mirror of
https://github.com/aaru-dps/Aaru.Checksums.Native.git
synced 2025-12-16 19:24:29 +00:00
197 lines
8.1 KiB
C
197 lines
8.1 KiB
C
/*
|
|
* This file is part of the Aaru Data Preservation Suite.
|
|
* Copyright (c) 2019-2023 Natalia Portillo.
|
|
* Copyright 2017 The Chromium Authors. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following disclaimer
|
|
* in the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Google Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#if defined(__aarch64__) || defined(_M_ARM64) || ((defined(__arm__) || defined(_M_ARM)))
|
|
|
|
#include <arm_neon.h>
|
|
|
|
#include "library.h"
|
|
#include "adler32.h"
|
|
#include "simd.h"
|
|
|
|
TARGET_WITH_SIMD void adler32_neon(uint16_t *sum1, uint16_t *sum2, const uint8_t *data, uint32_t len)
|
|
{
|
|
/*
|
|
* Split Adler-32 into component sums.
|
|
*/
|
|
uint32_t s1 = *sum1;
|
|
uint32_t s2 = *sum2;
|
|
/*
|
|
* Serially compute s1 & s2, until the data is 16-byte aligned.
|
|
*/
|
|
if ((uintptr_t) data & 15)
|
|
{
|
|
while ((uintptr_t) data & 15)
|
|
{
|
|
s2 += (s1 += *data++);
|
|
--len;
|
|
}
|
|
if (s1 >= ADLER_MODULE) s1 -= ADLER_MODULE;
|
|
s2 %= ADLER_MODULE;
|
|
}
|
|
/*
|
|
* Process the data in blocks.
|
|
*/
|
|
const unsigned BLOCK_SIZE = 1 << 5;
|
|
uint32_t blocks = len / BLOCK_SIZE;
|
|
len -= blocks * BLOCK_SIZE;
|
|
while (blocks)
|
|
{
|
|
unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
|
|
if (n > blocks) n = (unsigned) blocks;
|
|
blocks -= n;
|
|
/*
|
|
* Process n blocks of data. At most NMAX data bytes can be
|
|
* processed before s2 must be reduced modulo ADLER_MODULE.
|
|
*/
|
|
#ifdef _MSC_VER
|
|
uint32x4_t v_s2 = {.n128_u32 = {0, 0, 0, s1 * n}};
|
|
uint32x4_t v_s1 = {.n128_u32 = {0, 0, 0, 0}};
|
|
#else
|
|
uint32x4_t v_s2 = (uint32x4_t) {0, 0, 0, s1 * n};
|
|
uint32x4_t v_s1 = (uint32x4_t) {0, 0, 0, 0};
|
|
#endif
|
|
uint16x8_t v_column_sum_1 = vdupq_n_u16(0);
|
|
uint16x8_t v_column_sum_2 = vdupq_n_u16(0);
|
|
uint16x8_t v_column_sum_3 = vdupq_n_u16(0);
|
|
uint16x8_t v_column_sum_4 = vdupq_n_u16(0);
|
|
do
|
|
{
|
|
/*
|
|
* Load 32 input bytes.
|
|
*/
|
|
const uint8x16_t bytes1 = vld1q_u8((uint8_t *) (data));
|
|
const uint8x16_t bytes2 = vld1q_u8((uint8_t *) (data + 16));
|
|
/*
|
|
* Add previous block byte sum to v_s2.
|
|
*/
|
|
v_s2 = vaddq_u32(v_s2, v_s1);
|
|
/*
|
|
* Horizontally add the bytes for s1.
|
|
*/
|
|
v_s1 = vpadalq_u16(v_s1, vpadalq_u8(vpaddlq_u8(bytes1), bytes2));
|
|
/*
|
|
* Vertically add the bytes for s2.
