Files
Aaru.Checksums.Native/arm_vmull.c

169 lines
7.7 KiB
C

/*
* This file is part of the Aaru Data Preservation Suite.
* Copyright (c) 2019-2023 Natalia Portillo.
* Copyright sse2neon.h contributors
*
* sse2neon is freely redistributable under the MIT License.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#if defined(__aarch64__) || defined(_M_ARM64) || defined(__arm__) || defined(_M_ARM)
#include <arm_neon.h>
#include "library.h"
#include "arm_vmull.h"
#include "simd.h"
#if !defined(__MINGW32__) && !defined(_MSC_FULL_VER) && (!defined(__ANDROID__) || !defined(__arm__))
TARGET_WITH_CRYPTO static uint64x2_t sse2neon_vmull_p64_crypto(uint64x1_t _a, uint64x1_t _b)
{
poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0);
poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0);
return vreinterpretq_u64_p128(vmull_p64(a, b));
}
#endif
TARGET_WITH_NEON uint64x2_t sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
{
#if !defined(__MINGW32__) && !defined(_MSC_FULL_VER) && (!defined(__ANDROID__) || !defined(__arm__))
// Wraps vmull_p64
if(have_arm_crypto()) return sse2neon_vmull_p64_crypto(_a, _b);
#endif
// ARMv7 polyfill
// ARMv7/some A64 lacks vmull_p64, but it has vmull_p8.
//
// vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a
// 64-bit->128-bit polynomial multiply.
//
// It needs some work and is somewhat slow, but it is still faster than all
// known scalar methods.
//
// Algorithm adapted to C from
// https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted
// from "Fast Software Polynomial Multiplication on ARM Processors Using the
// NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab
// (https://hal.inria.fr/hal-01506572)
poly8x8_t a = vreinterpret_p8_u64(_a);
poly8x8_t b = vreinterpret_p8_u64(_b);
// Masks
uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff), vcreate_u8(0x00000000ffffffff));
uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff), vcreate_u8(0x0000000000000000));
// Do the multiplies, rotating with vext to get all combinations
uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0
uint8x16_t e = vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1
uint8x16_t f = vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0
uint8x16_t g = vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2
uint8x16_t h = vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0
uint8x16_t i = vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3
uint8x16_t j = vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0
uint8x16_t k = vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4
// Add cross products
uint8x16_t l = veorq_u8(e, f); // L = E + F
uint8x16_t m = veorq_u8(g, h); // M = G + H
uint8x16_t n = veorq_u8(i, j); // N = I + J
// Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL
// instructions.
#if defined(__aarch64__) || defined(_M_ARM64)
uint8x16_t lm_p0 = vreinterpretq_u8_u64(vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
uint8x16_t lm_p1 = vreinterpretq_u8_u64(vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
uint8x16_t nk_p0 = vreinterpretq_u8_u64(vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
uint8x16_t nk_p1 = vreinterpretq_u8_u64(vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
#else
uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m));
uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m));
uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k));
uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k));
#endif
// t0 = (L) (P0 + P1) << 8
// t1 = (M) (P2 + P3) << 16
uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1);
uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32);
uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h);
// t2 = (N) (P4 + P5) << 24
// t3 = (K) (P6 + P7) << 32
uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1);
uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00);
uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h);
// De-interleave
#if defined(__aarch64__) || defined(_M_ARM64)
uint8x16_t t0 = vreinterpretq_u8_u64(vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
uint8x16_t t1 = vreinterpretq_u8_u64(vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
uint8x16_t t2 = vreinterpretq_u8_u64(vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
uint8x16_t t3 = vreinterpretq_u8_u64(vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
#else
uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h));
uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h));
uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h));
uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h));
#endif
// Shift the cross products
uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8
uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16
uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24
uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32
// Accumulate the products
uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift);
uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift);
uint8x16_t mix = veorq_u8(d, cross1);
uint8x16_t r = veorq_u8(mix, cross2);
return vreinterpretq_u64_u8(r);
}
TARGET_WITH_NEON uint64x2_t mm_shuffle_epi8(uint64x2_t a, uint64x2_t b)
{
uint8x16_t tbl = vreinterpretq_u8_u64(a); // input a
uint8x16_t idx = vreinterpretq_u8_u64(b); // input b
uint8x16_t idx_masked = vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits
#if defined(__aarch64__) || defined(_M_ARM64)
return vreinterpretq_u64_u8(vqtbl1q_u8(tbl, idx_masked));
#else
// use this line if testing on aarch64
uint8x8x2_t a_split = {vget_low_u8(tbl), vget_high_u8(tbl)};
return vreinterpretq_u64_u8(
vcombine_u8(vtbl2_u8(a_split, vget_low_u8(idx_masked)), vtbl2_u8(a_split, vget_high_u8(idx_masked))));
#endif
}
TARGET_WITH_NEON uint64x2_t mm_srli_si128(uint64x2_t a, int imm)
{
uint8x16_t tmp[2] = {vreinterpretq_u8_u64(a), vdupq_n_u8(0)};
return vreinterpretq_u64_u8(vld1q_u8(((uint8_t const *)tmp) + imm));
}
TARGET_WITH_NEON uint64x2_t mm_slli_si128(uint64x2_t a, int imm)
{
uint8x16_t tmp[2] = {vdupq_n_u8(0), vreinterpretq_u8_u64(a)};
return vreinterpretq_u64_u8(vld1q_u8(((uint8_t const *)tmp) + (16 - imm)));
}
#endif