Move placement of lzma.

This commit is contained in:
2023-09-24 02:41:01 +01:00
parent fb79a7ddf6
commit 7cc2d1c72e
687 changed files with 2 additions and 2 deletions

317
3rdparty/lzma/CPP/7zip/Crypto/7zAes.cpp vendored Normal file
View File

@@ -0,0 +1,317 @@
// 7zAes.cpp
#include "StdAfx.h"
#include "../../../C/CpuArch.h"
#include "../../../C/Sha256.h"
#include "../../Common/ComTry.h"
#include "../../Common/MyBuffer2.h"
#ifndef _7ZIP_ST
#include "../../Windows/Synchronization.h"
#endif
#include "../Common/StreamUtils.h"
#include "7zAes.h"
#include "MyAes.h"
#ifndef EXTRACT_ONLY
#include "RandGen.h"
#endif
namespace NCrypto {
namespace N7z {
static const unsigned k_NumCyclesPower_Supported_MAX = 24;
bool CKeyInfo::IsEqualTo(const CKeyInfo &a) const
{
if (SaltSize != a.SaltSize || NumCyclesPower != a.NumCyclesPower)
return false;
for (unsigned i = 0; i < SaltSize; i++)
if (Salt[i] != a.Salt[i])
return false;
return (Password == a.Password);
}
void CKeyInfo::CalcKey()
{
if (NumCyclesPower == 0x3F)
{
unsigned pos;
for (pos = 0; pos < SaltSize; pos++)
Key[pos] = Salt[pos];
for (unsigned i = 0; i < Password.Size() && pos < kKeySize; i++)
Key[pos++] = Password[i];
for (; pos < kKeySize; pos++)
Key[pos] = 0;
}
else
{
const unsigned kUnrPow = 6;
const UInt32 numUnroll = (UInt32)1 << (NumCyclesPower <= kUnrPow ? (unsigned)NumCyclesPower : kUnrPow);
const size_t bufSize = 8 + SaltSize + Password.Size();
const size_t unrollSize = bufSize * numUnroll;
// MY_ALIGN (16)
// CSha256 sha;
CAlignedBuffer sha(sizeof(CSha256) + unrollSize + bufSize * 2);
Byte *buf = sha + sizeof(CSha256);
memcpy(buf, Salt, SaltSize);
memcpy(buf + SaltSize, Password, Password.Size());
memset(buf + bufSize - 8, 0, 8);
Sha256_Init((CSha256 *)(void *)(Byte *)sha);
{
{
Byte *dest = buf;
for (UInt32 i = 1; i < numUnroll; i++)
{
dest += bufSize;
memcpy(dest, buf, bufSize);
}
}
const UInt32 numRounds = (UInt32)1 << NumCyclesPower;
UInt32 r = 0;
do
{
Byte *dest = buf + bufSize - 8;
UInt32 i = r;
r += numUnroll;
do
{
SetUi32(dest, i); i++; dest += bufSize;
// SetUi32(dest, i); i++; dest += bufSize;
}
while (i < r);
Sha256_Update((CSha256 *)(void *)(Byte *)sha, buf, unrollSize);
}
while (r < numRounds);
}
/*
UInt64 numRounds = (UInt64)1 << NumCyclesPower;
do
{
Sha256_Update((CSha256 *)(Byte *)sha, buf, bufSize);
for (unsigned i = 0; i < 8; i++)
if (++(ctr[i]) != 0)
break;
}
while (--numRounds != 0);
*/
Sha256_Final((CSha256 *)(void *)(Byte *)sha, Key);
memset(sha, 0, sha.Size());
}
}
bool CKeyInfoCache::GetKey(CKeyInfo &key)
{
FOR_VECTOR (i, Keys)
{
const CKeyInfo &cached = Keys[i];
if (key.IsEqualTo(cached))
{
for (unsigned j = 0; j < kKeySize; j++)
key.Key[j] = cached.Key[j];
if (i != 0)
Keys.MoveToFront(i);
return true;
}
}
return false;
}
void CKeyInfoCache::FindAndAdd(const CKeyInfo &key)
{
FOR_VECTOR (i, Keys)
{
const CKeyInfo &cached = Keys[i];
if (key.IsEqualTo(cached))
{
if (i != 0)
Keys.MoveToFront(i);
return;
}
}
Add(key);
}
void CKeyInfoCache::Add(const CKeyInfo &key)
{
if (Keys.Size() >= Size)
Keys.DeleteBack();
Keys.Insert(0, key);
}
static CKeyInfoCache g_GlobalKeyCache(32);
#ifndef _7ZIP_ST
