Files
Aaru.Decoders/SecureDigital/CSD.cs

570 lines
22 KiB
C#

// /***************************************************************************
// The Disc Image Chef
// ----------------------------------------------------------------------------
//
// Filename : CSD.cs
// Author(s) : Natalia Portillo <claunia@claunia.com>
//
// Component : Component
//
// --[ Description ] ----------------------------------------------------------
//
// Description
//
// --[ License ] --------------------------------------------------------------
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, see <http://www.gnu.org/licenses/>.
//
// ----------------------------------------------------------------------------
// Copyright © 2011-2017 Natalia Portillo
// ****************************************************************************/
using System;
using System.Text;
namespace DiscImageChef.Decoders.SecureDigital
{
public class CSD
{
public byte Structure;
public byte TAAC;
public byte NSAC;
public byte Speed;
public ushort Classes;
public byte ReadBlockLength;
public bool ReadsPartialBlocks;
public bool WriteMisalignment;
public bool ReadMisalignment;
public bool DSRImplemented;
public uint Size;
public byte ReadCurrentAtVddMin;
public byte ReadCurrentAtVddMax;
public byte WriteCurrentAtVddMin;
public byte WriteCurrentAtVddMax;
public byte SizeMultiplier;
public bool EraseBlockEnable;
public byte EraseSectorSize;
public byte WriteProtectGroupSize;
public bool WriteProtectGroupEnable;
public byte WriteSpeedFactor;
public byte WriteBlockLength;
public bool WritesPartialBlocks;
public bool FileFormatGroup;
public bool Copy;
public bool PermanentWriteProtect;
public bool TemporaryWriteProtect;
public byte FileFormat;
public byte CRC;
}
public partial class Decoders
{
public static CSD DecodeCSD(uint[] response)
{
if(response == null)
return null;
if(response.Length != 4)
return null;
byte[] data = new byte[16];
byte[] tmp = new byte[4];
tmp = BitConverter.GetBytes(response[0]);
Array.Copy(tmp, 0, data, 0, 4);
tmp = BitConverter.GetBytes(response[1]);
Array.Copy(tmp, 0, data, 4, 4);
tmp = BitConverter.GetBytes(response[2]);
Array.Copy(tmp, 0, data, 8, 4);
tmp = BitConverter.GetBytes(response[3]);
Array.Copy(tmp, 0, data, 12, 4);
return DecodeCSD(data);
}
public static CSD DecodeCSD(byte[] response)
{
if(response == null)
return null;
if(response.Length != 16)
return null;
CSD csd = new CSD();
csd.Structure = (byte)((response[0] & 0xC0) >> 6);
csd.TAAC = response[1];
csd.NSAC = response[2];
csd.Speed = response[3];
csd.Classes = (ushort)((response[4] << 4) + ((response[5] & 0xF0) >> 4));
csd.ReadBlockLength = (byte)(response[5] & 0x0F);
csd.ReadsPartialBlocks = (response[6] & 0x80) == 0x80;
csd.WriteMisalignment = (response[6] & 0x40) == 0x40;
csd.ReadMisalignment = (response[6] & 0x20) == 0x20;
csd.DSRImplemented = (response[6] & 0x10) == 0x10;
if(csd.Structure == 0)
{
csd.Size = (ushort)(((response[6] & 0x03) << 10) + (response[7] << 2) + ((response[8] & 0xC0) >> 6));
csd.ReadCurrentAtVddMin = (byte)((response[8] & 0x38) >> 3);
csd.ReadCurrentAtVddMax = (byte)(response[8] & 0x07);
csd.WriteCurrentAtVddMin = (byte)((response[9] & 0xE0) >> 5);
csd.WriteCurrentAtVddMax = (byte)((response[9] & 0x1C) >> 2);
csd.SizeMultiplier = (byte)(((response[9] & 0x03) << 1) + ((response[10] & 0x80) >> 7));
}
else
csd.Size = (uint)(((response[7] & 0x3F) << 16) + (response[8] << 8) + response[9]);
