Files
Aaru.Server/DiscImageChef.Decoders/SCSI/Modes.cs

2769 lines
119 KiB
C#
Raw Normal View History

2015-10-24 06:58:49 +01:00
// /***************************************************************************
// The Disc Image Chef
// ----------------------------------------------------------------------------
//
// Filename : Modes.cs
// Version : 1.0
// Author(s) : Natalia Portillo
//
// Component : Component
//
// Revision : $Revision$
// Last change by : $Author$
// Date : $Date$
//
// --[ Description ] ----------------------------------------------------------
//
// Description
//
// --[ License ] --------------------------------------------------------------
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// ----------------------------------------------------------------------------
// Copyright (C) 2011-2015 Claunia.com
// ****************************************************************************/
// //$Id$
using System;
using System.Text;
namespace DiscImageChef.Decoders.SCSI
{
public static class Modes
{
public enum MediumTypes : byte
{
Default = 0x00,
#region Medium Types defined in ECMA-111 for Direct-Access devices
2015-10-25 05:39:25 +00:00
2015-10-24 06:58:49 +01:00
/// <summary>
/// ECMA-54: 200 mm Flexible Disk Cartridge using Two-Frequency Recording at 13262 ftprad on One Side
/// </summary>
ECMA54 = 0x09,
/// <summary>
2015-10-24 19:53:59 +01:00
/// ECMA-59 &amp; ANSI X3.121-1984: 200 mm Flexible Disk Cartridge using Two-Frequency Recording at 13262 ftprad on Both Sides
2015-10-24 06:58:49 +01:00
/// </summary>
ECMA59 = 0x0A,
/// <summary>
/// ECMA-69: 200 mm Flexible Disk Cartridge using MFM Recording at 13262 ftprad on Both Sides
/// </summary>
ECMA69 = 0x0B,
/// <summary>
/// ECMA-66: 130 mm Flexible Disk Cartridge using Two-Frequency Recording at 7958 ftprad on One Side
/// </summary>
ECMA66 = 0x0E,
/// <summary>
2015-10-24 19:53:59 +01:00
/// ECMA-70 &amp; ANSI X3.125-1985: 130 mm Flexible Disk Cartridge using MFM Recording at 7958 ftprad on Both Sides; 1,9 Tracks per mm
2015-10-24 06:58:49 +01:00
/// </summary>
ECMA70 = 0x12,
/// <summary>
2015-10-24 19:53:59 +01:00
/// ECMA-78 &amp; ANSI X3.126-1986: 130 mm Flexible Disk Cartridge using MFM Recording at 7958 ftprad on Both Sides; 3,8 Tracks per mm
2015-10-24 06:58:49 +01:00
/// </summary>
ECMA78 = 0x16,
/// <summary>
2015-10-24 19:53:59 +01:00
/// ECMA-99 &amp; ISO 8630-1985: 130 mm Flexible Disk Cartridge using MFM Recording at 13262 ftprad on Both Sides; 3,8 Tracks per mm
2015-10-24 06:58:49 +01:00
/// </summary>
ECMA99 = 0x1A,
/// <summary>
2015-10-24 19:53:59 +01:00
/// ECMA-100 &amp; ANSI X3.137: 90 mm Flexible Disk Cartridge using MFM Recording at 7859 ftprad on Both Sides; 5,3 Tracks per mm
2015-10-24 06:58:49 +01:00
/// </summary>
2015-10-24 19:53:59 +01:00
ECMA100 = 0x1E,
2015-10-24 06:58:49 +01:00
#endregion Medium Types defined in ECMA-111 for Direct-Access devices
2015-10-24 19:53:59 +01:00
#region Medium Types defined in SCSI-2 for Direct-Access devices
2015-10-25 05:39:25 +00:00
2015-10-24 19:53:59 +01:00
/// <summary>
/// Unspecified single sided flexible disk
/// </summary>
Unspecified_SS = 0x01,
/// <summary>
/// Unspecified double sided flexible disk
/// </summary>
Unspecified_DS = 0x02,
/// <summary>
/// ANSI X3.73-1980: 200 mm, 6631 ftprad, 1,9 Tracks per mm, 1 side
/// </summary>
X3_73 = 0x05,
/// <summary>
/// ANSI X3.73-1980: 200 mm, 6631 ftprad, 1,9 Tracks per mm, 2 sides
/// </summary>
X3_73_DS = 0x06,
/// <summary>
/// ANSI X3.80-1980: 130 mm, 3979 ftprad, 1,9 Tracks per mm, 1 side
/// </summary>
X3_82 = 0x0D,
/// <summary>
/// 6,3 mm tape with 12 tracks at 394 ftpmm
/// </summary>
Tape12 = 0x40,
/// <summary>
/// 6,3 mm tape with 24 tracks at 394 ftpmm
/// </summary>
Tape24 = 0x44,
#endregion Medium Types defined in SCSI-2 for Direct-Access devices
2015-10-25 02:07:39 +00:00
#region Medium Types defined in SCSI-3 SBC-1 for Optical devices
2015-10-25 05:39:25 +00:00
2015-10-25 02:07:39 +00:00
/// <summary>
/// Read-only medium
/// </summary>
ReadOnly = 0x01,
/// <summary>
/// Write-once Read-many medium
/// </summary>
WORM = 0x02,
/// <summary>
/// Erasable medium
/// </summary>
Erasable = 0x03,
/// <summary>
/// Combination of read-only and write-once medium
/// </summary>
RO_WORM = 0x04,
/// <summary>
/// Combination of read-only and erasable medium
/// </summary>
RO_RW = 0x05,
/// <summary>
/// Combination of write-once and erasable medium
/// </summary>
WORM_RW = 0x06,
#endregion Medium Types defined in SCSI-3 SBC-1 for Optical devices
2015-10-24 19:53:59 +01:00
#region Medium Types defined in SCSI-2 for MultiMedia devices
2015-10-25 05:39:25 +00:00
2015-10-24 19:53:59 +01:00
/// <summary>
/// 120 mm CD-ROM
/// </summary>
CDROM = 0x01,
/// <summary>
/// 120 mm Compact Disc Digital Audio
/// </summary>
CDDA = 0x02,
/// <summary>
/// 120 mm Compact Disc with data and audio
/// </summary>
MixedCD = 0x03,
/// <summary>
/// 80 mm CD-ROM
/// </summary>
CDROM_80 = 0x05,
/// <summary>
/// 80 mm Compact Disc Digital Audio
/// </summary>
CDDA_80 = 0x06,
/// <summary>
/// 80 mm Compact Disc with data and audio
/// </summary>
MixedCD_80 = 0x07
2015-10-25 05:39:25 +00:00
2015-10-24 19:53:59 +01:00
#endregion Medium Types defined in SCSI-2 for MultiMedia devices
2015-10-24 06:58:49 +01:00
}
public enum DensityType : byte
{
Default = 0x00,
#region Density Types defined in ECMA-111 for Direct-Access devices
2015-10-25 05:39:25 +00:00
2015-10-24 06:58:49 +01:00
/// <summary>
/// 7958 flux transitions per radian
/// </summary>
Flux7958 = 0x01,
/// <summary>
/// 13262 flux transitions per radian
/// </summary>
Flux13262 = 0x02,
/// <summary>
/// 15916 flux transitions per radian
/// </summary>
Flux15916 = 0x03,
#endregion Density Types defined in ECMA-111 for Direct-Access devices
2015-10-24 19:53:59 +01:00
#region Density Types defined in ECMA-111 for Sequential-Access devices
2015-10-25 05:39:25 +00:00
2015-10-24 06:58:49 +01:00
/// <summary>
2015-10-24 19:53:59 +01:00
/// ECMA-62 &amp; ANSI X3.22-1983: 12,7 mm 9-Track Magnetic Tape, 32 ftpmm, NRZI, 32 cpmm
2015-10-24 06:58:49 +01:00
/// </summary>
ECMA62 = 0x01,
/// <summary>
2015-10-24 19:53:59 +01:00
/// ECMA-62 &amp; ANSI X3.39-1986: 12,7 mm 9-Track Magnetic Tape, 126 ftpmm, Phase Encoding, 63 cpmm
2015-10-24 06:58:49 +01:00
/// </summary>
ECMA62_Phase = 0x02,
/// <summary>
2015-10-24 19:53:59 +01:00
/// ECMA-62 &amp; ANSI X3.54-1986: 12,7 mm 9-Track Magnetic Tape, 356 ftpmm, NRZI, 245 cpmm GCR
2015-10-24 06:58:49 +01:00
/// </summary>
ECMA62_GCR = 0x03,
/// <summary>
2015-10-24 19:53:59 +01:00
/// ECMA-79 &amp; ANSI X3.116-1986: 6,30 mm Magnetic Tape Cartridge using MFM Recording at 252 ftpmm
2015-10-24 06:58:49 +01:00
/// </summary>
ECMA79 = 0x07,
/// <summary>
2015-10-24 19:53:59 +01:00
/// Draft ECMA &amp; ANSI X3B5/87-099: 12,7 mm Magnetic Tape Cartridge using IFM Recording on 18 Tracks at 1944 ftpmm, GCR
2015-10-24 06:58:49 +01:00
/// </summary>
ECMADraft = 0x09,
/// <summary>
2015-10-24 19:53:59 +01:00
/// ECMA-46 &amp; ANSI X3.56-1986: 6,30 mm Magnetic Tape Cartridge, Phase Encoding, 63 bpmm
2015-10-24 06:58:49 +01:00
/// </summary>
ECMA46 = 0x0B,
/// <summary>
2015-10-24 19:53:59 +01:00
/// ECMA-98: 6,30 mm Magnetic Tape Cartridge, NRZI Recording, 394 ftpmm
/// </summary>
ECMA98 = 0x0E,
#endregion Density Types defined in ECMA-111 for Sequential-Access devices
#region Density Types defined in SCSI-2 for Sequential-Access devices
2015-10-25 05:39:25 +00:00
2015-10-24 19:53:59 +01:00
/// <summary>
/// ANXI X3.136-1986: 6,3 mm 4 or 9-Track Magnetic Tape Cartridge, 315 bpmm, GCR
/// </summary>
X3_136 = 0x05,
/// <summary>
/// ANXI X3.157-1987: 12,7 mm 9-Track Magnetic Tape, 126 bpmm, Phase Encoding
/// </summary>
X3_157 = 0x06,
/// <summary>
/// ANXI X3.158-1987: 3,81 mm 4-Track Magnetic Tape Cassette, 315 bpmm, GCR
/// </summary>
X3_158 = 0x08,
/// <summary>
/// ANXI X3B5/86-199: 12,7 mm 22-Track Magnetic Tape Cartridge, 262 bpmm, MFM
/// </summary>
X3B5_86 = 0x0A,
/// <summary>
/// HI-TC1: 12,7 mm 24-Track Magnetic Tape Cartridge, 500 bpmm, GCR
/// </summary>
HiTC1 = 0x0C,
/// <summary>
/// HI-TC2: 12,7 mm 24-Track Magnetic Tape Cartridge, 999 bpmm, GCR
/// </summary>
HiTC2 = 0x0D,
/// <summary>
/// QIC-120: 6,3 mm 15-Track Magnetic Tape Cartridge, 394 bpmm, GCR
/// </summary>
QIC120 = 0x0F,
/// <summary>
/// QIC-150: 6,3 mm 18-Track Magnetic Tape Cartridge, 394 bpmm, GCR
/// </summary>
QIC150 = 0x10,
/// <summary>
/// QIC-320: 6,3 mm 26-Track Magnetic Tape Cartridge, 630 bpmm, GCR
/// </summary>
QIC320 = 0x11,
/// <summary>
/// QIC-1350: 6,3 mm 30-Track Magnetic Tape Cartridge, 2034 bpmm, RLL
2015-10-24 06:58:49 +01:00
/// </summary>
2015-10-24 19:53:59 +01:00
QIC1350 = 0x12,
/// <summary>
/// ANXI X3B5/88-185A: 3,81 mm Magnetic Tape Cassette, 2400 bpmm, DDS
/// </summary>
X3B5_88 = 0x13,
/// <summary>
/// ANXI X3.202-1991: 8 mm Magnetic Tape Cassette, 1703 bpmm, RLL
/// </summary>
X3_202 = 0x14,
/// <summary>
/// ECMA TC17: 8 mm Magnetic Tape Cassette, 1789 bpmm, RLL
/// </summary>
ECMA_TC17 = 0x15,
/// <summary>
/// ANXI X3.193-1990: 12,7 mm 48-Track Magnetic Tape Cartridge, 394 bpmm, MFM
/// </summary>
X3_193 = 0x16,
/// <summary>
/// ANXI X3B5/97-174: 12,7 mm 48-Track Magnetic Tape Cartridge, 1673 bpmm, MFM
/// </summary>
X3B5_91 = 0x17,
#endregion Density Types defined in SCSI-2 for Sequential-Access devices
#region Density Types defined in SCSI-2 for MultiMedia devices
2015-10-25 05:39:25 +00:00
2015-10-24 19:53:59 +01:00
/// <summary>
/// User data only
/// </summary>
User = 0x01,
/// <summary>
/// User data plus auxiliary data field
/// </summary>
UserAuxiliary = 0x02,
/// <summary>
/// 4-byt tag field, user data plus auxiliary data
/// </summary>
UserAuxiliaryTag = 0x03,
/// <summary>
/// Audio information only
/// </summary>
Audio = 0x04,
#endregion Density Types defined in SCSI-2 for MultiMedia devices
#region Density Types defined in SCSI-2 for Optical devices
2015-10-25 05:39:25 +00:00
2015-10-24 19:53:59 +01:00
/// <summary>
2015-10-25 02:07:39 +00:00
/// ISO/IEC 10090: 86 mm Read/Write single-sided optical disc with 12500 tracks
2015-10-24 19:53:59 +01:00
/// </summary>
2015-10-25 02:07:39 +00:00
ISO10090 = 0x01,
2015-10-24 19:53:59 +01:00
/// <summary>
/// 89 mm Read/Write double-sided optical disc with 12500 tracks
/// </summary>
D581 = 0x02,
/// <summary>
2015-10-25 02:07:39 +00:00
/// ANSI X3.212: 130 mm Read/Write double-sided optical disc with 18750 tracks
2015-10-24 19:53:59 +01:00
/// </summary>
2015-10-25 02:07:39 +00:00