static NWindows::NSynchronization::CCriticalSection g_GlobalKeyCacheCriticalSection;
#define MT_LOCK NWindows::NSynchronization::CCriticalSectionLock lock(g_GlobalKeyCacheCriticalSection);
#else
#define MT_LOCK
#endif
CBase::CBase():
_cachedKeys(16),
_ivSize(0)
{
for (unsigned i = 0; i < sizeof(_iv); i++)
_iv[i] = 0;
}
void CBase::PrepareKey()
{
// BCJ2 threads use same password. So we use long lock.
MT_LOCK
bool finded = false;
if (!_cachedKeys.GetKey(_key))
{
finded = g_GlobalKeyCache.GetKey(_key);
if (!finded)
_key.CalcKey();
_cachedKeys.Add(_key);
}
if (!finded)
g_GlobalKeyCache.FindAndAdd(_key);
}
#ifndef EXTRACT_ONLY
/*
STDMETHODIMP CEncoder::ResetSalt()
{
_key.SaltSize = 4;
g_RandomGenerator.Generate(_key.Salt, _key.SaltSize);
return S_OK;
}
*/
STDMETHODIMP CEncoder::ResetInitVector()
{
for (unsigned i = 0; i < sizeof(_iv); i++)
_iv[i] = 0;
_ivSize = 16;
MY_RAND_GEN(_iv, _ivSize);
return S_OK;
}
STDMETHODIMP CEncoder::WriteCoderProperties(ISequentialOutStream *outStream)
{
Byte props[2 + sizeof(_key.Salt) + sizeof(_iv)];
unsigned propsSize = 1;
props[0] = (Byte)(_key.NumCyclesPower
| (_key.SaltSize == 0 ? 0 : (1 << 7))
| (_ivSize == 0 ? 0 : (1 << 6)));
if (_key.SaltSize != 0 || _ivSize != 0)
{
props[1] = (Byte)(
((_key.SaltSize == 0 ? 0 : _key.SaltSize - 1) << 4)
| (_ivSize == 0 ? 0 : _ivSize - 1));
memcpy(props + 2, _key.Salt, _key.SaltSize);
propsSize = 2 + _key.SaltSize;
memcpy(props + propsSize, _iv, _ivSize);
propsSize += _ivSize;
}
return WriteStream(outStream, props, propsSize);
}
CEncoder::CEncoder()
{
// _key.SaltSize = 4; g_RandomGenerator.Generate(_key.Salt, _key.SaltSize);
// _key.NumCyclesPower = 0x3F;
_key.NumCyclesPower = 19;
_aesFilter = new CAesCbcEncoder(kKeySize);
}
#endif
CDecoder::CDecoder()
{
_aesFilter = new CAesCbcDecoder(kKeySize);
}
STDMETHODIMP CDecoder::SetDecoderProperties2(const Byte *data, UInt32 size)
{
_key.ClearProps();
_ivSize = 0;
unsigned i;
for (i = 0; i < sizeof(_iv); i++)
_iv[i] = 0;
if (size == 0)
return S_OK;
Byte b0 = data[0];
_key.NumCyclesPower = b0 & 0x3F;
if ((b0 & 0xC0) == 0)
return size == 1 ? S_OK : E_INVALIDARG;
if (size <= 1)
return E_INVALIDARG;
Byte b1 = data[1];
unsigned saltSize = ((b0 >> 7) & 1) + (b1 >> 4);
unsigned ivSize = ((b0 >> 6) & 1) + (b1 & 0x0F);
if (size != 2 + saltSize + ivSize)
return E_INVALIDARG;
_key.SaltSize = saltSize;
data += 2;
for (i = 0; i < saltSize; i++)
_key.Salt[i] = *data++;
for (i = 0; i < ivSize; i++)
_iv[i] = *data++;
return (_key.NumCyclesPower <= k_NumCyclesPower_Supported_MAX
|| _key.NumCyclesPower == 0x3F) ? S_OK : E_NOTIMPL;
}
STDMETHODIMP CBaseCoder::CryptoSetPassword(const Byte *data, UInt32 size)
{
COM_TRY_BEGIN
_key.Password.Wipe();
_key.Password.CopyFrom(data, (size_t)size);
return S_OK;
COM_TRY_END
}
STDMETHODIMP CBaseCoder::Init()
{
COM_TRY_BEGIN
PrepareKey();
CMyComPtr<ICryptoProperties> cp;
RINOK(_aesFilter.QueryInterface(IID_ICryptoProperties, &cp));
if (!cp)
return E_FAIL;
RINOK(cp->SetKey(_key.Key, kKeySize));
RINOK(cp->SetInitVector(_iv, sizeof(_iv)));
return _aesFilter->Init();
COM_TRY_END
}
STDMETHODIMP_(UInt32) CBaseCoder::Filter(Byte *data, UInt32 size)
{
return _aesFilter->Filter(data, size);
}
}}

