REFACTOR: Invert 'if' statement to reduce nesting.

This commit is contained in:
2017-12-21 06:06:19 +00:00
parent 9cd1869d1d
commit 4d886dae25
138 changed files with 9447 additions and 9806 deletions

View File

@@ -305,41 +305,38 @@ namespace DiscImageChef.Checksums
/// <param name="bb">Outs parity symbols.</param>
public int encode_rs(int[] data, out int[] bb)
{
if(initialized)
if(!initialized) throw new UnauthorizedAccessException("Trying to calculate RS without initializing!");
int i, j;
int feedback;
bb = new int[nn - kk];
Clear(ref bb, nn - kk);
for(i = kk - 1; i >= 0; i--)
{
int i, j;
int feedback;
bb = new int[nn - kk];
if(mm != 8) if(data[i] > nn) return -1; /* Illegal symbol */
Clear(ref bb, nn - kk);
for(i = kk - 1; i >= 0; i--)
feedback = index_of[data[i] ^ bb[nn - kk - 1]];
if(feedback != a0)
{
if(mm != 8) if(data[i] > nn) return -1; /* Illegal symbol */
/* feedback term is non-zero */
for(j = nn - kk - 1; j > 0; j--)
if(gg[j] != a0) bb[j] = bb[j - 1] ^ alpha_to[Modnn(gg[j] + feedback)];
else bb[j] = bb[j - 1];
feedback = index_of[data[i] ^ bb[nn - kk - 1]];
if(feedback != a0)
{
/* feedback term is non-zero */
for(j = nn - kk - 1; j > 0; j--)
if(gg[j] != a0) bb[j] = bb[j - 1] ^ alpha_to[Modnn(gg[j] + feedback)];
else bb[j] = bb[j - 1];
bb[0] = alpha_to[Modnn(gg[0] + feedback)];
}
else
{
/* feedback term is zero. encoder becomes a
* single-byte shifter */
for(j = nn - kk - 1; j > 0; j--) bb[j] = bb[j - 1];
bb[0] = 0;
}
bb[0] = alpha_to[Modnn(gg[0] + feedback)];
}
else
{
/* feedback term is zero. encoder becomes a
* single-byte shifter */
for(j = nn - kk - 1; j > 0; j--) bb[j] = bb[j - 1];
return 0;
bb[0] = 0;
}
}
throw new UnauthorizedAccessException("Trying to calculate RS without initializing!");
return 0;
}
/*
@@ -364,243 +361,236 @@ namespace DiscImageChef.Checksums
/// <param name="noEras">Number of erasures.</param>
public int eras_dec_rs(ref int[] data, out int[] erasPos, int noEras)
{
if(initialized)
if(!initialized) throw new UnauthorizedAccessException("Trying to calculate RS without initializing!");
erasPos = new int[nn - kk];
int degLambda, el, degOmega;
int i, j, r;
int u, q, tmp, num1, num2, den, discrR;
int[] recd = new int[nn];
int[] lambda = new int[nn - kk + 1]; /* Err+Eras Locator poly */
int[] s = new int[nn - kk + 1]; /* syndrome poly */
int[] b = new int[nn - kk + 1];
int[] t = new int[nn - kk + 1];
int[] omega = new int[nn - kk + 1];
int[] root = new int[nn - kk];
int[] reg = new int[nn - kk + 1];
int[] loc = new int[nn - kk];
int synError, count;
/* data[] is in polynomial form, copy and convert to index form */
for(i = nn - 1; i >= 0; i--)
{
erasPos = new int[nn - kk];
int degLambda, el, degOmega;
int i, j, r;
int u, q, tmp, num1, num2, den, discrR;
int[] recd = new int[nn];
int[] lambda = new int[nn - kk + 1]; /* Err+Eras Locator poly */
int[] s = new int[nn - kk + 1]; /* syndrome poly */
int[] b = new int[nn - kk + 1];
int[] t = new int[nn - kk + 1];
int[] omega = new int[nn - kk + 1];
int[] root = new int[nn - kk];
int[] reg = new int[nn - kk + 1];
int[] loc = new int[nn - kk];