X3_212 = 0x03,
2015-10-24 19:53:59 +01:00
/// <summary>
2015-10-25 02:07:39 +00:00
/// ANSI X3.191: 130 mm Write-Once double-sided optical disc with 30000 tracks
2015-10-24 19:53:59 +01:00
/// </summary>
2015-10-25 02:07:39 +00:00
X3_191 = 0x04,
2015-10-24 19:53:59 +01:00
/// <summary>
2015-10-25 02:07:39 +00:00
/// ANSI X3.214: 130 mm Write-Once double-sided optical disc with 20000 tracks
2015-10-24 19:53:59 +01:00
/// </summary>
2015-10-25 02:07:39 +00:00
X3_214 = 0x05,
2015-10-24 19:53:59 +01:00
/// <summary>
2015-10-25 02:07:39 +00:00
/// ANSI X3.211: 130 mm Write-Once double-sided optical disc with 18750 tracks
2015-10-24 19:53:59 +01:00
/// </summary>
2015-10-25 02:07:39 +00:00
X3_211 = 0x06,
2015-10-24 19:53:59 +01:00
/// <summary>
/// 200 mm optical disc
/// </summary>
D407 = 0x07,
/// <summary>
2015-10-25 02:07:39 +00:00
/// ISO/IEC 13614: 300 mm double-sided optical disc
2015-10-24 19:53:59 +01:00
/// </summary>
2015-10-25 02:07:39 +00:00
ISO13614 = 0x08,
2015-10-24 19:53:59 +01:00
/// <summary>
2015-10-25 02:07:39 +00:00
/// ANSI X3.200: 356 mm double-sided optical disc with 56350 tracks
2015-10-24 19:53:59 +01:00
/// </summary>
2015-10-25 02:07:39 +00:00
X3_200 = 0x09
2015-10-25 05:39:25 +00:00
2015-10-24 19:53:59 +01:00
#endregion Density Types defined in SCSI-2 for Optical devices
2015-10-24 06:58:49 +01:00
}
public struct BlockDescriptor
{
public DensityType Density;
public ulong Blocks;
public ulong BlockLength;
}
public struct ModeHeader
{
public MediumTypes MediumType;
public bool WriteProtected;
public BlockDescriptor[] BlockDescriptors;
public byte Speed;
public byte BufferedMode;
public bool EBC;
2015-10-24 19:53:59 +01:00
public bool DPOFUA;
2015-10-24 06:58:49 +01:00
}
public static ModeHeader? DecodeModeHeader6(byte[] modeResponse, PeripheralDeviceTypes deviceType)
{
2015-10-25 02:07:39 +00:00
if (modeResponse == null || modeResponse.Length < 4 || modeResponse.Length < modeResponse[0] + 1)
2015-10-24 06:58:49 +01:00
return null;
ModeHeader header = new ModeHeader();
header.MediumType = (MediumTypes)modeResponse[1];
if (modeResponse[3] > 0)
{
2015-10-25 05:39:25 +00:00
header.BlockDescriptors = new BlockDescriptor[modeResponse[3] / 8];
2015-10-24 06:58:49 +01:00
for (int i = 0; i < header.BlockDescriptors.Length; i++)
{
header.BlockDescriptors[i].Density = (DensityType)modeResponse[0 + i * 8 + 4];
header.BlockDescriptors[i].Blocks += (ulong)(modeResponse[1 + i * 8 + 4] << 16);
header.BlockDescriptors[i].Blocks += (ulong)(modeResponse[2 + i * 8 + 4] << 8);
header.BlockDescriptors[i].Blocks += modeResponse[3 + i * 8 + 4];
header.BlockDescriptors[i].BlockLength += (ulong)(modeResponse[5 + i * 8 + 4] << 16);
header.BlockDescriptors[i].BlockLength += (ulong)(modeResponse[6 + i * 8 + 4] << 8);
header.BlockDescriptors[i].BlockLength += modeResponse[7 + i * 8 + 4];
}
}
2015-10-24 19:53:59 +01:00
if (deviceType == PeripheralDeviceTypes.DirectAccess || deviceType == PeripheralDeviceTypes.MultiMediaDevice)
{
2015-10-24 06:58:49 +01:00
header.WriteProtected = ((modeResponse[2] & 0x80) == 0x80);
2015-10-24 19:53:59 +01:00
header.DPOFUA = ((modeResponse[2] & 0x10) == 0x10);
}
2015-10-24 06:58:49 +01:00
if (deviceType == PeripheralDeviceTypes.SequentialAccess)
{
header.WriteProtected = ((modeResponse[2] & 0x80) == 0x80);
header.Speed = (byte)(modeResponse[2] & 0x0F);
header.BufferedMode = (byte)((modeResponse[2] & 0x70) >> 4);
}
if (deviceType == PeripheralDeviceTypes.PrinterDevice)
header.BufferedMode = (byte)((modeResponse[2] & 0x70) >> 4);
if (deviceType == PeripheralDeviceTypes.OpticalDevice)
{
header.WriteProtected = ((modeResponse[2] & 0x80) == 0x80);
header.EBC = ((modeResponse[2] & 0x01) == 0x01);
2015-10-24 19:53:59 +01:00
header.DPOFUA = ((modeResponse[2] & 0x10) == 0x10);
2015-10-24 06:58:49 +01:00
}
return header;
}
public static string PrettifyModeHeader6(byte[] modeResponse, PeripheralDeviceTypes deviceType)
{
return PrettifyModeHeader(DecodeModeHeader6(modeResponse, deviceType), deviceType);
}
public static string PrettifyModeHeader(ModeHeader? header, PeripheralDeviceTypes deviceType)
{
if (!header.HasValue)
return null;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Mode Page 0:");
switch (deviceType)
{
case PeripheralDeviceTypes.DirectAccess:
{
2015-10-25 02:07:39 +00:00
if (header.Value.MediumType != MediumTypes.Default)
2015-10-24 06:58:49 +01:00
{
2015-10-25 02:07:39 +00:00
sb.Append("Medium is ");
switch (header.Value.MediumType)
{
case MediumTypes.ECMA54:
sb.AppendLine("ECMA-54: 200 mm Flexible Disk Cartridge using Two-Frequency Recording at 13262 ftprad on One Side");
break;
case MediumTypes.ECMA59:
sb.AppendLine("ECMA-59 & ANSI X3.121-1984: 200 mm Flexible Disk Cartridge using Two-Frequency Recording at 13262 ftprad on Both Sides");
break;
case MediumTypes.ECMA69:
sb.AppendLine("ECMA-69: 200 mm Flexible Disk Cartridge using MFM Recording at 13262 ftprad on Both Sides");
break;
case MediumTypes.ECMA66:
sb.AppendLine("ECMA-66: 130 mm Flexible Disk Cartridge using Two-Frequency Recording at 7958 ftprad on One Side");
break;
case MediumTypes.ECMA70:
sb.AppendLine("ECMA-70 & ANSI X3.125-1985: 130 mm Flexible Disk Cartridge using MFM Recording at 7958 ftprad on Both Sides; 1,9 Tracks per mm");
break;
case MediumTypes.ECMA78:
sb.AppendLine("ECMA-78 & ANSI X3.126-1986: 130 mm Flexible Disk Cartridge using MFM Recording at 7958 ftprad on Both Sides; 3,8 Tracks per mm");
break;
case MediumTypes.ECMA99:
sb.AppendLine("ECMA-99 & ISO 8630-1985: 130 mm Flexible Disk Cartridge using MFM Recording at 13262 ftprad on Both Sides; 3,8 Tracks per mm");
break;
case MediumTypes.ECMA100:
sb.AppendLine("ECMA-100 & ANSI X3.137: 90 mm Flexible Disk Cartridge using MFM Recording at 7859 ftprad on Both Sides; 5,3 Tracks per mm");
break;
case MediumTypes.Unspecified_SS:
sb.AppendLine("Unspecified single sided flexible disk");
break;
case MediumTypes.Unspecified_DS:
sb.AppendLine("Unspecified double sided flexible disk");
break;
case MediumTypes.X3_73:
sb.AppendLine("ANSI X3.73-1980: 200 mm, 6631 ftprad, 1,9 Tracks per mm, 1 side");
break;
case MediumTypes.X3_73_DS:
sb.AppendLine("ANSI X3.73-1980: 200 mm, 6631 ftprad, 1,9 Tracks per mm, 2 sides");
break;
case MediumTypes.X3_82:
sb.AppendLine("ANSI X3.80-1980: 130 mm, 3979 ftprad, 1,9 Tracks per mm, 1 side");
break;
case MediumTypes.Tape12:
sb.AppendLine("6,3 mm tape with 12 tracks at 394 ftpmm");
break;
case MediumTypes.Tape24:
sb.AppendLine("6,3 mm tape with 24 tracks at 394 ftpmm");
break;
default:
sb.AppendFormat("Unknown medium type 0x{0:X2}", header.Value.MediumType).AppendLine();
break;
}
2015-10-24 06:58:49 +01:00
}
if (header.Value.WriteProtected)
sb.AppendLine("Medium is write protected");
2015-10-24 19:53:59 +01:00
if (header.Value.DPOFUA)
sb.AppendLine("Drive supports DPO and FUA bits");
2015-10-24 06:58:49 +01:00
foreach (BlockDescriptor descriptor in header.Value.BlockDescriptors)
{
2015-10-24 19:53:59 +01:00
string density = "";
2015-10-24 06:58:49 +01:00
switch (descriptor.Density)
{
2015-10-24 19:53:59 +01:00
case DensityType.Default:
break;
2015-10-24 06:58:49 +01:00
case DensityType.Flux7958:
density = "7958 flux transitions per radian";
break;
case DensityType.Flux13262:
density = "13262 flux transitions per radian";
break;
case DensityType.Flux15916:
density = "15916 flux transitions per radian";
break;
default:
density = String.Format("with unknown density code 0x{0:X2}", descriptor.Density);
break;
}
2015-10-24 19:53:59 +01:00
if (density != "")
{
if (descriptor.Blocks == 0)
sb.AppendFormat("All remaining blocks have {0} and are {1} bytes each", density, descriptor.BlockLength).AppendLine();
else
sb.AppendFormat("{0} blocks have {1} and are {2} bytes each", descriptor.Blocks, density, descriptor.BlockLength).AppendLine();
}
2015-10-24 06:58:49 +01:00
else
2015-10-24 19:53:59 +01:00
{
if (descriptor.Blocks == 0)
sb.AppendFormat("All remaining blocks are {0} bytes each", descriptor.BlockLength).AppendLine();
else
sb.AppendFormat("{0} blocks are {1} bytes each", descriptor.Blocks, descriptor.BlockLength).AppendLine();
}
2015-10-24 06:58:49 +01:00
}
break;
}
case PeripheralDeviceTypes.SequentialAccess:
{
switch (header.Value.BufferedMode)
{
case 0:
sb.AppendLine("Device writes directly to media");
break;
case 1:
sb.AppendLine("Device uses a write cache");
break;
2015-10-24 19:53:59 +01:00
case 2:
sb.AppendLine("Device uses a write cache but doesn't return until cache is flushed");
break;
2015-10-24 06:58:49 +01:00
default:
sb.AppendFormat("Unknown buffered mode code 0x{0:X2}", header.Value.BufferedMode).AppendLine();
break;
}
if (header.Value.Speed == 0)
sb.AppendLine("Device uses default speed");
else
sb.AppendFormat("Device uses speed {0}", header.Value.Speed).AppendLine();
if (header.Value.WriteProtected)
sb.AppendLine("Medium is write protected");
foreach (BlockDescriptor descriptor in header.Value.BlockDescriptors)
{
2015-10-24 19:53:59 +01:00
string density = "";
2015-10-24 06:58:49 +01:00
switch (descriptor.Density)
{
2015-10-24 19:53:59 +01:00
case DensityType.Default:
break;
2015-10-24 06:58:49 +01:00
case DensityType.ECMA62:
2015-10-24 19:53:59 +01:00
density = "ECMA-62 & ANSI X3.22-1983: 12,7 mm 9-Track Magnetic Tape, 32 ftpmm, NRZI, 32 cpmm";
2015-10-24 06:58:49 +01:00
break;
case DensityType.ECMA62_Phase:
2015-10-24 19:53:59 +01:00
density = "ECMA-62 & ANSI X3.39-1986: 12,7 mm 9-Track Magnetic Tape, 126 ftpmm, Phase Encoding, 63 cpmm";
2015-10-24 06:58:49 +01:00
break;
case DensityType.ECMA62_GCR:
2015-10-24 19:53:59 +01:00
density = "ECMA-62 & ANSI X3.54-1986: 12,7 mm 9-Track Magnetic Tape, 356 ftpmm, NRZI, 245 cpmm GCR";
2015-10-24 06:58:49 +01:00
break;
case DensityType.ECMA79:
2015-10-24 19:53:59 +01:00
density = "ECMA-79 & ANSI X3.116-1986: 6,30 mm Magnetic Tape Cartridge, 252 ftpmm, MFM";
2015-10-24 06:58:49 +01:00
break;
case DensityType.ECMADraft:
2015-10-24 19:53:59 +01:00
density = "Draft ECMA & ANSI X3B5/87-099: 12,7 mm 18-Track Magnetic Tape Cartridge, 1944 ftpmm, IFM, GCR";
2015-10-24 06:58:49 +01:00
break;
case DensityType.ECMA46:
2015-10-24 19:53:59 +01:00
density = "ECMA-46 & ANSI X3.56-1986: 6,30 mm Magnetic Tape Cartridge, Phase Encoding, 63 bpmm";
2015-10-24 06:58:49 +01:00
break;
case DensityType.ECMA98:
2015-10-24 19:53:59 +01:00
density = "ECMA-98: 6,30 mm Magnetic Tape Cartridge, NRZI, 394 ftpmm";
break;
case DensityType.X3_136:
density = "ANXI X3.136-1986: 6,3 mm 4 or 9-Track Magnetic Tape Cartridge, 315 bpmm, GCR";
break;
case DensityType.X3_157:
density = "ANXI X3.157-1987: 12,7 mm 9-Track Magnetic Tape, 126 bpmm, Phase Encoding";
break;
case DensityType.X3_158:
density = "ANXI X3.158-1987: 3,81 mm 4-Track Magnetic Tape Cassette, 315 bpmm, GCR";
break;
case DensityType.X3B5_86:
density = "ANXI X3B5/86-199: 12,7 mm 22-Track Magnetic Tape Cartridge, 262 bpmm, MFM";
break;
case DensityType.HiTC1:
density = "HI-TC1: 12,7 mm 24-Track Magnetic Tape Cartridge, 500 bpmm, GCR";
break;
case DensityType.HiTC2:
density = "HI-TC2: 12,7 mm 24-Track Magnetic Tape Cartridge, 999 bpmm, GCR";
break;
case DensityType.QIC120:
density = "QIC-120: 6,3 mm 15-Track Magnetic Tape Cartridge, 394 bpmm, GCR";
break;
case DensityType.QIC150:
density = "QIC-150: 6,3 mm 18-Track Magnetic Tape Cartridge, 394 bpmm, GCR";
break;
case DensityType.QIC320:
density = "QIC-320: 6,3 mm 26-Track Magnetic Tape Cartridge, 630 bpmm, GCR";
break;
case DensityType.QIC1350:
density = "QIC-1350: 6,3 mm 30-Track Magnetic Tape Cartridge, 2034 bpmm, RLL";
break;
case DensityType.X3B5_88:
density = "ANXI X3B5/88-185A: 3,81 mm Magnetic Tape Cassette, 2400 bpmm, DDS";
break;
case DensityType.X3_202:
density = "ANXI X3.202-1991: 8 mm Magnetic Tape Cassette, 1703 bpmm, RLL";
break;
case DensityType.ECMA_TC17:
density = "ECMA TC17: 8 mm Magnetic Tape Cassette, 1789 bpmm, RLL";
break;
case DensityType.X3_193:
density = "ANXI X3.193-1990: 12,7 mm 48-Track Magnetic Tape Cartridge, 394 bpmm, MFM";
break;
case DensityType.X3B5_91:
density = "ANXI X3B5/97-174: 12,7 mm 48-Track Magnetic Tape Cartridge, 1673 bpmm, MFM";
2015-10-24 06:58:49 +01:00
break;
default:
density = String.Format("Unknown density code 0x{0:X2}", descriptor.Density);
break;
}
2015-10-24 19:53:59 +01:00
if (density != "")
2015-10-24 06:58:49 +01:00
{
2015-10-24 19:53:59 +01:00
if (descriptor.Blocks == 0)
{
if (descriptor.BlockLength == 0)
sb.AppendFormat("All remaining blocks conform to {0} and have a variable length", density).AppendLine();
else
sb.AppendFormat("All remaining blocks conform to {0} and are {1} bytes each", density, descriptor.BlockLength).AppendLine();
}
2015-10-24 06:58:49 +01:00
else
2015-10-24 19:53:59 +01:00
{
if (descriptor.BlockLength == 0)
sb.AppendFormat("{0} blocks conform to {1} and have a variable length", descriptor.Blocks, density).AppendLine();
else
sb.AppendFormat("{0} blocks conform to {1} and are {2} bytes each", descriptor.Blocks, density, descriptor.BlockLength).AppendLine();
}
2015-10-24 06:58:49 +01:00
}
else
{
2015-10-24 19:53:59 +01:00
if (descriptor.Blocks == 0)
{
if (descriptor.BlockLength == 0)
sb.AppendFormat("All remaining blocks have a variable length").AppendLine();
else
sb.AppendFormat("All remaining blocks are {0} bytes each", descriptor.BlockLength).AppendLine();
}
2015-10-24 06:58:49 +01:00
else
2015-10-24 19:53:59 +01:00
{
if (descriptor.BlockLength == 0)
sb.AppendFormat("{0} blocks have a variable length", descriptor.Blocks).AppendLine();
else
sb.AppendFormat("{0} blocks are {1} bytes each", descriptor.Blocks, descriptor.BlockLength).AppendLine();
}
2015-10-24 06:58:49 +01:00
}
}
break;
}
case PeripheralDeviceTypes.PrinterDevice:
{
switch (header.Value.BufferedMode)
{
case 0:
sb.AppendLine("Device prints directly");
break;
case 1:
sb.AppendLine("Device uses a print cache");
break;
default:
sb.AppendFormat("Unknown buffered mode code 0x{0:X2}", header.Value.BufferedMode).AppendLine();
break;
}
break;
}
case PeripheralDeviceTypes.OpticalDevice:
{
2015-10-25 02:07:39 +00:00
if (header.Value.MediumType != MediumTypes.Default)
{
sb.Append("Medium is ");
switch (header.Value.MediumType)
{
case MediumTypes.ReadOnly:
sb.AppendLine("a Read-only optical");
break;
case MediumTypes.WORM:
sb.AppendLine("a Write-once Read-many optical");
break;
case MediumTypes.Erasable:
sb.AppendLine("a Erasable optical");
break;
case MediumTypes.RO_WORM:
sb.AppendLine("a combination of read-only and write-once optical");
break;
case MediumTypes.RO_RW:
sb.AppendLine("a combination of read-only and erasable optical");
break;
case MediumTypes.WORM_RW:
sb.AppendLine("a combination of write-once and erasable optical");
break;
default:
sb.AppendFormat("an unknown medium type 0x{0:X2}", header.Value.MediumType).AppendLine();
break;
}
}
2015-10-24 06:58:49 +01:00
if (header.Value.WriteProtected)
sb.AppendLine("Medium is write protected");
if (header.Value.EBC)
sb.AppendLine("Blank checking during write is enabled");
2015-10-24 19:53:59 +01:00
if (header.Value.DPOFUA)
sb.AppendLine("Drive supports DPO and FUA bits");
foreach (BlockDescriptor descriptor in header.Value.BlockDescriptors)
{
string density = "";
switch (descriptor.Density)
{
case DensityType.Default:
break;
2015-10-25 02:07:39 +00:00
case DensityType.ISO10090:
density = "ISO/IEC 10090: 86 mm Read/Write single-sided optical disc with 12500 tracks";
2015-10-24 19:53:59 +01:00
break;
case DensityType.D581:
density = "89 mm Read/Write double-sided optical disc with 12500 tracks";
break;
2015-10-25 02:07:39 +00:00
case DensityType.X3_212:
density = "ANSI X3.212: 130 mm Read/Write double-sided optical disc with 18750 tracks";
2015-10-24 19:53:59 +01:00
break;
2015-10-25 02:07:39 +00:00
case DensityType.X3_191:
density = "ANSI X3.191: 130 mm Write-Once double-sided optical disc with 30000 tracks";
2015-10-24 19:53:59 +01:00
break;
2015-10-25 02:07:39 +00:00
case DensityType.X3_214:
density = "ANSI X3.214: 130 mm Write-Once double-sided optical disc with 20000 tracks";
2015-10-24 19:53:59 +01:00
break;
2015-10-25 02:07:39 +00:00
case DensityType.X3_211:
density = "ANSI X3.211: 130 mm Write-Once double-sided optical disc with 18750 tracks";
2015-10-24 19:53:59 +01:00
break;
case DensityType.D407:
density = "200 mm optical disc";
break;
2015-10-25 02:07:39 +00:00
case DensityType.ISO13614:
density = "ISO/IEC 13614: 300 mm double-sided optical disc";
2015-10-24 19:53:59 +01:00
break;
2015-10-25 02:07:39 +00:00
case DensityType.X3_200:
density = "ANSI X3.200: 356 mm double-sided optical disc with 56350 tracks";
2015-10-24 19:53:59 +01:00
break;
default:
density = String.Format("Unknown density code 0x{0:X2}", descriptor.Density);
break;
}
if (density != "")
{
if (descriptor.Blocks == 0)
{
if (descriptor.BlockLength == 0)
sb.AppendFormat("All remaining blocks are {0} and have a variable length", density).AppendLine();
else
sb.AppendFormat("All remaining blocks are {0} and are {1} bytes each", density, descriptor.BlockLength).AppendLine();
}
else
{
if (descriptor.BlockLength == 0)
sb.AppendFormat("{0} blocks are {1} and have a variable length", descriptor.Blocks, density).AppendLine();
else
sb.AppendFormat("{0} blocks are {1} and are {2} bytes each", descriptor.Blocks, density, descriptor.BlockLength).AppendLine();
}
}
else
{
if (descriptor.Blocks == 0)
{
if (descriptor.BlockLength == 0)
sb.AppendFormat("All remaining blocks have a variable length").AppendLine();
else
sb.AppendFormat("All remaining blocks are {0} bytes each", descriptor.BlockLength).AppendLine();
}
else
{
if (descriptor.BlockLength == 0)
sb.AppendFormat("{0} blocks have a variable length", descriptor.Blocks).AppendLine();
else
sb.AppendFormat("{0} blocks are {1} bytes each", descriptor.Blocks, descriptor.BlockLength).AppendLine();
}
}
}
break;
}
case PeripheralDeviceTypes.MultiMediaDevice:
{
sb.Append("Medium is ");
switch (header.Value.MediumType)
{
case MediumTypes.CDROM:
sb.AppendLine("120 mm CD-ROM");
break;
case MediumTypes.CDDA:
sb.AppendLine("120 mm Compact Disc Digital Audio");
break;
case MediumTypes.MixedCD:
sb.AppendLine("120 mm Compact Disc with data and audio");
break;
case MediumTypes.CDROM_80:
sb.AppendLine("80 mm CD-ROM");
break;
case MediumTypes.CDDA_80:
sb.AppendLine("80 mm Compact Disc Digital Audio");
break;
case MediumTypes.MixedCD_80:
sb.AppendLine("80 mm Compact Disc with data and audio");
break;
default:
sb.AppendFormat("Unknown medium type 0x{0:X2}", header.Value.MediumType).AppendLine();
break;
}
if (header.Value.WriteProtected)
sb.AppendLine("Medium is write protected");
if (header.Value.DPOFUA)
sb.AppendLine("Drive supports DPO and FUA bits");
foreach (BlockDescriptor descriptor in header.Value.BlockDescriptors)
{
string density = "";
switch (descriptor.Density)
{
case DensityType.Default:
break;
case DensityType.User:
density = "user data only";
break;
case DensityType.UserAuxiliary:
density = "user data plus auxiliary data";
break;
case DensityType.UserAuxiliaryTag:
density = "4-byte tag, user data plus auxiliary data";
break;
case DensityType.Audio:
density = "audio information only";
break;
default:
density = String.Format("with unknown density code 0x{0:X2}", descriptor.Density);
break;
}
if (density != "")
{
if (descriptor.Blocks == 0)
sb.AppendFormat("All remaining blocks have {0} and are {1} bytes each", density, descriptor.BlockLength).AppendLine();
else
sb.AppendFormat("{0} blocks have {1} and are {2} bytes each", descriptor.Blocks, density, descriptor.BlockLength).AppendLine();
}
else
{
if (descriptor.Blocks == 0)
sb.AppendFormat("All remaining blocks are {0} bytes each", descriptor.BlockLength).AppendLine();
else
sb.AppendFormat("{0} blocks are {1} bytes each", descriptor.Blocks, descriptor.BlockLength).AppendLine();
}
}
2015-10-24 06:58:49 +01:00
break;
}
default:
break;
}
return sb.ToString();
}
public static ModeHeader? DecodeModeHeader10(byte[] modeResponse, PeripheralDeviceTypes deviceType)
{
if (modeResponse == null || modeResponse.Length < 8)
return null;
ushort modeLength;
ushort blockDescLength;
modeLength = (ushort)((modeResponse[0] << 8) + modeResponse[1]);
blockDescLength = (ushort)((modeResponse[6] << 8) + modeResponse[7]);
if (modeResponse.Length < modeLength)
return null;
ModeHeader header = new ModeHeader();
header.MediumType = (MediumTypes)modeResponse[2];
if (blockDescLength > 0)
{
2015-10-25 05:39:25 +00:00
header.BlockDescriptors = new BlockDescriptor[blockDescLength / 8];
for (int i = 0; i < header.BlockDescriptors.Length; i++)
{
header.BlockDescriptors[i].Density = (DensityType)modeResponse[0 + i * 8 + 8];
header.BlockDescriptors[i].Blocks += (ulong)(modeResponse[1 + i * 8 + 8] << 16);
header.BlockDescriptors[i].Blocks += (ulong)(modeResponse[2 + i * 8 + 8] << 8);
header.BlockDescriptors[i].Blocks += modeResponse[3 + i * 8 + 8];
header.BlockDescriptors[i].BlockLength += (ulong)(modeResponse[5 + i * 8 + 8] << 16);
header.BlockDescriptors[i].BlockLength += (ulong)(modeResponse[6 + i * 8 + 8] << 8);
header.BlockDescriptors[i].BlockLength += modeResponse[7 + i * 8 + 8];
}
}
if (deviceType == PeripheralDeviceTypes.DirectAccess || deviceType == PeripheralDeviceTypes.MultiMediaDevice)
