// // Created by claunia on 29/9/21. // #if defined(__aarch64__) || defined(_M_ARM64) || defined(__arm__) || defined(_M_ARM) #include #include #include #include "library.h" #include "crc32.h" #include "crc32_simd.h" TARGET_WITH_CRYPTO static uint64x2_t sse2neon_vmull_p64_crypto(uint64x1_t _a, uint64x1_t _b) { poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0); poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0); return vreinterpretq_u64_p128(vmull_p64(a, b)); } FORCE_INLINE TARGET_WITH_SIMD uint64x2_t sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) { // Wraps vmull_p64 if(have_arm_crypto()) return sse2neon_vmull_p64_crypto(_a, _b); // ARMv7 polyfill // ARMv7/some A64 lacks vmull_p64, but it has vmull_p8. // // vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a // 64-bit->128-bit polynomial multiply. // // It needs some work and is somewhat slow, but it is still faster than all // known scalar methods. // // Algorithm adapted to C from // https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted // from "Fast Software Polynomial Multiplication on ARM Processors Using the // NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab // (https://hal.inria.fr/hal-01506572) poly8x8_t a = vreinterpret_p8_u64(_a); poly8x8_t b = vreinterpret_p8_u64(_b); // Masks uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff), vcreate_u8(0x00000000ffffffff)); uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff), vcreate_u8(0x0000000000000000)); // Do the multiplies, rotating with vext to get all combinations uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0 uint8x16_t e = vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1 uint8x16_t f = vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0 uint8x16_t g = vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2 uint8x16_t h = vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0 uint8x16_t i = vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3 uint8x16_t j = vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0 uint8x16_t k = vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4 // Add cross products uint8x16_t l = veorq_u8(e, f); // L = E + F uint8x16_t m = veorq_u8(g, h); // M = G + H uint8x16_t n = veorq_u8(i, j); // N = I + J // Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL // instructions. #if defined(__aarch64__) uint8x16_t lm_p0 = vreinterpretq_u8_u64(vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m))); uint8x16_t lm_p1 = vreinterpretq_u8_u64(vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m))); uint8x16_t nk_p0 = vreinterpretq_u8_u64(vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k))); uint8x16_t nk_p1 = vreinterpretq_u8_u64(vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k))); #else uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m)); uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m)); uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k)); uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k)); #endif // t0 = (L) (P0 + P1) << 8 // t1 = (M) (P2 + P3) << 16 uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1); uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32); uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h); // t2 = (N) (P4 + P5) << 24 // t3 = (K) (P6 + P7) << 32 uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1); uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00); uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h); // De-interleave #if defined(__aarch64__) uint8x16_t t0 = vreinterpretq_u8_u64(vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h))); uint8x16_t t1 = vreinterpretq_u8_u64(vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h))); uint8x16_t t2 = vreinterpretq_u8_u64(vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h))); uint8x16_t t3 = vreinterpretq_u8_u64(vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h))); #else uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h)); uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h)); uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h)); uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h)); #endif // Shift the cross products uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8 uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16 uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24 uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32 // Accumulate the products uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift); uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift); uint8x16_t mix = veorq_u8(d, cross1); uint8x16_t r = veorq_u8(mix, cross2); return vreinterpretq_u64_u8(r); } FORCE_INLINE uint64x2_t mm_shuffle_epi8(uint64x2_t a, uint64x2_t b) { uint8x16_t tbl = vreinterpretq_u8_u64(a); // input a uint8x16_t idx = vreinterpretq_u8_u64(b); // input b uint8x16_t idx_masked = vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits #if defined(__aarch64__) return vreinterpretq_u64_u8(vqtbl1q_u8(tbl, idx_masked)); #else // use this line if testing on aarch64 uint8x8x2_t a_split = {vget_low_u8(tbl), vget_high_u8(tbl)}; return vreinterpretq_u64_u8( vcombine_u8(vtbl2_u8(a_split, vget_low_u8(idx_masked)), vtbl2_u8(a_split, vget_high_u8(idx_masked)))); #endif } /* * somewhat surprisingly the "naive" way of doing this, ie. with a flag and a cond. branch, * is consistently ~5 % faster on average than the implied-recommended branchless way (always xor, * always zero q_initial). Guess speculative execution and branch prediction got the better of * yet another "optimization tip". */ #define XOR_INITIAL(where) \ ONCE(where = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(where), vreinterpretq_u32_u64(q_initial)))) TARGET_WITH_SIMD FORCE_INLINE void fold_1(uint64x2_t* q_crc0, uint64x2_t* q_crc1, uint64x2_t* q_crc2, uint64x2_t* q_crc3) { uint32_t ALIGNED_(16) data[4] = {0xc6e41596, 0x00000001, 0x54442bd4, 0x00000001}; const uint64x2_t q_fold4 = vreinterpretq_u64_u32(vld1q_u32(data)); uint64x2_t x_tmp3; uint32x4_t ps_crc0, ps_crc3, ps_res; x_tmp3 = *q_crc3; *q_crc3 = *q_crc0; *q_crc0 = sse2neon_vmull_p64(vget_high_u64(*q_crc0), vget_low_u64(q_fold4)); *q_crc3 = sse2neon_vmull_p64(vget_low_u64(*q_crc3), vget_high_u64(q_fold4)); ps_crc0 = vreinterpretq_u32_u64(*q_crc0); ps_crc3 = vreinterpretq_u32_u64(*q_crc3); ps_res = veorq_u32(ps_crc0, ps_crc3); *q_crc0 = *q_crc1; *q_crc1 = *q_crc2; *q_crc2 = x_tmp3; *q_crc3 = vreinterpretq_u64_u32(ps_res); } TARGET_WITH_SIMD FORCE_INLINE void fold_2(uint64x2_t* q_crc0, uint64x2_t* q_crc1, uint64x2_t* q_crc2, uint64x2_t* q_crc3) { uint32_t ALIGNED_(16) data[4] = {0xc6e41596, 0x00000001, 0x54442bd4, 0x00000001}; const uint64x2_t q_fold4 = vreinterpretq_u64_u32(vld1q_u32(data)); uint64x2_t x_tmp3, x_tmp2; uint32x4_t ps_crc0, ps_crc1, ps_crc2, ps_crc3, ps_res31, ps_res20; x_tmp3 = *q_crc3; x_tmp2 = *q_crc2; *q_crc3 = *q_crc1; *q_crc1 = sse2neon_vmull_p64(vget_high_u64(*q_crc1), vget_low_u64(q_fold4)); *q_crc3 = sse2neon_vmull_p64(vget_low_u64(*q_crc3), vget_high_u64(q_fold4)); ps_crc3 = vreinterpretq_u32_u64(*q_crc3); ps_crc1 = vreinterpretq_u32_u64(*q_crc1); ps_res31 = veorq_u32(ps_crc3, ps_crc1); *q_crc2 = *q_crc0; *q_crc0 = sse2neon_vmull_p64(vget_high_u64(*q_crc0), vget_low_u64(q_fold4)); *q_crc2 = sse2neon_vmull_p64(vget_low_u64(*q_crc2), vget_high_u64(q_fold4)); ps_crc0 = vreinterpretq_u32_u64(*q_crc0); ps_crc2 = vreinterpretq_u32_u64(*q_crc2); ps_res20 = veorq_u32(ps_crc0, ps_crc2); *q_crc0 = x_tmp2; *q_crc1 = x_tmp3; *q_crc2 = vreinterpretq_u64_u32(ps_res20); *q_crc3 = vreinterpretq_u64_u32(ps_res31); } TARGET_WITH_SIMD FORCE_INLINE void fold_3(uint64x2_t* q_crc0, uint64x2_t* q_crc1, uint64x2_t* q_crc2, uint64x2_t* q_crc3) { uint32_t ALIGNED_(16) data[4] = {0xc6e41596, 0x00000001, 0x54442bd4, 0x00000001}; const uint64x2_t q_fold4 = vreinterpretq_u64_u32(vld1q_u32(data)); uint64x2_t x_tmp3; uint32x4_t ps_crc0, ps_crc1, ps_crc2, ps_crc3, ps_res32, ps_res21, ps_res10; x_tmp3 = *q_crc3; *q_crc3 = *q_crc2; *q_crc2 = sse2neon_vmull_p64(vget_high_u64(*q_crc2), vget_low_u64(q_fold4)); *q_crc3 = sse2neon_vmull_p64(vget_low_u64(*q_crc3), vget_high_u64(q_fold4)); ps_crc2 = vreinterpretq_u32_u64(*q_crc2); ps_crc3 = vreinterpretq_u32_u64(*q_crc3); ps_res32 = veorq_u32(ps_crc2, ps_crc3); *q_crc2 = *q_crc1; *q_crc1 = sse2neon_vmull_p64(vget_high_u64(*q_crc1), vget_low_u64(q_fold4)); *q_crc2 = sse2neon_vmull_p64(vget_low_u64(*q_crc2), vget_high_u64(q_fold4)); ps_crc1 = vreinterpretq_u32_u64(*q_crc1); ps_crc2 = vreinterpretq_u32_u64(*q_crc2); ps_res21 = veorq_u32(ps_crc1, ps_crc2); *q_crc1 = *q_crc0; *q_crc0 = sse2neon_vmull_p64(vget_high_u64(*q_crc0), vget_low_u64(q_fold4)); *q_crc1 = sse2neon_vmull_p64(vget_low_u64(*q_crc1), vget_high_u64(q_fold4)); ps_crc0 = vreinterpretq_u32_u64(*q_crc0); ps_crc1 = vreinterpretq_u32_u64(*q_crc1); ps_res10 = veorq_u32(ps_crc0, ps_crc1); *q_crc0 = x_tmp3; *q_crc1 = vreinterpretq_u64_u32(ps_res10); *q_crc2 = vreinterpretq_u64_u32(ps_res21); *q_crc3 = vreinterpretq_u64_u32(ps_res32); } TARGET_WITH_SIMD FORCE_INLINE void fold_4(uint64x2_t* q_crc0, uint64x2_t* q_crc1, uint64x2_t* q_crc2, uint64x2_t* q_crc3) { uint32_t ALIGNED_(16) data[4] = {0xc6e41596, 0x00000001, 0x54442bd4, 0x00000001}; const uint64x2_t q_fold4 = vreinterpretq_u64_u32(vld1q_u32(data)); uint64x2_t x_tmp0; uint64x2_t x_tmp1; uint64x2_t x_tmp2; uint64x2_t x_tmp3; uint32x4_t ps_crc0, ps_crc1, ps_crc2, ps_crc3, ps_t0, ps_t1, ps_t2, ps_t3, ps_res0, ps_res1, ps_res2, ps_res3; x_tmp0 = *q_crc0; x_tmp1 = *q_crc1; x_tmp2 = *q_crc2; x_tmp3 = *q_crc3; *q_crc0 = sse2neon_vmull_p64(vget_high_u64(*q_crc0), vget_low_u64(q_fold4)); x_tmp0 = sse2neon_vmull_p64(vget_low_u64(x_tmp0), vget_high_u64(q_fold4)); ps_crc0 = vreinterpretq_u32_u64(*q_crc0); ps_t0 = vreinterpretq_u32_u64(x_tmp0); ps_res0 = veorq_u32(ps_crc0, ps_t0); *q_crc1 = sse2neon_vmull_p64(vget_high_u64(*q_crc1), vget_low_u64(q_fold4)); x_tmp1 = sse2neon_vmull_p64(vget_low_u64(x_tmp1), vget_high_u64(q_fold4)); ps_crc1 = vreinterpretq_u32_u64(*q_crc1); ps_t1 = vreinterpretq_u32_u64(x_tmp1); ps_res1 = veorq_u32(ps_crc1, ps_t1); *q_crc2 = sse2neon_vmull_p64(vget_high_u64(*q_crc2), vget_low_u64(q_fold4)); x_tmp2 = sse2neon_vmull_p64(vget_low_u64(x_tmp2), vget_high_u64(q_fold4)); ps_crc2 = vreinterpretq_u32_u64(*q_crc2); ps_t2 = vreinterpretq_u32_u64(x_tmp2); ps_res2 = veorq_u32(ps_crc2, ps_t2); *q_crc3 = sse2neon_vmull_p64(vget_high_u64(*q_crc3), vget_low_u64(q_fold4)); x_tmp3 = sse2neon_vmull_p64(vget_low_u64(x_tmp3), vget_high_u64(q_fold4)); ps_crc3 = vreinterpretq_u32_u64(*q_crc3); ps_t3 = vreinterpretq_u32_u64(x_tmp3); ps_res3 = veorq_u32(ps_crc3, ps_t3); *q_crc0 = vreinterpretq_u64_u32(ps_res0); *q_crc1 = vreinterpretq_u64_u32(ps_res1); *q_crc2 = vreinterpretq_u64_u32(ps_res2); *q_crc3 = vreinterpretq_u64_u32(ps_res3); } TARGET_WITH_SIMD FORCE_INLINE void partial_fold(const size_t len, uint64x2_t* q_crc0, uint64x2_t* q_crc1, uint64x2_t* q_crc2, uint64x2_t* q_crc3, uint64x2_t* q_crc_part) { uint32_t ALIGNED_(16) data[4] = {0xc6e41596, 0x00000001, 0x54442bd4, 0x00000001}; const uint64x2_t q_fold4 = vreinterpretq_u64_u32(vld1q_u32(data)); const uint64x2_t q_mask3 = vreinterpretq_u64_u32(vdupq_n_u32(0x80808080)); uint64x2_t q_shl, q_shr, q_tmp1, q_tmp2, q_tmp3, q_a0_0, q_a0_1; uint32x4_t ps_crc3, psa0_0, psa0_1, ps_res; q_shl = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)pshufb_shf_table + (len - 1) * 4)); q_shr = q_shl; q_shr = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_shr), vreinterpretq_u32_u64(q_mask3))); q_a0_0 = mm_shuffle_epi8(*q_crc0, q_shl); *q_crc0 = mm_shuffle_epi8(*q_crc0, q_shr); q_tmp1 = mm_shuffle_epi8(*q_crc1, q_shl); *q_crc0 = vreinterpretq_u64_u32(vorrq_u32(vreinterpretq_u32_u64(*q_crc0), vreinterpretq_u32_u64(q_tmp1))); *q_crc1 = mm_shuffle_epi8(*q_crc1, q_shr); q_tmp2 = mm_shuffle_epi8(*q_crc2, q_shl); *q_crc1 = vreinterpretq_u64_u32(vorrq_u32(vreinterpretq_u32_u64(*q_crc1), vreinterpretq_u32_u64(q_tmp2))); *q_crc2 = mm_shuffle_epi8(*q_crc2, q_shr); q_tmp3 = mm_shuffle_epi8(*q_crc3, q_shl); *q_crc2 = vreinterpretq_u64_u32(vorrq_u32(vreinterpretq_u32_u64(*q_crc2), vreinterpretq_u32_u64(q_tmp3))); *q_crc3 = mm_shuffle_epi8(*q_crc3, q_shr); *q_crc_part = mm_shuffle_epi8(*q_crc_part, q_shl); *q_crc3 = vreinterpretq_u64_u32(vorrq_u32(vreinterpretq_u32_u64(*q_crc3), vreinterpretq_u32_u64(*q_crc_part))); q_a0_1 = sse2neon_vmull_p64(vget_low_u64(q_a0_0), vget_high_u64(q_fold4)); q_a0_0 = sse2neon_vmull_p64(vget_high_u64(q_a0_0), vget_low_u64(q_fold4)); ps_crc3 = vreinterpretq_u32_u64(*q_crc3); psa0_0 = vreinterpretq_u32_u64(q_a0_0); psa0_1 = vreinterpretq_u32_u64(q_a0_1); ps_res = veorq_u32(ps_crc3, psa0_0); ps_res = veorq_u32(ps_res, psa0_1); *q_crc3 = vreinterpretq_u64_u32(ps_res); } TARGET_WITH_SIMD uint32_t crc32_vmull(const uint8_t* src, long len, uint32_t initial_crc) { unsigned long algn_diff; uint64x2_t q_t0; uint64x2_t q_t1; uint64x2_t q_t2; uint64x2_t q_t3; uint64x2_t q_initial = vreinterpretq_u64_u32(vsetq_lane_u32(initial_crc, vdupq_n_u32(0), 0)); uint64x2_t q_crc0 = vreinterpretq_u64_u32(vsetq_lane_u32(0x9db42487, vdupq_n_u32(0), 0)); uint64x2_t q_crc1 = vreinterpretq_u64_u32(vdupq_n_u32(0)); uint64x2_t q_crc2 = vreinterpretq_u64_u32(vdupq_n_u32(0)); uint64x2_t q_crc3 = vreinterpretq_u64_u32(vdupq_n_u32(0)); uint64x2_t q_crc_part; int first = 1; /* fold 512 to 32 step variable declarations for ISO-C90 compat. */ const uint64x2_t q_mask = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)crc_mask)); const uint64x2_t q_mask2 = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)crc_mask2)); uint32_t crc; uint64x2_t x_tmp0; uint64x2_t x_tmp1; uint64x2_t x_tmp2; uint64x2_t crc_fold; if(len < 16) { if(len == 0) return initial_crc; if(len < 4) { /* * no idea how to do this for <4 bytes, delegate to classic impl. */ uint32_t crc = ~initial_crc; switch(len) { case 3: crc = (crc >> 8) ^ crc32_table[0][(crc & 0xFF) ^ *src++]; case 2: crc = (crc >> 8) ^ crc32_table[0][(crc & 0xFF) ^ *src++]; case 1: crc = (crc >> 8) ^ crc32_table[0][(crc & 0xFF) ^ *src++]; } return ~crc; } q_crc_part = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)src)); XOR_INITIAL(q_crc_part); goto partial; } /* this alignment computation would be wrong for len<16 handled above */ algn_diff = (0 - (uintptr_t)src) & 0xF; if(algn_diff) { q_crc_part = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)src)); XOR_INITIAL(q_crc_part); src += algn_diff; len -= algn_diff; partial_fold(algn_diff, &q_crc0, &q_crc1, &q_crc2, &q_crc3, &q_crc_part); } while((len -= 64) >= 0) { q_t0 = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)src)); q_t1 = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)src + 4)); q_t2 = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)src + 8)); q_t3 = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)src + 12)); XOR_INITIAL(q_t0); fold_4(&q_crc0, &q_crc1, &q_crc2, &q_crc3); q_crc0 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc0), vreinterpretq_u32_u64(q_t0))); q_crc1 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc1), vreinterpretq_u32_u64(q_t1))); q_crc2 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc2), vreinterpretq_u32_u64(q_t2))); q_crc3 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc3), vreinterpretq_u32_u64(q_t3))); src += 64; } /* * len = num bytes left - 64 */ if(len + 16 >= 0) { len += 16; q_t0 = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)src)); q_t1 = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)src + 4)); q_t2 = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)src + 8)); XOR_INITIAL(q_t0); fold_3(&q_crc0, &q_crc1, &q_crc2, &q_crc3); q_crc1 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc1), vreinterpretq_u32_u64(q_t0))); q_crc2 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc2), vreinterpretq_u32_u64(q_t1))); q_crc3 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc3), vreinterpretq_u32_u64(q_t2))); if(len == 0) goto done; q_crc_part = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)src + 12)); } else if(len + 32 >= 0) { len += 32; q_t0 = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)src)); q_t1 = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)src + 4)); XOR_INITIAL(q_t0); fold_2(&q_crc0, &q_crc1, &q_crc2, &q_crc3); q_crc2 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc2), vreinterpretq_u32_u64(q_t0))); q_crc3 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc3), vreinterpretq_u32_u64(q_t1))); if(len == 0) goto done; q_crc_part = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)src + 8)); } else if(len + 48 >= 0) { len += 48; q_t0 = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)src)); XOR_INITIAL(q_t0); fold_1(&q_crc0, &q_crc1, &q_crc2, &q_crc3); q_crc3 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc3), vreinterpretq_u32_u64(q_t0))); if(len == 0) goto done; q_crc_part = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)src + 4)); } else { len += 64; if(len == 0) goto done; q_crc_part = vreinterpretq_u64_u32(vld1q_u32((const uint32_t*)src)); XOR_INITIAL(q_crc_part); } partial: partial_fold(len, &q_crc0, &q_crc1, &q_crc2, &q_crc3, &q_crc_part); done: (void)0; /* fold 512 to 32 */ /* * k1 */ crc_fold = vreinterpretq_u64_u32(vld1q_u32(crc_k)); x_tmp0 = sse2neon_vmull_p64(vget_low_u64((q_crc0)), vget_high_u64((crc_fold))); q_crc0 = sse2neon_vmull_p64(vget_high_u64((q_crc0)), vget_low_u64((crc_fold))); q_crc1 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc1), vreinterpretq_u32_u64(x_tmp0))); q_crc1 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc1), vreinterpretq_u32_u64(q_crc0))); x_tmp1 = sse2neon_vmull_p64(vget_low_u64((q_crc1)), vget_high_u64((crc_fold))); q_crc1 = sse2neon_vmull_p64(vget_high_u64((q_crc1)), vget_low_u64((crc_fold))); q_crc2 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc2), vreinterpretq_u32_u64(x_tmp1))); q_crc2 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc2), vreinterpretq_u32_u64(q_crc1))); x_tmp2 = sse2neon_vmull_p64(vget_low_u64((q_crc2)), vget_high_u64((crc_fold))); q_crc2 = sse2neon_vmull_p64(vget_high_u64((q_crc2)), vget_low_u64((crc_fold))); q_crc3 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc3), vreinterpretq_u32_u64(x_tmp2))); q_crc3 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc3), vreinterpretq_u32_u64(q_crc2))); /* * k5 */ crc_fold = vreinterpretq_u64_u32(vld1q_u32(crc_k + 4)); q_crc0 = q_crc3; q_crc3 = (sse2neon_vmull_p64(vget_low_u64((q_crc3)), vget_low_u64((crc_fold)))); uint8x16_t tmp[2] = {vreinterpretq_u8_u64(q_crc0), vdupq_n_u8(0)}; q_crc0 = vreinterpretq_u64_u8(vld1q_u8(((uint8_t const*)tmp) + 8)); q_crc3 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc3), vreinterpretq_u32_u64(q_crc0))); q_crc0 = q_crc3; uint8x16_t tmp_1[2] = {vdupq_n_u8(0), vreinterpretq_u8_u64(q_crc3)}; q_crc3 = vreinterpretq_u64_u8(vld1q_u8(((uint8_t const*)tmp_1) + (16 - 4))); q_crc3 = (sse2neon_vmull_p64(vget_low_u64((q_crc3)), vget_high_u64((crc_fold)))); q_crc3 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc3), vreinterpretq_u32_u64(q_crc0))); q_crc3 = vreinterpretq_u64_u32(vandq_u32(vreinterpretq_u32_u64(q_crc3), vreinterpretq_u32_u64(q_mask2))); /* * k7 */ q_crc1 = q_crc3; q_crc2 = q_crc3; crc_fold = vreinterpretq_u64_u32(vld1q_u32(crc_k + 8)); q_crc3 = (sse2neon_vmull_p64(vget_low_u64((q_crc3)), vget_low_u64((crc_fold)))); q_crc3 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc3), vreinterpretq_u32_u64(q_crc2))); q_crc3 = vreinterpretq_u64_u32(vandq_u32(vreinterpretq_u32_u64(q_crc3), vreinterpretq_u32_u64(q_mask))); q_crc2 = q_crc3; q_crc3 = (sse2neon_vmull_p64(vget_low_u64((q_crc3)), vget_high_u64((crc_fold)))); q_crc3 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc3), vreinterpretq_u32_u64(q_crc2))); q_crc3 = vreinterpretq_u64_u32(veorq_u32(vreinterpretq_u32_u64(q_crc3), vreinterpretq_u32_u64(q_crc1))); /* * could just as well write q_crc3[2], doing a movaps and truncating, but * no real advantage - it's a tiny bit slower per call, while no additional CPUs * would be supported by only requiring SSSE3 and CLMUL instead of SSE4.1 + CLMUL */ crc = vgetq_lane_u32(vreinterpretq_u32_u64(q_crc3), (2)); return ~crc; } #endif