int synError, count;
if(mm != 8) if(data[i] > nn) return -1; /* Illegal symbol */
/* data[] is in polynomial form, copy and convert to index form */
for(i = nn - 1; i >= 0; i--)
{
if(mm != 8) if(data[i] > nn) return -1; /* Illegal symbol */
recd[i] = index_of[data[i]];
}
/* first form the syndromes; i.e., evaluate recd(x) at roots of g(x)
recd[i] = index_of[data[i]];
}
/* first form the syndromes; i.e., evaluate recd(x) at roots of g(x)
* namely @**(B0+i), i = 0, ... ,(NN-KK-1)
*/
synError = 0;
for(i = 1; i <= nn - kk; i++)
{
tmp = 0;
for(j = 0; j < nn; j++)
if(recd[j] != a0) /* recd[j] in index form */
tmp ^= alpha_to[Modnn(recd[j] + (B0 + i - 1) * j)];
synError = 0;
for(i = 1; i <= nn - kk; i++)
{
tmp = 0;
for(j = 0; j < nn; j++)
if(recd[j] != a0) /* recd[j] in index form */
tmp ^= alpha_to[Modnn(recd[j] + (B0 + i - 1) * j)];
synError |= tmp; /* set flag if non-zero syndrome =>
synError |= tmp; /* set flag if non-zero syndrome =>
* error */
/* store syndrome in index form */
s[i] = index_of[tmp];
}
/* store syndrome in index form */
s[i] = index_of[tmp];
}
if(synError == 0) return 0;
if(synError == 0) return 0;
Clear(ref lambda, nn - kk);
lambda[0] = 1;
if(noEras > 0)
Clear(ref lambda, nn - kk);
lambda[0] = 1;
if(noEras > 0)
{
/* Init lambda to be the erasure locator polynomial */
lambda[1] = alpha_to[erasPos[0]];
for(i = 1; i < noEras; i++)
{
/* Init lambda to be the erasure locator polynomial */
lambda[1] = alpha_to[erasPos[0]];
for(i = 1; i < noEras; i++)
u = erasPos[i];
for(j = i + 1; j > 0; j--)
{
u = erasPos[i];
for(j = i + 1; j > 0; j--)
{
tmp = index_of[lambda[j - 1]];
if(tmp != a0) lambda[j] ^= alpha_to[Modnn(u + tmp)];
}
tmp = index_of[lambda[j - 1]];
if(tmp != a0) lambda[j] ^= alpha_to[Modnn(u + tmp)];
}
}
#if DEBUG
/* find roots of the erasure location polynomial */
for(i = 1; i <= noEras; i++) reg[i] = index_of[lambda[i]];
/* find roots of the erasure location polynomial */
for(i = 1; i <= noEras; i++) reg[i] = index_of[lambda[i]];
count = 0;
for(i = 1; i <= nn; i++)
{
q = 1;
for(j = 1; j <= noEras; j++)
if(reg[j] != a0)
{
reg[j] = Modnn(reg[j] + j);
q ^= alpha_to[reg[j]];
}
if(q == 0)
{
/* store root and error location
* number indices
*/
root[count] = i;
loc[count] = nn - i;
count++;
}
}
if(count != noEras)
{
DicConsole.DebugWriteLine("Reed Solomon", "\n lambda(x) is WRONG\n");
return -1;
}
DicConsole.DebugWriteLine("Reed Solomon",
"\n Erasure positions as determined by roots of Eras Loc Poly:\n");
for(i = 0; i < count; i++) DicConsole.DebugWriteLine("Reed Solomon", "{0} ", loc[i]);
DicConsole.DebugWriteLine("Reed Solomon", "\n");
#endif
}
for(i = 0; i < nn - kk + 1; i++) b[i] = index_of[lambda[i]];
/*
* Begin Berlekamp-Massey algorithm to determine error+erasure
* locator polynomial
*/
r = noEras;
el = noEras;
while(++r <= nn - kk)
{
/* r is the step number */
/* Compute discrepancy at the r-th step in poly-form */
discrR = 0;
for(i = 0; i < r; i++) if(lambda[i] != 0 && s[r - i] != a0) discrR ^= alpha_to[Modnn(index_of[lambda[i]] + s[r - i])];
discrR = index_of[discrR]; /* Index form */