{
header.WriteProtected = ((modeResponse[3] & 0x80) == 0x80);
header.DPOFUA = ((modeResponse[3] & 0x10) == 0x10);
}
if (deviceType == PeripheralDeviceTypes.SequentialAccess)
{
header.WriteProtected = ((modeResponse[3] & 0x80) == 0x80);
header.Speed = (byte)(modeResponse[3] & 0x0F);
header.BufferedMode = (byte)((modeResponse[3] & 0x70) >> 4);
}
if (deviceType == PeripheralDeviceTypes.PrinterDevice)
header.BufferedMode = (byte)((modeResponse[3] & 0x70) >> 4);
if (deviceType == PeripheralDeviceTypes.OpticalDevice)
{
header.WriteProtected = ((modeResponse[3] & 0x80) == 0x80);
header.EBC = ((modeResponse[3] & 0x01) == 0x01);
header.DPOFUA = ((modeResponse[3] & 0x10) == 0x10);
}
return header;
}
public static string PrettifyModeHeader10(byte[] modeResponse, PeripheralDeviceTypes deviceType)
{
return PrettifyModeHeader(DecodeModeHeader10(modeResponse, deviceType), deviceType);
}
2015-10-25 05:39:25 +00:00
#region Mode Page 0x0A: Control mode page
/// <summary>
/// Control mode page
/// Page code 0x0A
/// 8 bytes in SCSI-2
/// 12 bytes in SPC-1, SPC-2
/// </summary>
public struct ModePage_0A
{
/// <summary>
/// Parameters can be saved
/// </summary>
public bool PS;
/// <summary>
/// If set, target shall report log exception conditions
/// </summary>
public bool RLEC;
/// <summary>
/// Queue algorithm modifier
/// </summary>
public byte QueueAlgorithm;
/// <summary>
/// If set all remaining suspended I/O processes shall be aborted after the contingent allegiance condition or extended contingent allegiance condition
/// </summary>
public byte QErr;
/// <summary>
/// Tagged queuing is disabled
/// </summary>
public bool DQue;
/// <summary>
/// Extended Contingent Allegiance is enabled
/// </summary>
public bool EECA;
/// <summary>
/// Target may issue an asynchronous event notification upon completing its initialization
/// </summary>
public bool RAENP;
/// <summary>
/// Target may issue an asynchronous event notification instead of a unit attention condition
/// </summary>
public bool UAAENP;
/// <summary>
/// Target may issue an asynchronous event notification instead of a deferred error
/// </summary>
public bool EAENP;
/// <summary>
/// Minimum time in ms after initialization before attempting asynchronous event notifications
/// </summary>
public ushort ReadyAENHoldOffPeriod;
/// <summary>
/// Global logging target save disabled
/// </summary>
public bool GLTSD;
/// <summary>
/// CHECK CONDITION should be reported rather than a long busy condition
/// </summary>
public bool RAC;
/// <summary>
/// Software write protect is active
/// </summary>
public bool SWP;
/// <summary>
/// Maximum time in 100 ms units allowed to remain busy. 0xFFFF == unlimited.
/// </summary>
public ushort BusyTimeoutPeriod;
/// <summary>
/// Task set type
/// </summary>
public byte TST;
/// <summary>
/// Tasks aborted by other initiator's actions should be terminated with TASK ABORTED
/// </summary>
public bool TAS;
/// <summary>
/// Action to be taken when a medium is inserted
/// </summary>
public byte AutoloadMode;
/// <summary>
/// Time in seconds to complete an extended self-test
/// </summary>
public byte ExtendedSelfTestCompletionTime;
/// <summary>
/// All tasks received in nexus with ACA ACTIVE is set and an ACA condition is established shall terminate
/// </summary>
public bool TMF_ONLY;
/// <summary>
/// Device shall return descriptor format sense data when returning sense data in the same transactions as a CHECK CONDITION
/// </summary>
public bool D_SENSE;
/// <summary>
/// Unit attention interlocks control
/// </summary>
public byte UA_INTLCK_CTRL;
/// <summary>
/// LOGICAL BLOCK APPLICATION TAG should not be modified
/// </summary>
public bool ATO;
/// <summary>
/// Protector information checking is disabled
/// </summary>
public bool DPICZ;
/// <summary>
/// No unit attention on release
/// </summary>
public bool NUAR;
/// <summary>
/// Application Tag mode page is enabled
/// </summary>
public bool ATMPE;
/// <summary>
/// Abort any write command without protection information
/// </summary>
public bool RWWP;
/// <summary>
/// Supportes block lengths and protection information
/// </summary>
public bool SBLP;
}
public static ModePage_0A? DecodeModePage_0A(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x3F) != 0x0A)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 8)
return null;
ModePage_0A decoded = new ModePage_0A();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.RLEC |= (pageResponse[2] & 0x01) == 0x01;
decoded.QueueAlgorithm = (byte)((pageResponse[3] & 0xF0) >> 4);
decoded.QErr = (byte)((pageResponse[3] & 0x06) >> 1);
decoded.DQue |= (pageResponse[3] & 0x01) == 0x01;
decoded.EECA |= (pageResponse[4] & 0x80) == 0x80;
decoded.RAENP |= (pageResponse[4] & 0x04) == 0x04;
decoded.UAAENP |= (pageResponse[4] & 0x02) == 0x02;
decoded.EAENP |= (pageResponse[4] & 0x01) == 0x01;
decoded.ReadyAENHoldOffPeriod = (ushort)((pageResponse[6] << 8) + pageResponse[7]);
if (pageResponse.Length < 10)
return decoded;
// SPC-1
decoded.GLTSD |= (pageResponse[2] & 0x02) == 0x02;
decoded.RAC |= (pageResponse[4] & 0x40) == 0x40;
decoded.SWP |= (pageResponse[4] & 0x08) == 0x08;
decoded.BusyTimeoutPeriod = (ushort)((pageResponse[8] << 8) + pageResponse[9]);
// SPC-2
decoded.TST = (byte)((pageResponse[2] & 0xE0) >> 5);
decoded.TAS |= (pageResponse[4] & 0x80) == 0x80;
decoded.AutoloadMode = (byte)(pageResponse[5] & 0x07);
decoded.BusyTimeoutPeriod = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
// SPC-3
decoded.TMF_ONLY |= (pageResponse[2] & 0x10) == 0x10;
decoded.D_SENSE |= (pageResponse[2] & 0x04) == 0x04;
decoded.UA_INTLCK_CTRL = (byte)((pageResponse[4] & 0x30) >> 4);
decoded.TAS |= (pageResponse[5] & 0x40) == 0x40;
decoded.ATO |= (pageResponse[5] & 0x80) == 0x80;
// SPC-5
decoded.DPICZ |= (pageResponse[2] & 0x08) == 0x08;
decoded.NUAR |= (pageResponse[3] & 0x08) == 0x08;
decoded.ATMPE |= (pageResponse[5] & 0x20) == 0x20;
decoded.RWWP |= (pageResponse[5] & 0x10) == 0x10;
decoded.SBLP |= (pageResponse[5] & 0x08) == 0x08;
return decoded;
}
public static string PrettifyModePage_0A(byte[] pageResponse)
{
return PrettifyModePage_0A(DecodeModePage_0A(pageResponse));
}
public static string PrettifyModePage_0A(ModePage_0A? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_0A page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Control mode page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.RLEC)
sb.AppendLine("\tIf set, target shall report log exception conditions");
if (page.DQue)
sb.AppendLine("\tTagged queuing is disabled");
if (page.EECA)
sb.AppendLine("\tExtended Contingent Allegiance is enabled");
if (page.RAENP)
sb.AppendLine("\tTarget may issue an asynchronous event notification upon completing its initialization");
if (page.UAAENP)
sb.AppendLine("\tTarget may issue an asynchronous event notification instead of a unit attention condition");
if (page.EAENP)
sb.AppendLine("\tTarget may issue an asynchronous event notification instead of a deferred error");
if (page.GLTSD)
sb.AppendLine("\tGlobal logging target save disabled");
if (page.RAC)
sb.AppendLine("\tCHECK CONDITION should be reported rather than a long busy condition");
if (page.SWP)
sb.AppendLine("\tSoftware write protect is active");
if (page.TAS)
sb.AppendLine("\tTasks aborted by other initiator's actions should be terminated with TASK ABORTED");
if (page.TMF_ONLY)
sb.AppendLine("\tAll tasks received in nexus with ACA ACTIVE is set and an ACA condition is established shall terminate");
if (page.D_SENSE)
sb.AppendLine("\tDevice shall return descriptor format sense data when returning sense data in the same transactions as a CHECK CONDITION");
if (page.ATO)
sb.AppendLine("\tLOGICAL BLOCK APPLICATION TAG should not be modified");
if (page.DPICZ)
sb.AppendLine("\tProtector information checking is disabled");
if (page.NUAR)
sb.AppendLine("\tNo unit attention on release");
if (page.ATMPE)
sb.AppendLine("\tApplication Tag mode page is enabled");
if (page.RWWP)
sb.AppendLine("\tAbort any write command without protection information");
if (page.SBLP)
sb.AppendLine("\tSupportes block lengths and protection information");
switch (page.TST)
{
case 0:
sb.AppendLine("\tThe logical unit maintains one task set for all nexuses");
break;
case 1:
sb.AppendLine("\tThe logical unit maintains separate task sets for each nexus");
break;
default:
sb.AppendFormat("\tUnknown Task set type {0}", page.TST).AppendLine();
break;
}
switch (page.QueueAlgorithm)
{
case 0:
sb.AppendLine("\tCommands should be sent strictly ordered");
break;
case 1:
sb.AppendLine("\tCommands can be reordered in any manner");
break;
default:
sb.AppendFormat("\tUnknown Queue Algorithm Modifier {0}", page.QueueAlgorithm).AppendLine();
break;
}
switch (page.QErr)
{
case 0:
sb.AppendLine("\tIf ACA is established, the task set commands shall resume after it is cleared, otherwise they shall terminate with CHECK CONDITION");
break;
case 1:
sb.AppendLine("\tAll the affected commands in the task set shall be aborted when CHECK CONDITION is returned");
break;
case 3:
sb.AppendLine("\tAffected commands in the task set belonging with the CHECK CONDITION nexus shall be aborted");
break;
default:
sb.AppendLine("\tReserved QErr value 2 is set");
break;
}
switch (page.UA_INTLCK_CTRL)
{
case 0:
sb.AppendLine("\tLUN shall clear unit attention condition reported in the same nexus");
break;
case 2:
sb.AppendLine("\tLUN shall not clear unit attention condition reported in the same nexus");
break;
case 3:
sb.AppendLine("\tLUN shall not clear unit attention condition reported in the same nexus and shall establish a unit attention condition for the initiator");
break;
default:
sb.AppendLine("\tReserved UA_INTLCK_CTRL value 1 is set");
break;
}
switch (page.AutoloadMode)
{
case 0:
sb.AppendLine("\tOn medium insertion, it shall be loaded for full access");
break;
case 1:
sb.AppendLine("\tOn medium insertion, it shall be loaded for auxiliary memory access only");
break;
case 2:
sb.AppendLine("\tOn medium insertion, it shall not be loaded");
break;
default:
sb.AppendFormat("\tReserved autoload mode {0} set", page.AutoloadMode).AppendLine();
break;
}
if (page.ReadyAENHoldOffPeriod > 0)
sb.AppendFormat("\t{0} ms before attempting asynchronous event notifications after initialization", page.ReadyAENHoldOffPeriod).AppendLine();
if (page.BusyTimeoutPeriod > 0)
{
if (page.BusyTimeoutPeriod == 0xFFFF)
sb.AppendLine("\tThere is no limit on the maximum time that is allowed to remain busy");
else
