// /*************************************************************************** // The Disc Image Chef // ---------------------------------------------------------------------------- // // Filename : ReedSolomon.cs // Author(s) : Natalia Portillo // // Component : Checksums. // // --[ Description ] ---------------------------------------------------------- // // Calculates a Reed-Solomon. // // --[ License ] -------------------------------------------------------------- // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as // published by the Free Software Foundation, either version 3 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // ---------------------------------------------------------------------------- // Copyright © 2011-2020 Natalia Portillo // Copyright (C) 1996 Phil Karn // Copyright (C) 1995 Robert Morelos-Zaragoza // Copyright (C) 1995 Hari Thirumoorthy // ****************************************************************************/ /* * Reed-Solomon coding and decoding * Phil Karn (karn at ka9q.ampr.org) September 1996 * * This file is derived from the program "new_rs_erasures.c" by Robert * Morelos-Zaragoza (robert at spectra.eng.hawaii.edu) and Hari Thirumoorthy * (harit at spectra.eng.hawaii.edu), Aug 1995 * * I've made changes to improve performance, clean up the code and make it * easier to follow. Data is now passed to the encoding and decoding functions * through arguments rather than in global arrays. The decode function returns * the number of corrected symbols, or -1 if the word is uncorrectable. * * This code supports a symbol size from 2 bits up to 16 bits, * implying a block size of 3 2-bit symbols (6 bits) up to 65535 * 16-bit symbols (1,048,560 bits). The code parameters are set in rs.h. * * Note that if symbols larger than 8 bits are used, the type of each * data array element switches from unsigned char to unsigned int. The * caller must ensure that elements larger than the symbol range are * not passed to the encoder or decoder. * */ using System; using Aaru.Console; namespace Aaru.Checksums { /// /// Implements the Reed-Solomon algorithm /// public class ReedSolomon { /// /// Alpha exponent for the first root of the generator polynomial /// const int B0 = 1; /// /// No legal value in index form represents zero, so we need a special value for this purpose /// int a0; /// /// index->polynomial form conversion table /// int[] alpha_to; /// /// Generator polynomial g(x) Degree of g(x) = 2*TT has roots @**B0, @**(B0+1), ... ,@^(B0+2*TT-1) /// int[] gg; /// /// Polynomial->index form conversion table /// int[] index_of; bool initialized; int mm, kk, nn; /// /// Primitive polynomials - see Lin & Costello, Error Control Coding Appendix A, and Lee & Messerschmitt, Digital /// Communication p. 453. /// int[] pp; /// /// Initializes the Reed-Solomon with RS(n,k) with GF(2^m) /// public void InitRs(int n, int k, int m) { switch(m) { case 2: pp = new[] {1, 1, 1}; break; case 3: pp = new[] {1, 1, 0, 1}; break; case 4: pp = new[] {1, 1, 0, 0, 1}; break; case 5: pp = new[] {1, 0, 1, 0, 0, 1}; break; case 6: pp = new[] {1, 1, 0, 0, 0, 0, 1}; break; case 7: pp = new[] {1, 0, 0, 1, 0, 0, 0, 1}; break; case 8: pp = new[] {1, 0, 1, 1, 1, 0, 0, 0, 1}; break; case 9: pp = new[] {1, 0, 0, 0, 1, 0, 0, 0, 0, 1}; break; case 10: pp = new[] {1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1}; break; case 11: pp = new[] {1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1}; break; case 12: pp = new[] {1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1}; break; case 13: pp = new[] {1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1}; break; case 14: pp = new[] {1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1}; break; case 15: pp = new[] {1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; break; case 