if(discrR == a0)
{
/* 2 lines below: B(x) <-- x*B(x) */
Copydown(ref b, ref b, nn - kk);
b[0] = a0;
}
else
{
/* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
t[0] = lambda[0];
for(i = 0; i < nn - kk; i++)
if(b[i] != a0) t[i + 1] = lambda[i + 1] ^ alpha_to[Modnn(discrR + b[i])];
else t[i + 1] = lambda[i + 1];
if(2 * el <= r + noEras - 1)
{
el = r + noEras - el;
/*
* 2 lines below: B(x) <-- inv(discr_r) *
* lambda(x)
*/
for(i = 0; i <= nn - kk; i++)
b[i] = lambda[i] == 0 ? a0 : Modnn(index_of[lambda[i]] - discrR + nn);
}
else
{
/* 2 lines below: B(x) <-- x*B(x) */
Copydown(ref b, ref b, nn - kk);
b[0] = a0;
}
Copy(ref lambda, ref t, nn - kk + 1);
}
}
/* Convert lambda to index form and compute deg(lambda(x)) */
degLambda = 0;
for(i = 0; i < nn - kk + 1; i++)
{
lambda[i] = index_of[lambda[i]];
if(lambda[i] != a0) degLambda = i;
}
/*
* Find roots of the error+erasure locator polynomial. By Chien
* Search
*/
int temp = reg[0];
Copy(ref reg, ref lambda, nn - kk);
reg[0] = temp;
count = 0; /* Number of roots of lambda(x) */
count = 0;
for(i = 1; i <= nn; i++)
{
q = 1;
for(j = degLambda; j > 0; j--)
for(j = 1; j <= noEras; j++)
if(reg[j] != a0)
{
reg[j] = Modnn(reg[j] + j);
q ^= alpha_to[reg[j]];
}
if(q == 0)
{
/* store root (index-form) and error location number */
root[count] = i;
loc[count] = nn - i;
count++;
}
if(q != 0) continue;
/* store root and error location
* number indices
*/
root[count] = i;
loc[count] = nn - i;
count++;
}
#if DEBUG
DicConsole.DebugWriteLine("Reed Solomon", "\n Final error positions:\t");
if(count != noEras)
{
DicConsole.DebugWriteLine("Reed Solomon", "\n lambda(x) is WRONG\n");
return -1;
}
DicConsole.DebugWriteLine("Reed Solomon",
"\n Erasure positions as determined by roots of Eras Loc Poly:\n");
for(i = 0; i < count; i++) DicConsole.DebugWriteLine("Reed Solomon", "{0} ", loc[i]);
DicConsole.DebugWriteLine("Reed Solomon", "\n");
#endif
}
if(degLambda != count) return -1;
/*
for(i = 0; i < nn - kk + 1; i++) b[i] = index_of[lambda[i]];
/*
* Begin Berlekamp-Massey algorithm to determine error+erasure
* locator polynomial
*/
r = noEras;
el = noEras;
while(++r <= nn - kk)
{
/* r is the step number */
/* Compute discrepancy at the r-th step in poly-form */
discrR = 0;
for(i = 0; i < r; i++) if(lambda[i] != 0 && s[r - i] != a0) discrR ^= alpha_to[Modnn(index_of[lambda[i]] + s[r - i])];
discrR = index_of[discrR]; /* Index form */
if(discrR == a0)
{
/* 2 lines below: B(x) <-- x*B(x) */
Copydown(ref b, ref b, nn - kk);
b[0] = a0;
}
else
{
/* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
t[0] = lambda[0];
for(i = 0; i < nn - kk; i++)
if(b[i] != a0) t[i + 1] = lambda[i + 1] ^ alpha_to[Modnn(discrR + b[i])];
else t[i + 1] = lambda[i + 1];
if(2 * el <= r + noEras - 1)
{
el = r + noEras - el;
/*
* 2 lines below: B(x) <-- inv(discr_r) *
* lambda(x)
*/
for(i = 0; i <= nn - kk; i++)
b[i] = lambda[i] == 0 ? a0 : Modnn(index_of[lambda[i]] - discrR + nn);
}
else
{
/* 2 lines below: B(x) <-- x*B(x) */
Copydown(ref b, ref b, nn - kk);
b[0] = a0;
}
Copy(ref lambda, ref t, nn - kk + 1);