sb.AppendFormat("\tA maximum of {0} ms are allowed to remain busy", (int)page.BusyTimeoutPeriod * 100).AppendLine();
}
if (page.ExtendedSelfTestCompletionTime > 0)
sb.AppendFormat("\t{0} seconds to complete extended self-test", page.ExtendedSelfTestCompletionTime);
return sb.ToString();
}
2015-10-25 06:22:59 +00:00
#endregion Mode Page 0x0A: Control mode page
#region Mode Page 0x02: Disconnect-reconnect page
/// <summary>
/// Disconnect-reconnect page
/// Page code 0x02
/// 16 bytes in SCSI-2
/// </summary>
public struct ModePage_02
{
/// <summary>
/// Parameters can be saved
/// </summary>
public bool PS;
/// <summary>
/// How full should be the buffer prior to attempting a reselection
/// </summary>
public byte BufferFullRatio;
/// <summary>
/// How empty should be the buffer prior to attempting a reselection
/// </summary>
public byte BufferEmptyRatio;
/// <summary>
/// Max. time in 100 µs increments that the target is permitted to assert BSY without a REQ/ACK
/// </summary>
public ushort BusInactivityLimit;
/// <summary>
/// Min. time in 100 µs increments to wait after releasing the bus before attempting reselection
/// </summary>
public ushort DisconnectTimeLimit;
/// <summary>
/// Max. time in 100 µs increments allowed to use the bus before disconnecting, if granted the privilege and not restricted by <see cref="DTDC"/>
/// </summary>
public ushort ConnectTimeLimit;
/// <summary>
/// Maximum amount of data before disconnecting in 512 bytes increments
/// </summary>
public ushort MaxBurstSize;
/// <summary>
/// Data transfer disconnect control
/// </summary>
public byte DTDC;
/// <summary>
/// Target shall not transfer data for a command during the same interconnect tenancy
/// </summary>
public bool DIMM;
/// <summary>
/// Wether to use fair or unfair arbitration when requesting an interconnect tenancy
/// </summary>
public byte FairArbitration;
/// <summary>
/// Max. ammount of data in 512 bytes increments that may be transferred for a command along with the command
/// </summary>
public ushort FirstBurstSize;
/// <summary>
/// Target is allowed to re-order the data transfer
/// </summary>
public bool EMDP;
}
public static ModePage_02? DecodeModePage_02(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x3F) != 0x02)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 16)
return null;
ModePage_02 decoded = new ModePage_02();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.BufferFullRatio = pageResponse[2];
decoded.BufferEmptyRatio = pageResponse[3];
decoded.BusInactivityLimit = (ushort)((pageResponse[4] << 8) + pageResponse[5]);
decoded.DisconnectTimeLimit = (ushort)((pageResponse[6] << 8) + pageResponse[7]);
decoded.ConnectTimeLimit = (ushort)((pageResponse[8] << 8) + pageResponse[9]);
decoded.MaxBurstSize = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
decoded.FirstBurstSize = (ushort)((pageResponse[14] << 8) + pageResponse[15]);
decoded.EMDP |= (pageResponse[12] & 0x80) == 0x80;
decoded.DIMM |= (pageResponse[12] & 0x08) == 0x08;
decoded.FairArbitration = (byte)((pageResponse[12] & 0x70) >> 4);
decoded.DTDC = (byte)(pageResponse[12] & 0x07);
return decoded;
}
public static string PrettifyModePage_02(byte[] pageResponse)
{
return PrettifyModePage_02(DecodeModePage_02(pageResponse));
}
public static string PrettifyModePage_02(ModePage_02? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_02 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Disconnect-Reconnect mode page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.BufferFullRatio > 0)
sb.AppendFormat("\t{0} ratio of buffer that shall be full prior to attempting a reselection", page.BufferFullRatio).AppendLine();
if (page.BufferEmptyRatio > 0)
sb.AppendFormat("\t{0} ratio of buffer that shall be empty prior to attempting a reselection", page.BufferEmptyRatio).AppendLine();
if (page.BusInactivityLimit > 0)
sb.AppendFormat("\t{0} µs maximum permitted to assert BSY without a REQ/ACK handshake", (int)page.BusInactivityLimit * 100).AppendLine();
if (page.DisconnectTimeLimit > 0)
sb.AppendFormat("\t{0} µs maximum permitted wait after releasing the bus before attempting reselection", (int)page.DisconnectTimeLimit * 100).AppendLine();
if (page.ConnectTimeLimit > 0)
sb.AppendFormat("\t{0} µs allowed to use the bus before disconnecting, if granted the privilege and not restricted", (int)page.ConnectTimeLimit * 100).AppendLine();
if (page.MaxBurstSize > 0)
sb.AppendFormat("\t{0} bytes maximum can be transferred before disconnecting", (int)page.MaxBurstSize * 512).AppendLine();
if (page.FirstBurstSize > 0)
sb.AppendFormat("\t{0} bytes maximum can be transferred for a command along with the disconnect command", (int)page.FirstBurstSize * 512).AppendLine();
if (page.DIMM)
sb.AppendLine("\tTarget shall not transfer data for a command during the same interconnect tenancy");
if (page.EMDP)
sb.AppendLine("\tTarget is allowed to re-order the data transfer");
switch (page.DTDC)
{
case 0:
sb.AppendLine("\tData transfer disconnect control is not used");
break;
case 1:
sb.AppendLine("\tAll data for a command shall be transferred within a single interconnect tenancy");
break;
case 3:
sb.AppendLine("\tAll data and the response for a command shall be transferred within a single interconnect tenancy");
break;
default:
sb.AppendFormat("\tReserved data transfer disconnect control value {0}", page.DTDC).AppendLine();
break;
}
return sb.ToString();
}
#endregion Mode Page 0x02: Disconnect-reconnect page
2015-10-29 04:21:18 +00:00
#region Mode Page 0x08: Caching page
/// <summary>
/// Disconnect-reconnect page
/// Page code 0x08
/// 12 bytes in SCSI-2
/// </summary>
public struct ModePage_08
{
/// <summary>
/// Parameters can be saved
/// </summary>
public bool PS;
/// <summary>
/// <c>true</c> if write cache is enabled
/// </summary>
public bool WCE;
/// <summary>
/// Multiplication factor
/// </summary>
public bool MF;
/// <summary>
/// <c>true</c> if read cache is enabled
/// </summary>
public bool RCD;
/// <summary>
/// Advices on reading-cache retention priority
/// </summary>
public byte DemandReadRetentionPrio;
/// <summary>
/// Advices on writing-cache retention priority
/// </summary>
public byte WriteRetentionPriority;
/// <summary>
/// If requested read blocks are more than this, no pre-fetch is done
/// </summary>
public ushort DisablePreFetch;
/// <summary>
/// Minimum pre-fetch
/// </summary>
public ushort MinimumPreFetch;
/// <summary>
/// Maximum pre-fetch
/// </summary>
public ushort MaximumPreFetch;
/// <summary>
/// Upper limit on maximum pre-fetch value
/// </summary>
public ushort MaximumPreFetchCeiling;
}
public static ModePage_08? DecodeModePage_08(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x3F) != 0x08)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 12)
return null;
ModePage_08 decoded = new ModePage_08();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.WCE |= (pageResponse[2] & 0x04) == 0x04;
decoded.MF |= (pageResponse[2] & 0x02) == 0x02;
decoded.RCD |= (pageResponse[2] & 0x01) == 0x01;
decoded.DemandReadRetentionPrio = (byte)((pageResponse[3] & 0xF0) >> 4);
decoded.WriteRetentionPriority = (byte)(pageResponse[3] & 0x0F);
decoded.DisablePreFetch = (ushort)((pageResponse[4] << 8) + pageResponse[5]);
decoded.MinimumPreFetch = (ushort)((pageResponse[6] << 8) + pageResponse[7]);
decoded.MaximumPreFetch = (ushort)((pageResponse[8] << 8) + pageResponse[9]);
decoded.MaximumPreFetchCeiling = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
return decoded;
}
public static string PrettifyModePage_08(byte[] pageResponse)
{
return PrettifyModePage_08(DecodeModePage_08(pageResponse));
}
public static string PrettifyModePage_08(ModePage_08? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_08 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Caching mode page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.RCD)
sb.AppendLine("\tRead-cache is enabled");
if (page.WCE)
sb.AppendLine("\tWrite-cache is enabled");
switch (page.DemandReadRetentionPrio)
{
case 0:
sb.AppendLine("\tDrive does not distinguish between cached read data");
break;
case 1:
sb.AppendLine("\tData put by READ commands should be evicted from cache sooner than data put in read cache by other means");
break;
case 0xF:
sb.AppendLine("\tData put by READ commands should not be evicted if there is data cached by other means that can be evicted");
break;
default:
sb.AppendFormat("\tUnknown demand read retention priority value {0}", page.DemandReadRetentionPrio).AppendLine();
break;
}
switch (page.WriteRetentionPriority)
{
case 0:
sb.AppendLine("\tDrive does not distinguish between cached write data");
break;
case 1:
sb.AppendLine("\tData put by WRITE commands should be evicted from cache sooner than data put in write cache by other means");
break;
case 0xF:
sb.AppendLine("\tData put by WRITE commands should not be evicted if there is data cached by other means that can be evicted");
break;
default:
sb.AppendFormat("\tUnknown demand write retention priority value {0}", page.DemandReadRetentionPrio).AppendLine();
break;
}
if (page.MF)
2015-10-29 05:15:27 +00:00
sb.AppendLine("\tPre-fetch values indicate a block multiplier");
2015-10-29 04:21:18 +00:00
if (page.DisablePreFetch == 0)
2015-10-29 05:15:27 +00:00
sb.AppendLine("\tNo pre-fetch will be done");
2015-10-29 04:21:18 +00:00
else
{
2015-10-29 05:15:27 +00:00
sb.AppendFormat("\tPre-fetch will be done for READ commands of {0} blocks or less", page.DisablePreFetch).AppendLine();
2015-10-29 04:21:18 +00:00
if (page.MinimumPreFetch > 0)
sb.AppendFormat("At least {0} blocks will be always pre-fetched", page.MinimumPreFetch).AppendLine();
if(page.MaximumPreFetch > 0)
2015-10-29 05:15:27 +00:00
sb.AppendFormat("\tA maximum of {0} blocks will be pre-fetched", page.MaximumPreFetch).AppendLine();
2015-10-29 04:21:18 +00:00
if(page.MaximumPreFetchCeiling > 0)
2015-10-29 05:15:27 +00:00
sb.AppendFormat("\tA maximum of {0} blocks will be pre-fetched even if it is commanded to pre-fetch more", page.MaximumPreFetchCeiling).AppendLine();
2015-10-29 04:21:18 +00:00
}
return sb.ToString();
}
#endregion Mode Page 0x08: Caching page
2015-10-29 05:15:27 +00:00
#region Mode Page 0x05: Flexible disk page
/// <summary>
/// Disconnect-reconnect page
/// Page code 0x05
/// 32 bytes in SCSI-2
/// </summary>
public struct ModePage_05
{
/// <summary>
/// Parameters can be saved
/// </summary>
public bool PS;
/// <summary>
/// Data rate of peripheral device on kbit/s
/// </summary>
public ushort TransferRate;