129
3rdparty/lzma/CPP/7zip/Crypto/7zAes.h vendored Normal file
View File

@@ -0,0 +1,129 @@
// 7zAes.h
#ifndef __CRYPTO_7Z_AES_H
#define __CRYPTO_7Z_AES_H
#include "../../Common/MyBuffer.h"
#include "../../Common/MyCom.h"
#include "../../Common/MyVector.h"
#include "../ICoder.h"
#include "../IPassword.h"
namespace NCrypto {
namespace N7z {
const unsigned kKeySize = 32;
const unsigned kSaltSizeMax = 16;
const unsigned kIvSizeMax = 16; // AES_BLOCK_SIZE;
class CKeyInfo
{
public:
unsigned NumCyclesPower;
unsigned SaltSize;
Byte Salt[kSaltSizeMax];
CByteBuffer Password;
Byte Key[kKeySize];
bool IsEqualTo(const CKeyInfo &a) const;
void CalcKey();
CKeyInfo() { ClearProps(); }
void ClearProps()
{
NumCyclesPower = 0;
SaltSize = 0;
for (unsigned i = 0; i < sizeof(Salt); i++)
Salt[i] = 0;
}
void Wipe()
{
Password.Wipe();
NumCyclesPower = 0;
SaltSize = 0;
MY_memset_0_ARRAY(Salt);
MY_memset_0_ARRAY(Key);
}
~CKeyInfo() { Wipe(); }
};
class CKeyInfoCache
{
unsigned Size;
CObjectVector<CKeyInfo> Keys;
public:
CKeyInfoCache(unsigned size): Size(size) {}
bool GetKey(CKeyInfo &key);
void Add(const CKeyInfo &key);
void FindAndAdd(const CKeyInfo &key);
};
class CBase
{
CKeyInfoCache _cachedKeys;
protected:
CKeyInfo _key;
Byte _iv[kIvSizeMax];
unsigned _ivSize;
void PrepareKey();
CBase();
};
class CBaseCoder:
public ICompressFilter,
public ICryptoSetPassword,
public CMyUnknownImp,
public CBase
{
protected:
CMyComPtr<ICompressFilter> _aesFilter;
public:
INTERFACE_ICompressFilter(;)
STDMETHOD(CryptoSetPassword)(const Byte *data, UInt32 size);
};
#ifndef EXTRACT_ONLY
class CEncoder:
public CBaseCoder,
public ICompressWriteCoderProperties,
// public ICryptoResetSalt,
public ICryptoResetInitVector
{
public:
MY_UNKNOWN_IMP4(
ICompressFilter,
ICryptoSetPassword,
ICompressWriteCoderProperties,
// ICryptoResetSalt,
ICryptoResetInitVector)
STDMETHOD(WriteCoderProperties)(ISequentialOutStream *outStream);
// STDMETHOD(ResetSalt)();
STDMETHOD(ResetInitVector)();
CEncoder();
};
#endif
class CDecoder:
public CBaseCoder,
public ICompressSetDecoderProperties2
{
public:
MY_UNKNOWN_IMP3(
ICompressFilter,
ICryptoSetPassword,
ICompressSetDecoderProperties2)
STDMETHOD(SetDecoderProperties2)(const Byte *data, UInt32 size);
CDecoder();
};
}}
#endif