csd.EraseBlockEnable = (response[10] & 0x40) == 0x40;
csd.EraseSectorSize = (byte)(((response[10] & 0x3F) << 1) + ((response[11] & 0x80) >> 7));
csd.WriteProtectGroupSize = ((byte)(response[11] & 0x7F));
csd.WriteProtectGroupEnable = (response[12] & 0x80) == 0x80;
csd.WriteSpeedFactor = (byte)((response[12] & 0x1C) >> 2);
csd.WriteBlockLength = (byte)(((response[12] & 0x03) << 2) + ((response[13] & 0xC0) >> 6));
csd.WritesPartialBlocks = (response[13] & 0x20) == 0x20;
csd.FileFormatGroup = (response[14] & 0x80) == 0x80;
csd.Copy = (response[14] & 0x40) == 0x40;
csd.PermanentWriteProtect = (response[14] & 0x20) == 0x20;
csd.TemporaryWriteProtect = (response[14] & 0x10) == 0x10;
csd.FileFormat = (byte)((response[14] & 0x0C) >> 2);
csd.CRC = (byte)((response[15] & 0xFE) >> 1);
return csd;
}
public static string PrettifyCSD(CSD csd)
{
if(csd == null)
return null;
double unitFactor = 0;
double multiplier = 0;
double result = 0;
string unit = "";
StringBuilder sb = new StringBuilder();
sb.AppendLine("SecureDigital Device Specific Data Register:");
switch(csd.Structure)
{
case 0:
sb.AppendLine("\tRegister version 1.0");
break;
case 1:
sb.AppendLine("\tRegister version 2.0");
break;
}
switch(csd.TAAC & 0x07)
{
case 0:
unit = "ns";
unitFactor = 1;
break;
case 1:
unit = "ns";
unitFactor = 10;
break;
case 2:
unit = "ns";
unitFactor = 100;
break;
case 3:
unit = "μs";
unitFactor = 1;
break;
case 4:
unit = "μs";
unitFactor = 10;
break;
case 5:
unit = "μs";
unitFactor = 100;
break;
case 6:
unit = "ms";
unitFactor = 1;
break;
case 7:
unit = "ms";
unitFactor = 10;
break;
}
switch((csd.TAAC & 0x78) >> 3)
{
case 0:
multiplier = 0;
break;
case 1:
multiplier = 1;
break;
case 2:
multiplier = 1.2;
break;
case 3:
multiplier = 1.3;
break;
case 4:
multiplier = 1.5;
break;
case 5:
multiplier = 2;
break;
case 6:
multiplier = 2.5;
break;
case 7:
multiplier = 3;
break;
case 8:
multiplier = 3.5;
break;
case 9:
multiplier = 4;
break;
case 10:
multiplier = 4.5;
break;
case 11:
multiplier = 5;
break;
case 12:
multiplier = 5.5;
break;
case 13:
multiplier = 6;
break;
case 14:
multiplier = 7;
break;
case 15:
multiplier = 8;
break;
}
result = unitFactor * multiplier;
sb.AppendFormat("\tAsynchronous data access time is {0}{1}", result, unit).AppendLine();
sb.AppendFormat("\tClock dependent part of data access is {0} clock cycles", csd.NSAC * 100).AppendLine();
unit = "MBit/s";
switch(csd.Speed & 0x07)
{
case 0:
unitFactor = 0.1;
break;
case 1:
unitFactor = 1;
break;
case 2:
unitFactor = 10;
break;
case 3:
unitFactor = 100;
break;
default:
unit = "unknown";
unitFactor = 0;
break;
}
switch((csd.Speed & 0x78) >> 3)
{
case 0:
multiplier = 0;
break;
case 1:
multiplier = 1;
break;
case 2:
multiplier = 1.2;
break;
case 3:
multiplier = 1.3;
break;
case 4:
multiplier = 1.5;
break;
case 5:
multiplier = 2;
break;
case 6:
multiplier = 2.6;
break;
case 7:
multiplier = 3;
break;
case 8:
multiplier = 3.5;
break;
case 9:
multiplier = 4;
break;
case 10:
multiplier = 4.5;
break;
case 11:
multiplier = 5.2;
break;
case 12:
multiplier = 5.5;
break;
case 13:
multiplier = 6;
break;
case 14:
multiplier = 7;
break;
case 15:
multiplier = 8;
break;
}
result = unitFactor * multiplier;
sb.AppendFormat("\tDevice's transfer speed: {0}{1}", result, unit).AppendLine();
unit = "";
for(int cl = 0, mask = 1; cl <= 11; cl++, mask <<= 1)
{
if((csd.Classes & mask) == mask)
unit += string.Format(" {0}", cl);
}