/// <summary>
/// Heads for reading and/or writing
/// </summary>
public byte Heads;
/// <summary>
/// Sectors per revolution per head
/// </summary>
public byte SectorsPerTrack;
/// <summary>
/// Bytes of data per sector
/// </summary>
public ushort BytesPerSector;
/// <summary>
/// Cylinders used for data storage
/// </summary>
public ushort Cylinders;
/// <summary>
/// Cylinder where write precompensation starts
/// </summary>
public ushort WritePrecompCylinder;
/// <summary>
/// Cylinder where write current reduction starts
/// </summary>
public ushort WriteReduceCylinder;
/// <summary>
/// Step rate in 100 μs units
/// </summary>
public ushort DriveStepRate;
/// <summary>
/// Width of step pulse in μs
/// </summary>
public byte DriveStepPulse;
/// <summary>
/// Head settle time in 100 μs units
/// </summary>
public ushort HeadSettleDelay;
/// <summary>
/// If <see cref="TRDY"/> is <c>true</c>, specified in 1/10s of a
/// second the time waiting for read status before aborting medium
/// access. Otherwise, indicates time to way before medimum access
/// after motor on signal is asserted.
/// </summary>
public byte MotorOnDelay;
/// <summary>
/// Time in 1/10s of a second to wait before releasing the motor on
/// signal after an idle condition. 0xFF means to never release the
/// signal
/// </summary>
public byte MotorOffDelay;
/// <summary>
/// Specifies if a signal indicates that the medium is ready to be accessed
/// </summary>
public bool TRDY;
/// <summary>
/// If <c>true</c> sectors start with one. Otherwise, they start with zero.
/// </summary>
public bool SSN;
/// <summary>
/// If <c>true</c> specifies that motor on shall remain released.
/// </summary>
public bool MO;
/// <summary>
/// Number of additional step pulses per cylinder.
/// </summary>
public byte SPC;
/// <summary>
/// Write compensation value
/// </summary>
public byte WriteCompensation;
/// <summary>
/// Head loading time in ms.
/// </summary>
public byte HeadLoadDelay;
/// <summary>
/// Head unloading time in ms.
/// </summary>
public byte HeadUnloadDelay;
/// <summary>
/// Description of shugart's bus pin 34 usage
/// </summary>
public byte Pin34;
/// <summary>
/// Description of shugart's bus pin 2 usage
/// </summary>
public byte Pin2;
/// <summary>
/// Description of shugart's bus pin 4 usage
/// </summary>
public byte Pin4;
/// <summary>
/// Description of shugart's bus pin 1 usage
/// </summary>
public byte Pin1;
/// <summary>
/// Medium speed in rpm
/// </summary>
public ushort MediumRotationRate;
}
public static ModePage_05? DecodeModePage_05(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x3F) != 0x05)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 32)
return null;
ModePage_05 decoded = new ModePage_05();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.TransferRate = (ushort)((pageResponse[2] << 8) + pageResponse[3]);
decoded.Heads = pageResponse[4];
decoded.SectorsPerTrack = pageResponse[5];
decoded.BytesPerSector = (ushort)((pageResponse[6] << 8) + pageResponse[7]);
decoded.Cylinders = (ushort)((pageResponse[8] << 8) + pageResponse[9]);
decoded.WritePrecompCylinder = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
decoded.WriteReduceCylinder = (ushort)((pageResponse[12] << 8) + pageResponse[13]);
decoded.DriveStepRate = (ushort)((pageResponse[14] << 8) + pageResponse[15]);
decoded.DriveStepPulse = pageResponse[16];
decoded.HeadSettleDelay = (ushort)((pageResponse[17] << 8) + pageResponse[18]);
decoded.MotorOnDelay = pageResponse[19];
decoded.MotorOffDelay = pageResponse[20];
decoded.TRDY |= (pageResponse[21] & 0x80) == 0x80;
decoded.SSN |= (pageResponse[21] & 0x40) == 0x40;
decoded.MO |= (pageResponse[21] & 0x20) == 0x20;
decoded.SPC = (byte)(pageResponse[22] & 0x0F);
decoded.WriteCompensation = pageResponse[23];
decoded.HeadLoadDelay = pageResponse[24];
decoded.HeadUnloadDelay = pageResponse[25];
decoded.Pin34 = (byte)((pageResponse[26] & 0xF0) >> 4);
decoded.Pin2 = (byte)(pageResponse[26] & 0x0F);
decoded.Pin4 = (byte)((pageResponse[27] & 0xF0) >> 4);
decoded.Pin1 = (byte)(pageResponse[27] & 0x0F);
decoded.MediumRotationRate = (ushort)((pageResponse[28] << 8) + pageResponse[29]);
return decoded;
}
public static string PrettifyModePage_05(byte[] pageResponse)
{
return PrettifyModePage_05(DecodeModePage_05(pageResponse));
}
public static string PrettifyModePage_05(ModePage_05? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_05 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Flexible disk page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
sb.AppendFormat("\tTransfer rate: {0} kbit/s", page.TransferRate).AppendLine();
sb.AppendFormat("\t{0} heads", page.Heads).AppendLine();
sb.AppendFormat("\t{0} cylinders", page.Cylinders).AppendLine();
sb.AppendFormat("\t{0} sectors per track", page.SectorsPerTrack).AppendLine();
sb.AppendFormat("\t{0} bytes per sector", page.BytesPerSector).AppendLine();
if(page.WritePrecompCylinder < page.Cylinders)
sb.AppendFormat("\tWrite pre-compensation starts at cylinder {0}", page.WritePrecompCylinder).AppendLine();
if(page.WriteReduceCylinder < page.Cylinders)
sb.AppendFormat("\tWrite current reduction starts at cylinder {0}", page.WriteReduceCylinder).AppendLine();
if (page.DriveStepRate > 0)
sb.AppendFormat("\tDrive steps in {0} μs", (uint)page.DriveStepRate * 100).AppendLine();
if (page.DriveStepPulse > 0)
sb.AppendFormat("\tEach step pulse is {0} ms", page.DriveStepPulse).AppendLine();
if (page.HeadSettleDelay > 0)
sb.AppendFormat("\tHeads settles in {0} μs", (uint)page.HeadSettleDelay * 100).AppendLine();
if(!page.TRDY)
sb.AppendFormat("\tTarget shall wait {0} seconds before attempting to access the medium after motor on is asserted",
(double)page.MotorOnDelay * 10).AppendLine();
else
sb.AppendFormat("\tTarget shall wait {0} seconds after drive is ready before aborting medium access attemps",
(double)page.MotorOnDelay * 10).AppendLine();
if (page.MotorOffDelay != 0xFF)
sb.AppendFormat("\tTarget shall wait {0} seconds before releasing the motor on signal after becoming idle",
(double)page.MotorOffDelay * 10).AppendLine();
else
sb.AppendLine("\tTarget shall never release the motor on signal");
if (page.TRDY)
sb.AppendLine("\tThere is a drive ready signal");
if (page.SSN)
sb.AppendLine("\tSectors start at 1");
if (page.MO)
sb.AppendLine("\tThe motor on signal shall remain released");
sb.AppendFormat("\tDrive needs to do {0} step pulses per cylinder", page.SPC + 1).AppendLine();
if (page.WriteCompensation > 0)
sb.AppendFormat("\tWrite pre-compensation is {0}", page.WriteCompensation).AppendLine();
if (page.HeadLoadDelay > 0)
sb.AppendFormat("\tHead takes {0} ms to load", page.HeadLoadDelay).AppendLine();
if (page.HeadUnloadDelay > 0)
sb.AppendFormat("\tHead takes {0} ms to unload", page.HeadUnloadDelay).AppendLine();
if (page.MediumRotationRate > 0)
sb.AppendFormat("\tMedium rotates at {0} rpm", page.MediumRotationRate).AppendLine();
switch (page.Pin34 & 0x07)
{
case 0:
sb.AppendLine("\tPin 34 is unconnected");
break;
case 1:
sb.Append("\tPin 34 indicates drive is ready when active ");
if ((page.Pin34 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
case 2:
sb.Append("\tPin 34 indicates disk has changed when active ");
if ((page.Pin34 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
default:
sb.AppendFormat("\tPin 34 indicates unknown function {0} when active ", page.Pin34 & 0x07);
if ((page.Pin34 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
}
switch (page.Pin4 & 0x07)
{
case 0:
sb.AppendLine("\tPin 4 is unconnected");
break;
case 1:
sb.Append("\tPin 4 indicates drive is in use when active ");
if ((page.Pin4 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
case 2:
sb.Append("\tPin 4 indicates eject when active ");
if ((page.Pin4 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
case 3:
sb.Append("\tPin 4 indicates head load when active ");
if ((page.Pin4 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
default:
sb.AppendFormat("\tPin 4 indicates unknown function {0} when active ", page.Pin4 & 0x07);
if ((page.Pin4 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
}
switch (page.Pin2 & 0x07)
{
case 0:
sb.AppendLine("\tPin 2 is unconnected");
break;
default:
sb.AppendFormat("\tPin 2 indicates unknown function {0} when active ", page.Pin2 & 0x07);
if ((page.Pin2 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
}
switch (page.Pin1 & 0x07)
{
case 0:
sb.AppendLine("\tPin 1 is unconnected");
break;
case 1:
sb.Append("\tPin 1 indicates disk change reset when active ");
if ((page.Pin1 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
default:
sb.AppendFormat("\tPin 1 indicates unknown function {0} when active ", page.Pin1 & 0x07);
if ((page.Pin1 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
}
return sb.ToString();
}
#endregion Mode Page 0x05: Flexible disk page
2015-10-30 01:15:56 +00:00
#region Mode Page 0x03: Format device page
/// <summary>
/// Disconnect-reconnect page
/// Page code 0x03
/// 24 bytes in SCSI-2
/// </summary>
public struct ModePage_03
{
/// <summary>
/// Parameters can be saved
/// </summary>
public bool PS;
/// <summary>
/// Tracks per zone to use in dividing the capacity for the purpose of allocating alternate sectors
/// </summary>
public ushort TracksPerZone;
/// <summary>
/// Number of sectors per zone that shall be reserved for defect handling
/// </summary>
public ushort AltSectorsPerZone;
/// <summary>
/// Number of tracks per zone that shall be reserved for defect handling
/// </summary>
public ushort AltTracksPerZone;
/// <summary>
/// Number of tracks per LUN that shall be reserved for defect handling
/// </summary>
public ushort AltTracksPerLun;
/// <summary>
/// Number of physical sectors per track
/// </summary>
public ushort SectorsPerTrack;
/// <summary>
/// Bytes per physical sector
/// </summary>
public ushort BytesPerSector;
/// <summary>
/// Interleave value, target dependent
/// </summary>
public ushort Interleave;
/// <summary>
/// Sectors between last block of one track and first block of the next
/// </summary>
public ushort TrackSkew;
/// <summary>
/// Sectors between last block of a cylinder and first block of the next one
/// </summary>
public ushort CylinderSkew;
/// <summary>
/// Soft-sectored
/// </summary>
public bool SSEC;
/// <summary>
/// Hard-sectored
/// </summary>
public bool HSEC;
/// <summary>
/// Removable
/// </summary>
public bool RMB;
/// <summary>
/// If set, address are allocated progressively in a surface before going to the next.