View File

@@ -0,0 +1,17 @@
// 7zAesRegister.cpp
#include "StdAfx.h"
#include "../Common/RegisterCodec.h"
#include "7zAes.h"
namespace NCrypto {
namespace N7z {
REGISTER_FILTER_E(_7zAES,
CDecoder,
CEncoder,
0x6F10701, "7zAES")
}}

205
3rdparty/lzma/CPP/7zip/Crypto/MyAes.cpp vendored Normal file
View File

@@ -0,0 +1,205 @@
// Crypto/MyAes.cpp
#include "StdAfx.h"
#include "../../../C/CpuArch.h"
#include "MyAes.h"
namespace NCrypto {
static struct CAesTabInit { CAesTabInit() { AesGenTables();} } g_AesTabInit;
CAesCoder::CAesCoder(bool encodeMode, unsigned keySize, bool ctrMode):
_keySize(keySize),
_keyIsSet(false),
_encodeMode(encodeMode),
_ctrMode(ctrMode),
_aes(AES_NUM_IVMRK_WORDS * 4 + AES_BLOCK_SIZE * 2)
{
// _offset = ((0 - (unsigned)(ptrdiff_t)_aes) & 0xF) / sizeof(UInt32);
memset(_iv, 0, AES_BLOCK_SIZE);
/*
// we can use the following code to test 32-bit overflow case for AES-CTR
for (unsigned i = 0; i < 16; i++) _iv[i] = (Byte)(i + 1);
_iv[0] = 0xFE; _iv[1] = _iv[2] = _iv[3] = 0xFF;
*/
SetFunctions(0);
}
STDMETHODIMP CAesCoder::Init()
{
AesCbc_Init(Aes(), _iv);
return _keyIsSet ? S_OK : E_NOTIMPL; // E_FAIL
}
STDMETHODIMP_(UInt32) CAesCoder::Filter(Byte *data, UInt32 size)
{
if (!_keyIsSet)
return 0;
if (size == 0)
return 0;
if (size < AES_BLOCK_SIZE)
{
#ifndef _SFX
if (_ctrMode)
{
// use that code only for last block !!!
Byte *ctr = (Byte *)(Aes() + AES_NUM_IVMRK_WORDS);
memset(ctr, 0, AES_BLOCK_SIZE);
memcpy(ctr, data, size);
_codeFunc(Aes(), ctr, 1);
memcpy(data, ctr, size);
return size;
}
#endif
return AES_BLOCK_SIZE;
}
size >>= 4;
_codeFunc(Aes(), data, size);
return size << 4;
}
STDMETHODIMP CAesCoder::SetKey(const Byte *data, UInt32 size)
{
if ((size & 0x7) != 0 || size < 16 || size > 32)
return E_INVALIDARG;
if (_keySize != 0 && size != _keySize)
return E_INVALIDARG;
AES_SET_KEY_FUNC setKeyFunc = (_ctrMode | _encodeMode) ? Aes_SetKey_Enc : Aes_SetKey_Dec;
setKeyFunc(Aes() + 4, data, size);
_keyIsSet = true;
return S_OK;
}
STDMETHODIMP CAesCoder::SetInitVector(const Byte *data, UInt32 size)
{
if (size != AES_BLOCK_SIZE)
return E_INVALIDARG;
memcpy(_iv, data, size);
CAesCoder::Init(); // don't call virtual function here !!!
return S_OK;
}
#ifndef _SFX
#ifdef MY_CPU_X86_OR_AMD64
#define USE_HW_AES
#elif defined(MY_CPU_ARM_OR_ARM64) && defined(MY_CPU_LE)
#if defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define USE_HW_AES
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 6) // fix that check
#define USE_HW_AES
#endif
#elif defined(_MSC_VER)
#if _MSC_VER >= 1910
#define USE_HW_AES
#endif
#endif
#endif
#endif
bool CAesCoder::SetFunctions(UInt32
#ifndef _SFX
algo
#endif
)
{
_codeFunc = g_AesCbc_Decode;
#ifdef _SFX
return true;
#else
if (_ctrMode)
_codeFunc = g_AesCtr_Code;
else if (_encodeMode)
_codeFunc = g_AesCbc_Encode;
if (algo < 1)
return true;
if (algo == 1)
{
_codeFunc = AesCbc_Decode;
#ifndef _SFX
if (_ctrMode)
_codeFunc = AesCtr_Code;
else if (_encodeMode)
_codeFunc = AesCbc_Encode;
#endif
return true;
}
#ifdef USE_HW_AES
// if (CPU_IsSupported_AES())
{
if (algo == 2)
if (g_Aes_SupportedFunctions_Flags & k_Aes_SupportedFunctions_HW)
{
_codeFunc = AesCbc_Decode_HW;
#ifndef _SFX
if (_ctrMode)
_codeFunc = AesCtr_Code_HW;
else if (_encodeMode)
_codeFunc = AesCbc_Encode_HW;
#endif
return true;
}
#if defined(MY_CPU_X86_OR_AMD64)
if (algo == 3)
if (g_Aes_SupportedFunctions_Flags & k_Aes_SupportedFunctions_HW_256)
{
_codeFunc = AesCbc_Decode_HW_256;
#ifndef _SFX
if (_ctrMode)
_codeFunc = AesCtr_Code_HW_256;
else if (_encodeMode)
_codeFunc = AesCbc_Encode_HW;
#endif
return true;
}
#endif
}
#endif
return false;
#endif
}
#ifndef _SFX
STDMETHODIMP CAesCoder::SetCoderProperties(const PROPID *propIDs, const PROPVARIANT *coderProps, UInt32 numProps)
{
UInt32 algo = 0;
for (UInt32 i = 0; i < numProps; i++)
{
const PROPVARIANT &prop = coderProps[i];
if (propIDs[i] == NCoderPropID::kDefaultProp)
{
if (prop.vt != VT_UI4)
return E_INVALIDARG;
if (prop.ulVal > 3)
return E_NOTIMPL;
algo = prop.ulVal;
}
}
if (!SetFunctions(algo))
return E_NOTIMPL;
return S_OK;
}
#endif
}