16: pp = new[] {1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1}; break; default: throw new ArgumentOutOfRangeException(nameof(m), "m must be between 2 and 16 inclusive"); } mm = m; kk = k; nn = n; a0 = n; alpha_to = new int[n + 1]; index_of = new int[n + 1]; gg = new int[nn - kk + 1]; generate_gf(); gen_poly(); initialized = true; } int Modnn(int x) { while(x >= nn) { x -= nn; x = (x >> mm) + (x & nn); } return x; } static int Min(int a, int b) => a < b ? a : b; static void Clear(ref int[] a, int n) { int ci; for(ci = n - 1; ci >= 0; ci--) a[ci] = 0; } static void Copy(ref int[] a, ref int[] b, int n) { int ci; for(ci = n - 1; ci >= 0; ci--) a[ci] = b[ci]; } static void Copydown(ref int[] a, ref int[] b, int n) { int ci; for(ci = n - 1; ci >= 0; ci--) a[ci] = b[ci]; } /* generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m] lookup tables: index->polynomial form alpha_to[] contains j=alpha**i; polynomial form -> index form index_of[j=alpha**i] = i alpha=2 is the primitive element of GF(2**m) HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: Let @ represent the primitive element commonly called "alpha" that is the root of the primitive polynomial p(x). Then in GF(2^m), for any 0 <= i <= 2^m-2, @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for example the polynomial representation of @^5 would be given by the binary representation of the integer "alpha_to[5]". Similarily, index_of[] can be used as follows: As above, let @ represent the primitive element of GF(2^m) that is the root of the primitive polynomial p(x). In order to find the power of @ (alpha) that has the polynomial representation a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) we consider the integer "i" whose binary representation with a(0) being LSB and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry "index_of[i]". Now, @^index_of[i] is that element whose polynomial representation is (a(0),a(1),a(2),...,a(m-1)). NOTE: The element alpha_to[2^m-1] = 0 always signifying that the representation of "@^infinity" = 0 is (0,0,0,...,0). Similarily, the element index_of[0] = A0 always signifying that the power of alpha which has the polynomial representation (0,0,...,0) is "infinity". */ void generate_gf() { int i; int mask = 1; alpha_to[mm] = 0; for(i = 0; i < mm; i++) { alpha_to[i] = mask; index_of[alpha_to[i]] = i; /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ if(pp[i] != 0) alpha_to[mm] ^= mask; /* Bit-wise EXOR operation */ mask <<= 1; /* single left-shift */ } index_of[alpha_to[mm]] = mm; /* * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by * poly-repr of @^i shifted left one-bit and accounting for any @^MM * term that may occur when poly-repr of @^i is shifted. */ mask >>= 1; for(i = mm + 1; i < nn; i++) { if(alpha_to[i - 1] >= mask) alpha_to[i] = alpha_to[mm] ^ ((alpha_to[i - 1] ^ mask) << 1); else alpha_to[i] = alpha_to[i - 1] << 1; index_of[alpha_to[i]] = i; } index_of[0] = a0; alpha_to[nn] = 0; } /* * Obtain the generator polynomial of the TT-error correcting, length * NN=(2**MM -1) Reed Solomon code from the product of (X+@**(B0+i)), i = 0, * ... ,(2*TT-1) * * Examples: * * If B0 = 1, TT = 1. deg(g(x)) = 2*TT = 2. * g(x) = (x+@) (x+@**2) * * If B0 = 0, TT = 2. deg(g(x)) = 2*TT = 4. * g(x) = (x+1) (x+@) (x+@**2) (x+@**3) */ void gen_poly() { int i; gg[0] = alpha_to[B0]; gg[1] = 1; /* g(x) = (X+@**B0) initially */ for(i = 2; i <= nn - kk; i++) { gg[i] = 1; /* * Below multiply (Gg[0]+Gg[1]*x + ... +Gg[i]x^i) by * (@**(B0+i-1) + x) */ for(int j = i - 1; j > 0; j--) if(gg[j] != 0) gg[j] = gg[j - 1] ^ alpha_to[Modnn(index_of[gg[j]] + B0 + i - 1)]; else gg[j] = gg[j - 1]; /* Gg[0] can never be zero */ gg[0] = alpha_to[Modnn(index_of[gg[0]] + B0 + i - 1)]; } /* convert Gg[] to index form for quicker encoding */ for(i = 0; i <= nn - kk; i++) gg[i] = index_of[gg[i]]; } /* * take the string of symbols in data[i], i=0..