// // Created by claunia on 28/9/21. // #if defined(__aarch64__) || defined(_M_ARM64) || defined(__arm__) || defined(_M_ARM) #include #include "library.h" #include "adler32.h" #include "simd.h" void adler32_neon(uint16_t* sum1, uint16_t* sum2, const unsigned char* buf, uint32_t len) { /* * Split Adler-32 into component sums. */ uint32_t s1 = *sum1; uint32_t s2 = *sum2; /* * Serially compute s1 & s2, until the data is 16-byte aligned. */ if((uintptr_t)buf & 15) { while((uintptr_t)buf & 15) { s2 += (s1 += *buf++); --len; } if(s1 >= ADLER_MODULE) s1 -= ADLER_MODULE; s2 %= ADLER_MODULE; } /* * Process the data in blocks. */ const unsigned BLOCK_SIZE = 1 << 5; uint32_t blocks = len / BLOCK_SIZE; len -= blocks * BLOCK_SIZE; while(blocks) { unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */ if(n > blocks) n = (unsigned)blocks; blocks -= n; /* * Process n blocks of data. At most NMAX data bytes can be * processed before s2 must be reduced modulo ADLER_MODULE. */ uint32x4_t v_s2 = (uint32x4_t){0, 0, 0, s1 * n}; uint32x4_t v_s1 = (uint32x4_t){0, 0, 0, 0}; uint16x8_t v_column_sum_1 = vdupq_n_u16(0); uint16x8_t v_column_sum_2 = vdupq_n_u16(0); uint16x8_t v_column_sum_3 = vdupq_n_u16(0); uint16x8_t v_column_sum_4 = vdupq_n_u16(0); do { /* * Load 32 input bytes. */ const uint8x16_t bytes1 = vld1q_u8((uint8_t*)(buf)); const uint8x16_t bytes2 = vld1q_u8((uint8_t*)(buf + 16)); /* * Add previous block byte sum to v_s2. */ v_s2 = vaddq_u32(v_s2, v_s1); /* * Horizontally add the bytes for s1. */ v_s1 = vpadalq_u16(v_s1, vpadalq_u8(vpaddlq_u8(bytes1), bytes2)); /* * Vertically add the bytes for s2. */ v_column_sum_1 = vaddw_u8(v_column_sum_1, vget_low_u8(bytes1)); v_column_sum_2 = vaddw_u8(v_column_sum_2, vget_high_u8(bytes1)); v_column_sum_3 = vaddw_u8(v_column_sum_3, vget_low_u8(bytes2)); v_column_sum_4 = vaddw_u8(v_column_sum_4, vget_high_u8(bytes2)); buf += BLOCK_SIZE; } while(--n); v_s2 = vshlq_n_u32(v_s2, 5); /* * Multiply-add bytes by [ 32, 31, 30, ... ] for s2. */ v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), (uint16x4_t){32, 31, 30, 29}); v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), (uint16x4_t){28, 27, 26, 25}); v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), (uint16x4_t){24, 23, 22, 21}); v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), (uint16x4_t){20, 19, 18, 17}); v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), (uint16x4_t){16, 15, 14, 13}); v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), (uint16x4_t){12, 11, 10, 9}); v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), (uint16x4_t){8, 7, 6, 5}); v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), (uint16x4_t){4, 3, 2, 1}); /* * Sum epi32 ints v_s1(s2) and accumulate in s1(s2). */ uint32x2_t sum1 = vpadd_u32(vget_low_u32(v_s1), vget_high_u32(v_s1)); uint32x2_t sum2 = vpadd_u32(vget_low_u32(v_s2), vget_high_u32(v_s2)); uint32x2_t s1s2 = vpadd_u32(sum1, sum2); s1 += vget_lane_u32(s1s2, 0); s2 += vget_lane_u32(s1s2, 1); /* * Reduce. */ s1 %= ADLER_MODULE; s2 %= ADLER_MODULE; } /* * Handle leftover data. */ if(len) { if(len >= 16) { s2 += (s1 += *buf++); s2 += (s1 += *buf++); s2 += (s1 += *buf++); s2 += (s1 += *buf++); s2 += (s1 += *buf++); s2 += (s1 += *buf++); s2 += (s1 += *buf++); s2 += (s1 += *buf++); s2 += (s1 += *buf++); s2 += (s1 += *buf++); s2 += (s1 += *buf++); s2 += (s1 += *buf++); s2 += (s1 += *buf++); s2 += (s1 += *buf++); s2 += (s1 += *buf++); s2 += (s1 += *buf++); len -= 16; } while(len--) { s2 += (s1 += *buf++); } if(s1 >= ADLER_MODULE) s1 -= ADLER_MODULE; s2 %= ADLER_MODULE; } /* * Return the recombined sums. */ *sum1 = s1 & 0xFFFF; *sum2 = s2 & 0xFFFF; } #endif