79
3rdparty/lzma/CPP/7zip/Crypto/MyAes.h vendored Normal file
View File

@@ -0,0 +1,79 @@
// Crypto/MyAes.h
#ifndef __CRYPTO_MY_AES_H
#define __CRYPTO_MY_AES_H
#include "../../../C/Aes.h"
#include "../../Common/MyBuffer2.h"
#include "../../Common/MyCom.h"
#include "../ICoder.h"
namespace NCrypto {
class CAesCoder:
public ICompressFilter,
public ICryptoProperties,
#ifndef _SFX
public ICompressSetCoderProperties,
#endif
public CMyUnknownImp
{
AES_CODE_FUNC _codeFunc;
// unsigned _offset;
unsigned _keySize;
bool _keyIsSet;
bool _encodeMode;
bool _ctrMode;
// UInt32 _aes[AES_NUM_IVMRK_WORDS + 3];
CAlignedBuffer _aes;
Byte _iv[AES_BLOCK_SIZE];
// UInt32 *Aes() { return _aes + _offset; }
UInt32 *Aes() { return (UInt32 *)(void *)(Byte *)_aes; }
bool SetFunctions(UInt32 algo);
public:
CAesCoder(bool encodeMode, unsigned keySize, bool ctrMode);
virtual ~CAesCoder() {}; // we need virtual destructor for derived classes
MY_QUERYINTERFACE_BEGIN2(ICompressFilter)
MY_QUERYINTERFACE_ENTRY(ICryptoProperties)
#ifndef _SFX
MY_QUERYINTERFACE_ENTRY(ICompressSetCoderProperties)
#endif
MY_QUERYINTERFACE_END
MY_ADDREF_RELEASE
INTERFACE_ICompressFilter(;)
void SetKeySize(unsigned size) { _keySize = size; }
STDMETHOD(SetKey)(const Byte *data, UInt32 size);
STDMETHOD(SetInitVector)(const Byte *data, UInt32 size);
#ifndef _SFX
STDMETHOD(SetCoderProperties)(const PROPID *propIDs, const PROPVARIANT *props, UInt32 numProps);
#endif
};
#ifndef _SFX
struct CAesCbcEncoder: public CAesCoder
{
CAesCbcEncoder(unsigned keySize = 0): CAesCoder(true, keySize, false) {}
};
#endif
struct CAesCbcDecoder: public CAesCoder
{
CAesCbcDecoder(unsigned keySize = 0): CAesCoder(false, keySize, false) {}
};
}
#endif

