1]; s2 += s1; s1 += (data)[8]; s2 += s1; s1 += (data)[8 + 1]; s2 += s1; s1 += (data)[8 + 2]; s2 += s1; s1 += (data)[8 + 2 + 1]; s2 += s1; s1 += (data)[8 + 4]; s2 += s1; s1 += (data)[8 + 4 + 1]; s2 += s1; s1 += (data)[8 + 4 + 2]; s2 += s1; s1 += (data)[8 + 4 + 2 + 1]; s2 += s1; data += 16; } while(len--) { s1 += *data++; s2 += s1; } s1 %= ADLER_MODULE; s2 %= ADLER_MODULE; } *sum1 = s1 & 0xFFFF; *sum2 = s2 & 0xFFFF; } AARU_EXPORT int AARU_CALL adler32_final(adler32_ctx* ctx, uint32_t* checksum) { if(!ctx) return -1; *checksum = (ctx->sum2 << 16) | ctx->sum1; return 0; } AARU_EXPORT void AARU_CALL adler32_free(adler32_ctx* ctx) { if(!ctx) return; free(ctx); }