|
|
*/
|
|
v_column_sum_1 = vaddw_u8(v_column_sum_1, vget_low_u8(bytes1));
|
|
v_column_sum_2 = vaddw_u8(v_column_sum_2, vget_high_u8(bytes1));
|
|
v_column_sum_3 = vaddw_u8(v_column_sum_3, vget_low_u8(bytes2));
|
|
v_column_sum_4 = vaddw_u8(v_column_sum_4, vget_high_u8(bytes2));
|
|
data += BLOCK_SIZE;
|
|
} while (--n);
|
|
v_s2 = vshlq_n_u32(v_s2, 5);
|
|
/*
|
|
* Multiply-add bytes by [ 32, 31, 30, ... ] for s2.
|
|
*/
|
|
#ifdef _MSC_VER
|
|
#ifdef _M_ARM64
|
|
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), neon_ld1m_16((uint16_t[]) {32, 31, 30, 29}));
|
|
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), neon_ld1m_16((uint16_t[]) {28, 27, 26, 25}));
|
|
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), neon_ld1m_16((uint16_t[]) {24, 23, 22, 21}));
|
|
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), neon_ld1m_16((uint16_t[]) {20, 19, 18, 17}));
|
|
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), neon_ld1m_16((uint16_t[]) {16, 15, 14, 13}));
|
|
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), neon_ld1m_16((uint16_t[]) {12, 11, 10, 9}));
|
|
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), neon_ld1m_16((uint16_t[]) {8, 7, 6, 5}));
|
|
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), neon_ld1m_16((uint16_t[]) {4, 3, 2, 1}));
|
|
#else
|
|
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), vld1_u16(((uint16_t[]) {32, 31, 30, 29})));
|
|
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), vld1_u16(((uint16_t[]) {28, 27, 26, 25})));
|
|
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), vld1_u16(((uint16_t[]) {24, 23, 22, 21})));
|
|
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), vld1_u16(((uint16_t[]) {20, 19, 18, 17})));
|
|
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), vld1_u16(((uint16_t[]) {16, 15, 14, 13})));
|
|
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), vld1_u16(((uint16_t[]) {12, 11, 10, 9})));
|
|
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), vld1_u16(((uint16_t[]) {8, 7, 6, 5})));
|
|
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), vld1_u16(((uint16_t[]) {4, 3, 2, 1})));
|
|
#endif
|
|
#else
|
|
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_1), (uint16x4_t) {32, 31, 30, 29});
|
|
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), (uint16x4_t) {28, 27, 26, 25});
|
|
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_2), (uint16x4_t) {24, 23, 22, 21});
|
|
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), (uint16x4_t) {20, 19, 18, 17});
|
|
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_3), (uint16x4_t) {16, 15, 14, 13});
|
|
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), (uint16x4_t) {12, 11, 10, 9});
|
|
v_s2 = vmlal_u16(v_s2, vget_low_u16(v_column_sum_4), (uint16x4_t) {8, 7, 6, 5});
|
|
v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), (uint16x4_t) {4, 3, 2, 1});
|
|
#endif
|
|
/*
|
|
* Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
|
|
*/
|
|
uint32x2_t sum1 = vpadd_u32(vget_low_u32(v_s1), vget_high_u32(v_s1));
|
|
uint32x2_t sum2 = vpadd_u32(vget_low_u32(v_s2), vget_high_u32(v_s2));
|
|
uint32x2_t s1s2 = vpadd_u32(sum1, sum2);
|
|
s1 += vget_lane_u32(s1s2, 0);
|
|
s2 += vget_lane_u32(s1s2, 1);
|
|
/*
|
|
* Reduce.
|
|
*/
|
|
s1 %= ADLER_MODULE;
|
|
s2 %= ADLER_MODULE;
|
|
}
|
|
/*
|
|
* Handle leftover data.
|
|
*/
|
|
if (len)
|
|
{
|
|
if (len >= 16)
|
|
{
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
s2 += (s1 += *data++);
|
|
len -= 16;
|
|
}
|
|
while (len--)
|
|
{ s2 += (s1 += *data++); }
|
|
if (s1 >= ADLER_MODULE) s1 -= ADLER_MODULE;
|
|
s2 %= ADLER_MODULE;
|
|
}
|
|
/*
|
|
* Return the recombined sums.
|
|
*/
|
|
*sum1 = s1 & 0xFFFF;
|
|
*sum2 = s2 & 0xFFFF;
|
|
}
|
|
|
|
#endif
|