/// Otherwise, it goes by cylinders
/// </summary>
public bool SURF;
}
public static ModePage_03? DecodeModePage_03(byte[] pageResponse)
{
if (pageResponse == null)
return null;
2015-10-30 01:16:21 +00:00
if ((pageResponse[0] & 0x3F) != 0x03)
2015-10-30 01:15:56 +00:00
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 24)
return null;
ModePage_03 decoded = new ModePage_03();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.TracksPerZone = (ushort)((pageResponse[2] << 8) + pageResponse[3]);
decoded.AltSectorsPerZone = (ushort)((pageResponse[4] << 8) + pageResponse[5]);
decoded.AltTracksPerZone = (ushort)((pageResponse[6] << 8) + pageResponse[7]);
decoded.AltTracksPerLun = (ushort)((pageResponse[8] << 8) + pageResponse[9]);
decoded.SectorsPerTrack = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
decoded.BytesPerSector = (ushort)((pageResponse[12] << 8) + pageResponse[13]);
decoded.Interleave = (ushort)((pageResponse[14] << 8) + pageResponse[15]);
decoded.TrackSkew = (ushort)((pageResponse[16] << 8) + pageResponse[17]);
decoded.CylinderSkew = (ushort)((pageResponse[18] << 8) + pageResponse[19]);
decoded.SSEC |= (pageResponse[20] & 0x80) == 0x80;
decoded.HSEC |= (pageResponse[20] & 0x40) == 0x40;
decoded.RMB |= (pageResponse[20] & 0x20) == 0x20;
decoded.SURF |= (pageResponse[20] & 0x10) == 0x10;
return decoded;
}
public static string PrettifyModePage_03(byte[] pageResponse)
{
return PrettifyModePage_03(DecodeModePage_03(pageResponse));
}
public static string PrettifyModePage_03(ModePage_03? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_03 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Format device page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
sb.AppendFormat("\t{0} tracks per zone to use in dividing the capacity for the purpose of allocating alternate sectors", page.TracksPerZone).AppendLine();
sb.AppendFormat("\t{0} sectors per zone that shall be reserved for defect handling", page.AltSectorsPerZone).AppendLine();
sb.AppendFormat("\t{0} tracks per zone that shall be reserved for defect handling", page.AltTracksPerZone).AppendLine();
sb.AppendFormat("\t{0} tracks per LUN that shall be reserved for defect handling", page.AltTracksPerLun).AppendLine();
sb.AppendFormat("\t{0} physical sectors per track", page.SectorsPerTrack).AppendLine();
sb.AppendFormat("\t{0} Bytes per physical sector", page.BytesPerSector).AppendLine();
sb.AppendFormat("\tTarget-dependent interleave value is {0}", page.Interleave).AppendLine();
sb.AppendFormat("\t{0} sectors between last block of one track and first block of the next", page.TrackSkew).AppendLine();
sb.AppendFormat("\t{0} sectors between last block of a cylinder and first block of the next one", page.CylinderSkew).AppendLine();
if (page.SSEC)
sb.AppendLine("\tDrive supports soft-sectoring format");
if (page.HSEC)
sb.AppendLine("\tDrive supports hard-sectoring format");
if (page.RMB)
sb.AppendLine("\tDrive media is removable");
if (page.SURF)
sb.AppendLine("\tSector addressing is progressively incremented in one surface before going to the next");
else
sb.AppendLine("\tSector addressing is progressively incremented in one cylinder before going to the next");
return sb.ToString();
}
#endregion Mode Page 0x03: Format device page
2015-10-30 01:37:35 +00:00
#region Mode Page 0x0B: Medium types supported page
/// <summary>
/// Disconnect-reconnect page
/// Page code 0x0B
/// 8 bytes in SCSI-2
/// </summary>
public struct ModePage_0B
{
/// <summary>
/// Parameters can be saved
/// </summary>
public bool PS;
public byte MediumType1;
public byte MediumType2;
public byte MediumType3;
public byte MediumType4;
}
public static ModePage_0B? DecodeModePage_0B(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x3F) != 0x0B)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 8)
return null;
ModePage_0B decoded = new ModePage_0B();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.MediumType1 = pageResponse[4];
decoded.MediumType2 = pageResponse[5];
decoded.MediumType3 = pageResponse[6];
decoded.MediumType4 = pageResponse[7];
return decoded;
}
public static string PrettifyModePage_0B(byte[] pageResponse)
{
return PrettifyModePage_0B(DecodeModePage_0B(pageResponse));
}
public static string PrettifyModePage_0B(ModePage_0B? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_0B page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Medium types supported page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
// TODO: Implement it when all known medium types are supported
sb.AppendLine("Not yet implemented");
return sb.ToString();
}
#endregion Mode Page 0x0B: Medium types supported page
2015-10-30 02:27:07 +00:00
#region Mode Page 0x0C: Notch page
// TODO: Implement this page
#endregion Mode Page 0x0C: Notch page
#region Mode Page 0x01: Read-write error recovery page
/// <summary>
/// Disconnect-reconnect page
/// Page code 0x01
/// 12 bytes in SCSI-2
/// </summary>
public struct ModePage_01
{
/// <summary>
/// Parameters can be saved
/// </summary>
public bool PS;
/// <summary>
/// Automatic Write Reallocation Enabled
/// </summary>
public bool AWRE;
/// <summary>
/// Automatic Read Reallocation Enabled
/// </summary>
public bool ARRE;
/// <summary>
/// Transfer block
/// </summary>
public bool TB;
/// <summary>
/// Read continuous
/// </summary>
public bool RC;
/// <summary>
/// Enable early recovery
/// </summary>
public bool EER;
/// <summary>
/// Post error reporting
/// </summary>
public bool PER;
/// <summary>
/// Disable transfer on error
/// </summary>
public bool DTE;
/// <summary>
/// Disable correction
/// </summary>
public bool DCR;
/// <summary>
/// How many times to retry a read operation
/// </summary>
public byte ReadRetryCount;
/// <summary>
/// How many bits of largest data burst error is maximum to apply error correction on it
/// </summary>
public byte CorrectionSpan;
/// <summary>
/// Offset to move the heads
/// </summary>
public sbyte HeadOffsetCount;
/// <summary>
/// Incremental position to which the recovered data strobe shall be adjusted
/// </summary>
public sbyte DataStrobeOffsetCount;
/// <summary>
/// How many times to retry a write operation
/// </summary>
public byte WriteRetryCount;
/// <summary>
/// Maximum time in ms to use in data error recovery procedures
/// </summary>
public ushort RecoveryTimeLimit;
}
public static ModePage_01? DecodeModePage_01(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x3F) != 0x01)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 12)
return null;
ModePage_01 decoded = new ModePage_01();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.AWRE |= (pageResponse[2] & 0x80) == 0x80;
decoded.ARRE |= (pageResponse[2] & 0x40) == 0x40;
decoded.TB |= (pageResponse[2] & 0x20) == 0x20;
decoded.RC |= (pageResponse[2] & 0x10) == 0x10;
decoded.EER |= (pageResponse[2] & 0x08) == 0x08;
decoded.PER |= (pageResponse[2] & 0x04) == 0x04;
decoded.DTE |= (pageResponse[2] & 0x02) == 0x02;
decoded.DCR |= (pageResponse[2] & 0x01) == 0x01;
decoded.ReadRetryCount = pageResponse[3];
decoded.CorrectionSpan = pageResponse[4];
decoded.HeadOffsetCount = (sbyte)pageResponse[5];
decoded.DataStrobeOffsetCount = (sbyte)pageResponse[6];
decoded.WriteRetryCount = pageResponse[8];
decoded.RecoveryTimeLimit = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
return decoded;
}
public static string PrettifyModePage_01(byte[] pageResponse)
{
return PrettifyModePage_01(DecodeModePage_01(pageResponse));
}
public static string PrettifyModePage_01(ModePage_01? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_01 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Read-write error recovery page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.AWRE)
sb.AppendLine("\tAutomatic write reallocation is enabled");
if (page.ARRE)
sb.AppendLine("\tAutomatic read reallocation is enabled");
if (page.TB)
sb.AppendLine("\tData not recovered within limits shall be transferred back before a CHECK CONDITION");
if (page.RC)
sb.AppendLine("\tDrive will transfer the entire requested length without delaying to perform error recovery");
if (page.EER)
sb.AppendLine("\tDrive will use the most expedient form of error recovery first");
if (page.PER)
sb.AppendLine("\tDrive shall report recovered errors");
if (page.DTE)
sb.AppendLine("\tTransfer will be terminated upon error detection");
if (page.DCR)
sb.AppendLine("\tError correction is disabled");
if (page.ReadRetryCount > 0)
sb.AppendFormat("\tDrive will repeat read operations {0} times", page.ReadRetryCount).AppendLine();
if (page.WriteRetryCount > 0)
sb.AppendFormat("\tDrive will repeat write operations {0} times", page.WriteRetryCount).AppendLine();
if (page.RecoveryTimeLimit > 0)
sb.AppendFormat("\tDrive will employ a maximum of {0} ms to recover data", page.RecoveryTimeLimit).AppendLine();
return sb.ToString();
}
#endregion Mode Page 0x01: Read-write error recovery page
2015-10-30 02:50:05 +00:00
#region Mode Page 0x04: Rigid disk drive geometry page
/// <summary>
/// Disconnect-reconnect page
/// Page code 0x04
/// 24 bytes in SCSI-2
/// </summary>
public struct ModePage_04
{
/// <summary>
/// Parameters can be saved
/// </summary>
public bool PS;
/// <summary>
/// Cylinders used for data storage
/// </summary>
public uint Cylinders;
/// <summary>
/// Heads for reading and/or writing
/// </summary>
public byte Heads;
/// <summary>
/// Cylinder where write precompensation starts
/// </summary>
public uint WritePrecompCylinder;
/// <summary>
/// Cylinder where write current reduction starts
/// </summary>
public uint WriteReduceCylinder;
/// <summary>
/// Step rate in 100 ns units
/// </summary>
public ushort DriveStepRate;
/// <summary>
/// Cylinder where the heads park
/// </summary>
public int LandingCylinder;
/// <summary>
/// Rotational position locking
/// </summary>
public byte RPL;
/// <summary>
/// Rotational skew to apply when synchronized
/// </summary>
public byte RotationalOffset;
/// <summary>
/// Medium speed in rpm
/// </summary>
public ushort MediumRotationRate;
}
public static ModePage_04? DecodeModePage_04(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x3F) != 0x04)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 24)
return null;
ModePage_04 decoded = new ModePage_04();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.Cylinders = (uint)((pageResponse[2] << 16) + (pageResponse[3] << 8) + pageResponse[4]);
decoded.Heads = pageResponse[5];
decoded.WritePrecompCylinder = (uint)((pageResponse[6] << 16) + (pageResponse[7] << 8) + pageResponse[8]);
decoded.WriteReduceCylinder = (uint)((pageResponse[9] << 16) + (pageResponse[10] << 8) + pageResponse[11]);
decoded.DriveStepRate = (ushort)((pageResponse[12] << 8) + pageResponse[13]);
decoded.LandingCylinder = ((pageResponse[14] << 16) + (pageResponse[15] << 8) + pageResponse[16]);