sb.AppendFormat("\tDevice support command classes {0}", unit).AppendLine();
sb.AppendFormat("\tRead block length is {0} bytes", Math.Pow(2, csd.ReadBlockLength)).AppendLine();
if(csd.ReadsPartialBlocks)
sb.AppendLine("\tDevice allows reading partial blocks");
if(csd.WriteMisalignment)
sb.AppendLine("\tWrite commands can cross physical block boundaries");
if(csd.ReadMisalignment)
sb.AppendLine("\tRead commands can cross physical block boundaries");
if(csd.DSRImplemented)
sb.AppendLine("\tDevice implements configurable driver stage");
if(csd.Structure == 0)
{
result = (csd.Size + 1) * Math.Pow(2, csd.SizeMultiplier + 2);
sb.AppendFormat("\tDevice has {0} blocks", (int)result).AppendLine();
result = (csd.Size + 1) * Math.Pow(2, csd.SizeMultiplier + 2) * Math.Pow(2, csd.ReadBlockLength);
if(result > 1073741824)
sb.AppendFormat("\tDevice has {0} GiB", result / 1073741824.0);
else if(result > 1048576)
sb.AppendFormat("\tDevice has {0} MiB", result / 1048576.0);
else if(result > 1024)
sb.AppendFormat("\tDevice has {0} KiB", result / 1024.0);
else
sb.AppendFormat("\tDevice has {0} bytes", result);
}
else
{
sb.AppendFormat("\tDevice has {0} blocks", (csd.Size + 1) * 1024);
result = (csd.Size + 1) * 1024 * 512;
if(result > 1099511627776)
sb.AppendFormat("\tDevice has {0} TiB", result / 1099511627776.0);
else if(result > 1073741824)
sb.AppendFormat("\tDevice has {0} GiB", result / 1073741824.0);
else if(result > 1048576)
sb.AppendFormat("\tDevice has {0} MiB", result / 1048576.0);
else if(result > 1024)
sb.AppendFormat("\tDevice has {0} KiB", result / 1024.0);
else
sb.AppendFormat("\tDevice has {0} bytes", result);
}
if(csd.Structure == 0)
{
switch(csd.ReadCurrentAtVddMin & 0x07)
{
case 0:
sb.AppendLine("\tDevice uses a maximum of 0.5mA for reading at minimum voltage");
break;
case 1:
sb.AppendLine("\tDevice uses a maximum of 1mA for reading at minimum voltage");
break;
case 2:
sb.AppendLine("\tDevice uses a maximum of 5mA for reading at minimum voltage");
break;
case 3:
sb.AppendLine("\tDevice uses a maximum of 10mA for reading at minimum voltage");
break;
case 4:
sb.AppendLine("\tDevice uses a maximum of 25mA for reading at minimum voltage");
break;
case 5:
sb.AppendLine("\tDevice uses a maximum of 35mA for reading at minimum voltage");
break;
case 6:
sb.AppendLine("\tDevice uses a maximum of 60mA for reading at minimum voltage");
break;
case 7:
sb.AppendLine("\tDevice uses a maximum of 100mA for reading at minimum voltage");
break;
}
switch(csd.ReadCurrentAtVddMax & 0x07)
{
case 0:
sb.AppendLine("\tDevice uses a maximum of 1mA for reading at maximum voltage");
break;
case 1:
sb.AppendLine("\tDevice uses a maximum of 5mA for reading at maximum voltage");
break;
case 2:
sb.AppendLine("\tDevice uses a maximum of 10mA for reading at maximum voltage");
break;
case 3:
sb.AppendLine("\tDevice uses a maximum of 25mA for reading at maximum voltage");
break;
case 4:
sb.AppendLine("\tDevice uses a maximum of 35mA for reading at maximum voltage");
break;
case 5:
sb.AppendLine("\tDevice uses a maximum of 45mA for reading at maximum voltage");
break;
case 6:
sb.AppendLine("\tDevice uses a maximum of 80mA for reading at maximum voltage");
break;
case 7:
sb.AppendLine("\tDevice uses a maximum of 200mA for reading at maximum voltage");
break;
}
switch(csd.WriteCurrentAtVddMin & 0x07)
{
case 0:
sb.AppendLine("\tDevice uses a maximum of 0.5mA for writing at minimum voltage");