View File

@@ -0,0 +1,30 @@
// MyAesReg.cpp
#include "StdAfx.h"
#include "../Common/RegisterCodec.h"
#include "MyAes.h"
namespace NCrypto {
#ifndef _SFX
#define REGISTER_AES_2(name, nameString, keySize, isCtr) \
REGISTER_FILTER_E(name, \
CAesCoder(false, keySize, isCtr), \
CAesCoder(true , keySize, isCtr), \
0x6F00100 | ((keySize - 16) * 8) | (isCtr ? 4 : 1), \
nameString) \
#define REGISTER_AES(name, nameString, isCtr) \
/* REGISTER_AES_2(AES128 ## name, "AES128" nameString, 16, isCtr) */ \
/* REGISTER_AES_2(AES192 ## name, "AES192" nameString, 24, isCtr) */ \
REGISTER_AES_2(AES256 ## name, "AES256" nameString, 32, isCtr) \
REGISTER_AES(CBC, "CBC", false)
// REGISTER_AES(CTR, "CTR", true)
#endif
}

View File

@@ -0,0 +1,237 @@
// RandGen.cpp
#include "StdAfx.h"
#include "RandGen.h"
#ifndef USE_STATIC_SYSTEM_RAND
#ifndef _7ZIP_ST
#include "../../Windows/Synchronization.h"
#endif
#ifdef _WIN32
#ifdef _WIN64
#define USE_STATIC_RtlGenRandom
#endif
#ifdef USE_STATIC_RtlGenRandom
// #include <NTSecAPI.h>
EXTERN_C_BEGIN
#ifndef RtlGenRandom
#define RtlGenRandom SystemFunction036
BOOLEAN WINAPI RtlGenRandom(PVOID RandomBuffer, ULONG RandomBufferLength);
#endif
EXTERN_C_END
#else
EXTERN_C_BEGIN
typedef BOOLEAN (WINAPI * Func_RtlGenRandom)(PVOID RandomBuffer, ULONG RandomBufferLength);
EXTERN_C_END
#endif
#else
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#define USE_POSIX_TIME
#define USE_POSIX_TIME2
#endif
#ifdef USE_POSIX_TIME
#include <time.h>
#ifdef USE_POSIX_TIME2
#include <sys/time.h>
#endif
#endif
// The seed and first generated data block depend from processID,
// theadID, timer and system random generator, if available.
// Other generated data blocks depend from previous state
#define HASH_UPD(x) Sha256_Update(&hash, (const Byte *)&x, sizeof(x));
void CRandomGenerator::Init()
{
MY_ALIGN (16)
CSha256 hash;
Sha256_Init(&hash);
unsigned numIterations = 1000;
{
#ifndef UNDER_CE
const unsigned kNumIterations_Small = 100;
const unsigned kBufSize = 32;
MY_ALIGN (16)
Byte buf[kBufSize];
#endif
#ifdef _WIN32
DWORD w = ::GetCurrentProcessId();
HASH_UPD(w);
w = ::GetCurrentThreadId();
HASH_UPD(w);
#ifdef UNDER_CE
/*
if (CeGenRandom(kBufSize, buf))
{
numIterations = kNumIterations_Small;
Sha256_Update(&hash, buf, kBufSize);
}
*/
#elif defined(USE_STATIC_RtlGenRandom)
if (RtlGenRandom(buf, kBufSize))
{
numIterations = kNumIterations_Small;
Sha256_Update(&hash, buf, kBufSize);
}
#else
{
HMODULE hModule = ::LoadLibrary(TEXT("Advapi32.dll"));
if (hModule)
{
// SystemFunction036() is real name of RtlGenRandom() function
Func_RtlGenRandom my_RtlGenRandom = (Func_RtlGenRandom)(void *)GetProcAddress(hModule, "SystemFunction036");
if (my_RtlGenRandom)
{
if (my_RtlGenRandom(buf, kBufSize))
{
numIterations = kNumIterations_Small;
Sha256_Update(&hash, buf, kBufSize);
}
}