}
}
/* Convert lambda to index form and compute deg(lambda(x)) */
degLambda = 0;
for(i = 0; i < nn - kk + 1; i++)
{
lambda[i] = index_of[lambda[i]];
if(lambda[i] != a0) degLambda = i;
}
/*
* Find roots of the error+erasure locator polynomial. By Chien
* Search
*/
int temp = reg[0];
Copy(ref reg, ref lambda, nn - kk);
reg[0] = temp;
count = 0; /* Number of roots of lambda(x) */
for(i = 1; i <= nn; i++)
{
q = 1;
for(j = degLambda; j > 0; j--)
if(reg[j] != a0)
{
reg[j] = Modnn(reg[j] + j);
q ^= alpha_to[reg[j]];
}
if(q != 0) continue;
/* store root (index-form) and error location number */
root[count] = i;
loc[count] = nn - i;
count++;
}
#if DEBUG
DicConsole.DebugWriteLine("Reed Solomon", "\n Final error positions:\t");
for(i = 0; i < count; i++) DicConsole.DebugWriteLine("Reed Solomon", "{0} ", loc[i]);
DicConsole.DebugWriteLine("Reed Solomon", "\n");
#endif
if(degLambda != count) return -1;
/*
* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
* x**(NN-KK)). in index form. Also find deg(omega).
*/
degOmega = 0;
for(i = 0; i < nn - kk; i++)
{
tmp = 0;
j = degLambda < i ? degLambda : i;
for(; j >= 0; j--) if(s[i + 1 - j] != a0 && lambda[j] != a0) tmp ^= alpha_to[Modnn(s[i + 1 - j] + lambda[j])];
degOmega = 0;
for(i = 0; i < nn - kk; i++)
{
tmp = 0;
j = degLambda < i ? degLambda : i;
for(; j >= 0; j--) if(s[i + 1 - j] != a0 && lambda[j] != a0) tmp ^= alpha_to[Modnn(s[i + 1 - j] + lambda[j])];
if(tmp != 0) degOmega = i;
omega[i] = index_of[tmp];
}
if(tmp != 0) degOmega = i;
omega[i] = index_of[tmp];
}
omega[nn - kk] = a0;
omega[nn - kk] = a0;
/*
/*
* Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
* inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
*/
for(j = count - 1; j >= 0; j--)
for(j = count - 1; j >= 0; j--)
{
num1 = 0;
for(i = degOmega; i >= 0; i--) if(omega[i] != a0) num1 ^= alpha_to[Modnn(omega[i] + i * root[j])];
num2 = alpha_to[Modnn(root[j] * (B0 - 1) + nn)];
den = 0;
/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
for(i = Min(degLambda, nn - kk - 1) & ~1; i >= 0; i -= 2) if(lambda[i + 1] != a0) den ^= alpha_to[Modnn(lambda[i + 1] + i * root[j])];
if(den == 0)
{
num1 = 0;
for(i = degOmega; i >= 0; i--) if(omega[i] != a0) num1 ^= alpha_to[Modnn(omega[i] + i * root[j])];
num2 = alpha_to[Modnn(root[j] * (B0 - 1) + nn)];
den = 0;
/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
for(i = Min(degLambda, nn - kk - 1) & ~1; i >= 0; i -= 2) if(lambda[i + 1] != a0) den ^= alpha_to[Modnn(lambda[i + 1] + i * root[j])];
if(den == 0)
{
DicConsole.DebugWriteLine("Reed Solomon", "\n ERROR: denominator = 0\n");
return -1;
}
/* Apply error to data */
if(num1 != 0) data[loc[j]] ^= alpha_to[Modnn(index_of[num1] + index_of[num2] + nn - index_of[den])];
DicConsole.DebugWriteLine("Reed Solomon", "\n ERROR: denominator = 0\n");
return -1;
}
return count;
/* Apply error to data */
if(num1 != 0) data[loc[j]] ^= alpha_to[Modnn(index_of[num1] + index_of[num2] + nn - index_of[den])];
}
throw new UnauthorizedAccessException("Trying to calculate RS without initializing!");
return count;
}
}
}