break;
case 1:
sb.AppendLine("\tDevice uses a maximum of 1mA for writing at minimum voltage");
break;
case 2:
sb.AppendLine("\tDevice uses a maximum of 5mA for writing at minimum voltage");
break;
case 3:
sb.AppendLine("\tDevice uses a maximum of 10mA for writing at minimum voltage");
break;
case 4:
sb.AppendLine("\tDevice uses a maximum of 25mA for writing at minimum voltage");
break;
case 5:
sb.AppendLine("\tDevice uses a maximum of 35mA for writing at minimum voltage");
break;
case 6:
sb.AppendLine("\tDevice uses a maximum of 60mA for writing at minimum voltage");
break;
case 7:
sb.AppendLine("\tDevice uses a maximum of 100mA for writing at minimum voltage");
break;
}
switch(csd.WriteCurrentAtVddMax & 0x07)
{
case 0:
sb.AppendLine("\tDevice uses a maximum of 1mA for writing at maximum voltage");
break;
case 1:
sb.AppendLine("\tDevice uses a maximum of 5mA for writing at maximum voltage");
break;
case 2:
sb.AppendLine("\tDevice uses a maximum of 10mA for writing at maximum voltage");
break;
case 3:
sb.AppendLine("\tDevice uses a maximum of 25mA for writing at maximum voltage");
break;
case 4:
sb.AppendLine("\tDevice uses a maximum of 35mA for writing at maximum voltage");
break;
case 5:
sb.AppendLine("\tDevice uses a maximum of 45mA for writing at maximum voltage");
break;
case 6:
sb.AppendLine("\tDevice uses a maximum of 80mA for writing at maximum voltage");
break;
case 7:
sb.AppendLine("\tDevice uses a maximum of 200mA for writing at maximum voltage");
break;
}
if(csd.EraseBlockEnable)
sb.AppendLine("\tDevice can erase multiple blocks");
// TODO: Check specification
sb.AppendFormat("\tDevice must erase a minimum of {0} blocks at a time", Convert.ToUInt32(csd.EraseSectorSize) + 1).AppendLine();
if(csd.WriteProtectGroupEnable)
{
sb.AppendLine("\tDevice can write protect regions");
// TODO: Check specification
unitFactor = Convert.ToDouble(csd.WriteProtectGroupSize);
sb.AppendFormat("\tDevice can write protect a minimum of {0} blocks at a time", (int)(result + 1)).AppendLine();
}
else
sb.AppendLine("\tDevice can't write protect regions");
}
sb.AppendFormat("\tWriting is {0} times slower than reading", Math.Pow(2, csd.WriteSpeedFactor)).AppendLine();
sb.AppendFormat("\tWrite block length is {0} bytes", Math.Pow(2, csd.WriteBlockLength)).AppendLine();
if(csd.WritesPartialBlocks)
sb.AppendLine("\tDevice allows writing partial blocks");
if(!csd.Copy)
sb.AppendLine("\tDevice contents are original");
if(csd.PermanentWriteProtect)
sb.AppendLine("\tDevice is permanently write protected");
if(csd.TemporaryWriteProtect)
sb.AppendLine("\tDevice is temporarily write protected");
if(!csd.FileFormatGroup)
{
switch(csd.FileFormat)
{
case 0:
sb.AppendLine("\tDevice is formatted like a hard disk");
break;
case 1:
sb.AppendLine("\tDevice is formatted like a floppy disk using Microsoft FAT");
break;
case 2:
sb.AppendLine("\tDevice uses Universal File Format");
break;
default:
sb.AppendFormat("\tDevice uses unknown file format code {0}", csd.FileFormat).AppendLine();
break;
}
}
else
sb.AppendFormat("\tDevice uses unknown file format code {0} and file format group 1", csd.FileFormat).AppendLine();
sb.AppendFormat("\tCSD CRC: 0x{0:X2}", csd.CRC).AppendLine();
return sb.ToString();
}
public static string PrettifyCSD(uint[] response)
{
return PrettifyCSD(DecodeCSD(response));
}
public static string PrettifyCSD(byte[] response)
{
return PrettifyCSD(DecodeCSD(response));
}
}
}