(k-1) and encode * systematically to produce NN-KK parity symbols in bb[0]..bb[NN-KK-1] data[] * is input and bb[] is output in polynomial form. Encoding is done by using * a feedback shift register with appropriate connections specified by the * elements of Gg[], which was generated above. Codeword is c(X) = * data(X)*X**(NN-KK)+ b(X) */ /// /// Takes the symbols in data to output parity in bb. /// /// Returns -1 if an illegal symbol is found. /// Data symbols. /// Outs parity symbols. public int encode_rs(int[] data, out int[] bb) { if(!initialized) throw new UnauthorizedAccessException("Trying to calculate RS without initializing!"); int i; bb = new int[nn - kk]; Clear(ref bb, nn - kk); for(i = kk - 1; i >= 0; i--) { if(mm != 8) if(data[i] > nn) return -1; /* Illegal symbol */ int feedback = index_of[data[i] ^ bb[nn - kk - 1]]; if(feedback != a0) { /* feedback term is non-zero */ for(int j = nn - kk - 1; j > 0; j--) if(gg[j] != a0) bb[j] = bb[j - 1] ^ alpha_to[Modnn(gg[j] + feedback)]; else bb[j] = bb[j - 1]; bb[0] = alpha_to[Modnn(gg[0] + feedback)]; } else { /* feedback term is zero. encoder becomes a * single-byte shifter */ for(int j = nn - kk - 1; j > 0; j--) bb[j] = bb[j - 1]; bb[0] = 0; } } return 0; } /* * Performs ERRORS+ERASURES decoding of RS codes. If decoding is successful, * writes the codeword into data[] itself. Otherwise data[] is unaltered. * * Return number of symbols corrected, or -1 if codeword is illegal * or uncorrectable. * * First "no_eras" erasures are declared by the calling program. Then, the * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). * If the number of channel errors is not greater than "t_after_eras" the * transmitted codeword will be recovered. Details of algorithm can be found * in R. Blahut's "Theory ... of Error-Correcting Codes". */ /// /// Decodes the RS. If decoding is successful outputs corrected data symbols. /// /// Returns corrected symbols, -1 if illegal or uncorrectable /// Data symbols. /// Position of erasures. /// Number of erasures. public int eras_dec_rs(ref int[] data, out int[] erasPos, int noEras) { if(!initialized) throw new UnauthorizedAccessException("Trying to calculate RS without initializing!"); erasPos = new int[nn - kk]; int i, j; int q, tmp; int[] recd = new int[nn]; int[] lambda = new int[nn - kk + 1]; /* Err+Eras Locator poly */ int[] s = new int[nn - kk + 1]; /* syndrome poly */ int[] b = new int[nn - kk + 1]; int[] t = new int[nn - kk + 1]; int[] omega = new int[nn - kk + 1]; int[] root = new int[nn - kk]; int[] reg = new int[nn - kk + 1]; int[] loc = new int[nn - kk]; int count; /* data[] is in polynomial form, copy and convert to index form */ for(i = nn - 1; i >= 0; i--) { if(mm != 8) if(data[i] > nn) return -1; /* Illegal symbol */ recd[i] = index_of[data[i]]; } /* first form the syndromes; i.e., evaluate recd(x) at roots of g(x) * namely @**(B0+i), i = 0, ... ,(NN-KK-1) */ int synError = 0; for(i = 1; i <= nn - kk; i++) { tmp = 0; for(j = 0; j < nn; j++) if(recd[j] != a0) /* recd[j] in index form */ tmp ^= alpha_to[Modnn(recd[j] + (B0 + i - 1) * j)]; synError |= tmp; /* set flag if non-zero syndrome => * error */ /* store syndrome in index form */ s[i] = index_of[tmp]; } if(synError == 0) return 0; Clear(ref lambda, nn - kk); lambda[0] = 1; if(noEras > 0) { /* Init lambda to be the erasure locator polynomial */ lambda[1] = alpha_to[erasPos[0]]; for(i = 1; i < noEras; i++) { int u = erasPos[i]; for(j = i + 1; j > 0; j--) { tmp = index_of[lambda[j - 1]]; if(tmp != a0) lambda[j] ^= alpha_to[Modnn(u + tmp)]; } } #if DEBUG /* find roots of the erasure location polynomial */ for(i = 1; i <= noEras; i++) reg[i] = index_of[lambda[i]]; count = 0; for(i = 1; i <= nn; i++) { q = 1; for(j = 1; j <= noEras; j++) if(reg[j] != a0) { reg[j] = Modnn(reg[j] + j); q ^= alpha_to[reg[j]]; } if(q != 0) continue; /* store root and error location * number indices */ root[count] = i; loc[count] = nn - i; count++; } if(count != noEras) { DicConsole.DebugWriteLine("Reed Solomon", "\n lambda(x) is WRONG\n"); return -1; } DicConsole.DebugWriteLine("Reed Solomon", "\n Erasure positions as determined by roots of Eras Loc Poly:\n"); for(i = 0; i < count; i++) DicConsole.DebugWriteLine("Reed Solomon", "{0} ", loc[i]); DicConsole.DebugWriteLine("Reed Solomon", "\n"); #endif } for(i = 0; i < nn - kk + 1; i++) b[i] = index_of[lambda[i]]; /* * Begin Berlekamp-Massey algorithm to determine error+erasure * locator polynomial */ int r = noEras; int el = noEras; while(++r <= nn - kk) { /* r is the step number */ /* Compute discrepancy at the r-th step in poly-form */ int discrR = 0; for(i = 0; i < r; i++) if(lambda[i] != 0 && s[r - i] != a0) discrR ^= alpha_to[Modnn(index_of[lambda[i]] + s[r - i])]; discrR = index_of[discrR]; /* Index form */ if(discrR == a0) { /* 2 lines below: B(x) <-- x*B(x) */ Copydown(ref b, ref b, nn - kk); b[0] = a0; } else { /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ t[0] = lambda[0]; for(i = 0; i < nn - kk; i++) if(b[i] != a0) t[i + 1] = lambda[i + 1] ^ alpha_to[Modnn(discrR + b[i])]; else t[i + 1] = lambda[i + 1]; if(2 * el <= r + noEras - 1) { el = r + noEras - el; /* * 2 lines below: B(x) <-- inv(discr_r) * * lambda(x) */ for(i = 0; i <= nn - kk; i++) b[i] = lambda[i] == 0 ? a0 : Modnn(index_of[lambda[i]] - discrR + nn); } else { /* 2 lines below: B(x) <-- x*B(x) */ Copydown(ref b, ref b, nn - kk); b[0] = a0; } Copy(ref lambda, ref t, nn - kk + 1); } } /* Convert lambda to index form and compute deg(lambda(x)) */ int degLambda = 0; for(i = 0; i < nn - kk + 1; i++) { lambda[i] = index_of[lambda[i]]; if(lambda[i] != a0) degLambda = i; } /* * Find roots of the error+erasure locator polynomial. By Chien * Search */ int temp = reg[0]; Copy(ref reg, ref lambda, nn - kk); reg[0] = temp; count = 0; /* Number of roots of lambda(x) */ for(i = 1; i <= nn; i++) { q = 1; for(j = degLambda; j > 0; j--) if(reg[j] != a0) { reg[j] = Modnn(reg[j] + j); q ^= alpha_to[reg[j]]; } if(q != 0) continue; /* store root (index-form) and error location number */ root[count] = i; loc[count] = nn - i; count++; } #if DEBUG DicConsole.DebugWriteLine("Reed Solomon", "\n Final error positions:\t"); for(i = 0; i < count; i++) DicConsole.DebugWriteLine("Reed Solomon", "{0} ", loc[i]); DicConsole.DebugWriteLine("Reed Solomon", "\n"); #endif if(degLambda != count) return -1; /* * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo * x**(NN-KK)). in index form. Also find deg(omega). */ int degOmega = 0; for(i = 0; i < nn - kk; i++) { tmp = 0; j = degLambda < i ? degLambda : i; for(; j >= 0; j--) if(s[i + 1 - j] != a0 && lambda[j] != a0) tmp ^= alpha_to[Modnn(s[i + 1 - j] + lambda[j])]; if(tmp != 0) degOmega = i; omega[i] = index_of[tmp]; } omega[nn - kk] = a0; /* * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form */ for(j = count - 1; j >= 0; j--) { int num1 = 0; for(i = degOmega; i >= 0; i--) if(omega[i] != a0) num1 ^= alpha_to[Modnn(omega[i] + i * root[j])]; int num2 = alpha_to[Modnn(root[j] * (B0 - 1) + nn)]; int den = 0; /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ for(i = Min(degLambda, nn - kk - 1) & ~1; i >= 0; i -= 2) if(lambda[i + 1] != a0) den ^= alpha_to[Modnn(lambda[i + 1] + i * root[j])]; if(den == 0) { DicConsole.DebugWriteLine("Reed Solomon", "\n ERROR: denominator = 0\n"); return -1; } /* Apply error to data */ if(num1 != 0) data[loc[j]] ^= alpha_to[Modnn(index_of[num1] + index_of[num2] + nn - index_of[den])]; } return count; } } }