::FreeLibrary(hModule);
}
}
#endif
#else
pid_t pid = getpid();
HASH_UPD(pid);
pid = getppid();
HASH_UPD(pid);
{
int f = open("/dev/urandom", O_RDONLY);
unsigned numBytes = kBufSize;
if (f >= 0)
{
do
{
ssize_t n = read(f, buf, numBytes);
if (n <= 0)
break;
Sha256_Update(&hash, buf, (size_t)n);
numBytes -= (unsigned)n;
}
while (numBytes);
close(f);
if (numBytes == 0)
numIterations = kNumIterations_Small;
}
}
/*
{
int n = getrandom(buf, kBufSize, 0);
if (n > 0)
{
Sha256_Update(&hash, buf, n);
if (n == kBufSize)
numIterations = kNumIterations_Small;
}
}
*/
#endif
}
#ifdef _DEBUG
numIterations = 2;
#endif
do
{
#ifdef _WIN32
LARGE_INTEGER v;
if (::QueryPerformanceCounter(&v))
HASH_UPD(v.QuadPart);
#endif
#ifdef USE_POSIX_TIME
#ifdef USE_POSIX_TIME2
timeval v;
if (gettimeofday(&v, 0) == 0)
{
HASH_UPD(v.tv_sec);
HASH_UPD(v.tv_usec);
}
#endif
time_t v2 = time(NULL);
HASH_UPD(v2);
#endif
#ifdef _WIN32
DWORD tickCount = ::GetTickCount();
HASH_UPD(tickCount);
#endif
for (unsigned j = 0; j < 100; j++)
{
Sha256_Final(&hash, _buff);
Sha256_Init(&hash);
Sha256_Update(&hash, _buff, SHA256_DIGEST_SIZE);
}
}
while (--numIterations);
Sha256_Final(&hash, _buff);
_needInit = false;
}
#ifndef _7ZIP_ST
static NWindows::NSynchronization::CCriticalSection g_CriticalSection;
#define MT_LOCK NWindows::NSynchronization::CCriticalSectionLock lock(g_CriticalSection);
#else
#define MT_LOCK
#endif
void CRandomGenerator::Generate(Byte *data, unsigned size)
{
MT_LOCK
if (_needInit)
Init();
while (size != 0)
{
MY_ALIGN (16)
CSha256 hash;
Sha256_Init(&hash);
Sha256_Update(&hash, _buff, SHA256_DIGEST_SIZE);
Sha256_Final(&hash, _buff);
Sha256_Init(&hash);
UInt32 salt = 0xF672ABD1;
HASH_UPD(salt);
Sha256_Update(&hash, _buff, SHA256_DIGEST_SIZE);
MY_ALIGN (16)
Byte buff[SHA256_DIGEST_SIZE];
Sha256_Final(&hash, buff);
for (unsigned i = 0; i < SHA256_DIGEST_SIZE && size != 0; i++, size--)
*data++ = buff[i];
}
}
CRandomGenerator g_RandomGenerator;
#endif

40
3rdparty/lzma/CPP/7zip/Crypto/RandGen.h vendored Normal file
View File

@@ -0,0 +1,40 @@
// RandGen.h
#ifndef __CRYPTO_RAND_GEN_H
#define __CRYPTO_RAND_GEN_H
#include "../../../C/Sha256.h"
#ifdef _WIN64
// #define USE_STATIC_SYSTEM_RAND
#endif
#ifdef USE_STATIC_SYSTEM_RAND
#ifdef _WIN32
#include <ntsecapi.h>
#define MY_RAND_GEN(data, size) RtlGenRandom(data, size)
#else
#define MY_RAND_GEN(data, size) getrandom(data, size, 0)
#endif
#else
class CRandomGenerator
{
Byte _buff[SHA256_DIGEST_SIZE];
bool _needInit;
void Init();
public:
CRandomGenerator(): _needInit(true) {};
void Generate(Byte *data, unsigned size);
};
extern CRandomGenerator g_RandomGenerator;
#define MY_RAND_GEN(data, size) g_RandomGenerator.Generate(data, size)
#endif
#endif

View File

@@ -0,0 +1,8 @@
// StdAfx.h
#ifndef __STDAFX_H
#define __STDAFX_H
#include "../../Common/Common.h"
#endif