decoded.RPL = (byte)(pageResponse[17] & 0x03);
decoded.RotationalOffset = pageResponse[18];
decoded.MediumRotationRate = (ushort)((pageResponse[20] << 8) + pageResponse[21]);
return decoded;
}
public static string PrettifyModePage_04(byte[] pageResponse)
{
return PrettifyModePage_04(DecodeModePage_04(pageResponse));
}
public static string PrettifyModePage_04(ModePage_04? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_04 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Rigid disk drive geometry page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
sb.AppendFormat("\t{0} heads", page.Heads).AppendLine();
sb.AppendFormat("\t{0} cylinders", page.Cylinders).AppendLine();
if(page.WritePrecompCylinder < page.Cylinders)
sb.AppendFormat("\tWrite pre-compensation starts at cylinder {0}", page.WritePrecompCylinder).AppendLine();
if(page.WriteReduceCylinder < page.Cylinders)
sb.AppendFormat("\tWrite current reduction starts at cylinder {0}", page.WriteReduceCylinder).AppendLine();
if (page.DriveStepRate > 0)
sb.AppendFormat("\tDrive steps in {0} ns", (uint)page.DriveStepRate * 100).AppendLine();
sb.AppendFormat("\tHeads park in cylinder {0}", page.LandingCylinder).AppendLine();
if (page.MediumRotationRate > 0)
sb.AppendFormat("\tMedium rotates at {0} rpm", page.MediumRotationRate).AppendLine();
switch (page.RPL)
{
case 0:
sb.AppendLine("\tSpindle synchronization is disable or unsupported");
break;
case 1:
sb.AppendLine("\tTarget operates as a synchronized-spindle slave");
break;
case 2:
sb.AppendLine("\tTarget operates as a synchronized-spindle master");
break;
case 3:
sb.AppendLine("\tTarget operates as a synchronized-spindle master control");
break;
}
return sb.ToString();
}
#endregion Mode Page 0x04: Rigid disk drive geometry page
2015-10-30 02:53:36 +00:00
#region Mode Page 0x07: Verify error recovery page
/// <summary>
/// Disconnect-reconnect page
/// Page code 0x07
/// 12 bytes in SCSI-2
/// </summary>
public struct ModePage_07
{
/// <summary>
/// Parameters can be saved
/// </summary>
public bool PS;
/// <summary>
/// Enable early recovery
/// </summary>
public bool EER;
/// <summary>
/// Post error reporting
/// </summary>
public bool PER;
/// <summary>
/// Disable transfer on error
/// </summary>
public bool DTE;
/// <summary>
/// Disable correction
/// </summary>
public bool DCR;
/// <summary>
/// How many times to retry a verify operation
/// </summary>
public byte VerifyRetryCount;
/// <summary>
/// How many bits of largest data burst error is maximum to apply error correction on it
/// </summary>
public byte CorrectionSpan;
/// <summary>
/// Maximum time in ms to use in data error recovery procedures
/// </summary>
public ushort RecoveryTimeLimit;
}
public static ModePage_07? DecodeModePage_07(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x3F) != 0x07)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 12)
return null;
ModePage_07 decoded = new ModePage_07();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.EER |= (pageResponse[2] & 0x08) == 0x08;
decoded.PER |= (pageResponse[2] & 0x04) == 0x04;
decoded.DTE |= (pageResponse[2] & 0x02) == 0x02;
decoded.DCR |= (pageResponse[2] & 0x01) == 0x01;
decoded.VerifyRetryCount = pageResponse[3];
decoded.CorrectionSpan = pageResponse[4];
decoded.RecoveryTimeLimit = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
return decoded;
}
public static string PrettifyModePage_07(byte[] pageResponse)
{
return PrettifyModePage_07(DecodeModePage_07(pageResponse));
}
public static string PrettifyModePage_07(ModePage_07? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_07 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Verify error recovery page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.EER)
sb.AppendLine("\tDrive will use the most expedient form of error recovery first");
if (page.PER)
sb.AppendLine("\tDrive shall report recovered errors");
if (page.DTE)
sb.AppendLine("\tTransfer will be terminated upon error detection");
if (page.DCR)
sb.AppendLine("\tError correction is disabled");
if (page.VerifyRetryCount > 0)
sb.AppendFormat("\tDrive will repeat verify operations {0} times", page.VerifyRetryCount).AppendLine();
if (page.RecoveryTimeLimit > 0)
sb.AppendFormat("\tDrive will employ a maximum of {0} ms to recover data", page.RecoveryTimeLimit).AppendLine();
return sb.ToString();
}
#endregion Mode Page 0x07: Verify error recovery page
2015-10-30 03:29:58 +00:00
#region Mode Page 0x10: Device configuration page
/// <summary>
/// Device configuration page
/// Page code 0x10
/// 16 bytes in SCSI-2
/// </summary>
public struct ModePage_10
{
/// <summary>
/// Parameters can be saved
/// </summary>
public bool PS;
/// <summary>
/// Used in mode select to change partition to one specified in <see cref="ActivePartition"/>
/// </summary>
public bool CAP;
/// <summary>
/// Used in mode select to change format to one specified in <see cref="ActiveFormat"/>
/// </summary>
public bool CAF;
/// <summary>
/// Active format, vendor-specific
/// </summary>
public byte ActiveFormat;
/// <summary>
/// Current logical partition
/// </summary>
public byte ActivePartition;
/// <summary>
/// How full the buffer shall be before writing to medium
/// </summary>
public byte WriteBufferFullRatio;
/// <summary>
/// How empty the buffer shall be before reading more data from the medium
/// </summary>
public byte ReadBufferEmptyRatio;
/// <summary>
/// Delay in 100 ms before buffered data is forcefully written to the medium even before buffer is full
/// </summary>
public ushort WriteDelayTime;
/// <summary>
/// Drive supports recovering data from buffer
/// </summary>
public bool DBR;
/// <summary>
/// Medium has block IDs
/// </summary>
public bool BIS;
/// <summary>
/// Drive recognizes and reports setmarks
/// </summary>
public bool RSmk;
/// <summary>
/// Drive selects best speed
/// </summary>
public bool AVC;
/// <summary>
/// If drive should stop pre-reading on filemarks
/// </summary>
public byte SOCF;
/// <summary>
/// If set, recovered buffer data is LIFO, otherwise, FIFO
/// </summary>
public bool RBO;
/// <summary>
/// Report early warnings
/// </summary>
public bool REW;
/// <summary>
/// Inter-block gap
/// </summary>
public byte GapSize;
/// <summary>
/// End-of-Data format
/// </summary>
public byte EODDefined;
/// <summary>
/// EOD generation enabled
/// </summary>
public bool EEG;
/// <summary>
/// Synchronize data to medium on early warning
/// </summary>
public bool SEW;
/// <summary>
/// Bytes to reduce buffer size on early warning
/// </summary>
public uint BufferSizeEarlyWarning;
/// <summary>
/// Selected data compression algorithm
/// </summary>
public byte SelectedCompression;
}
public static ModePage_10? DecodeModePage_10(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x3F) != 0x10)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 16)
return null;
ModePage_10 decoded = new ModePage_10();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.CAP |= (pageResponse[2] & 0x40) == 0x40;
decoded.CAF |= (pageResponse[2] & 0x20) == 0x20;
decoded.ActiveFormat = (byte)(pageResponse[2] & 0x1F);
decoded.ActivePartition = pageResponse[3];
decoded.WriteBufferFullRatio = pageResponse[4];
decoded.ReadBufferEmptyRatio = pageResponse[5];
decoded.WriteDelayTime = (ushort)((pageResponse[6] << 8) + pageResponse[7]);
decoded.DBR |= (pageResponse[8] & 0x80) == 0x80;
decoded.BIS |= (pageResponse[8] & 0x40) == 0x40;
decoded.RSmk |= (pageResponse[8] & 0x20) == 0x20;
decoded.AVC |= (pageResponse[8] & 0x10) == 0x10;
decoded.RBO |= (pageResponse[8] & 0x02) == 0x02;
decoded.REW |= (pageResponse[8] & 0x01) == 0x01;
decoded.EEG |= (pageResponse[10] & 0x10) == 0x10;
decoded.SEW |= (pageResponse[10] & 0x08) == 0x08;
decoded.SOCF = (byte)((pageResponse[8] & 0x0C) >> 2);
decoded.BufferSizeEarlyWarning = (uint)((pageResponse[11] << 16) + (pageResponse[12] << 8) + pageResponse[13]);
decoded.SelectedCompression = pageResponse[14];
return decoded;
}
public static string PrettifyModePage_10(byte[] pageResponse)
{
return PrettifyModePage_10(DecodeModePage_10(pageResponse));
}
public static string PrettifyModePage_10(ModePage_10? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_10 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Device configuration page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
sb.AppendFormat("\tActive format: {0}", page.ActiveFormat).AppendLine();
sb.AppendFormat("\tActive partition: {0}", page.ActivePartition).AppendLine();
sb.AppendFormat("\tWrite buffer shall have a full ratio of {0} before being flushed to medium", page.WriteBufferFullRatio).AppendLine();
sb.AppendFormat("\tRead buffer shall have an empty ratio of {0} before more data is read from medium", page.ReadBufferEmptyRatio).AppendLine();
sb.AppendFormat("\tDrive will delay {0} ms before buffered data is forcefully written to the medium even before buffer is full", (int)page.WriteDelayTime * 100).AppendLine();
if (page.DBR)
{
sb.AppendLine("\tDrive supports recovering data from buffer");
if (page.RBO)
sb.AppendLine("\tRecovered buffer data comes in LIFO order");
else
sb.AppendLine("\tRecovered buffer data comes in FIFO order");
}
if (page.BIS)
sb.AppendLine("\tMedium supports block IDs");
if (page.RSmk)
sb.AppendLine("\tDrive reports setmarks");
switch (page.SOCF)
{
case 0:
sb.AppendLine("\tDrive will pre-read until buffer is full");
break;
case 1:
sb.AppendLine("\tDrive will pre-read until one filemark is detected");
break;
case 2:
sb.AppendLine("\tDrive will pre-read until two filemark is detected");
break;
case 3:
sb.AppendLine("\tDrive will pre-read until three filemark is detected");
break;
}
if (page.REW)
{
sb.AppendLine("\tDrive reports early warnings");
if (page.SEW)
sb.AppendLine("\tDrive will synchronize buffer to medium on early warnings");
}
switch (page.GapSize)
{
case 0:
break;
case 1:
sb.AppendLine("\tInter-block gap is long enough to support update in place");
break;
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:
case 10:
case 11:
case 12:
case 13:
case 14:
case 15:
sb.AppendFormat("\tInter-block gap is {0} times the device's defined gap size", page.GapSize).AppendLine();
break;
default:
sb.AppendFormat("\tInter-block gap is unknown value {0}", page.GapSize).AppendLine();
break;
}
if (page.EEG)
sb.AppendLine("\tDrive generates end-of-data");
switch (page.SelectedCompression)
{
case 0:
sb.AppendLine("\tDrive does not use compression");
break;
case 1:
sb.AppendLine("\tDrive uses default compression");
break;
default:
sb.AppendFormat("\tDrive uses unknown compression {0}", page.SelectedCompression).AppendLine();
break;
}
return sb.ToString();
}
#endregion Mode Page 0x10: Device configuration page
2015-10-24 06:58:49 +01:00
}
}