diff --git a/DiscImageChef/Checksums/CDChecksums.cs b/DiscImageChef/Checksums/CDChecksums.cs
index 44980736..26ad7b08 100644
--- a/DiscImageChef/Checksums/CDChecksums.cs
+++ b/DiscImageChef/Checksums/CDChecksums.cs
@@ -455,6 +455,37 @@ namespace DiscImageChef.Checksums
CDSubRWPack4[j] = (byte)(subchannel[i++] & 0x3F);
}
+ if(MainClass.isDebug)
+ {
+ switch(CDSubRWPack1[0])
+ {
+ case 0x00:
+ Console.WriteLine("Detected Zero Pack in subchannel");
+ break;
+ case 0x08:
+ Console.WriteLine("Detected Line Graphics Pack in subchannel");
+ break;
+ case 0x09:
+ Console.WriteLine("Detected CD+G Pack in subchannel");
+ break;
+ case 0x0A:
+ Console.WriteLine("Detected CD+EG Pack in subchannel");
+ break;
+ case 0x14:
+ Console.WriteLine("Detected CD-TEXT Pack in subchannel");
+ break;
+ case 0x18:
+ Console.WriteLine("Detected CD+MIDI Pack in subchannel");
+ break;
+ case 0x38:
+ Console.WriteLine("Detected User Pack in subchannel");
+ break;
+ default:
+ Console.WriteLine("Detected unknown Pack type in subchannel: mode {0}, item {1}", Convert.ToString(CDSubRWPack1[0] & 0x38, 2), Convert.ToString(CDSubRWPack1[0] & 0x07, 2));
+ break;
+ }
+ }
+
BigEndianBitConverter.IsLittleEndian = true;
UInt16 QSubChannelCRC = BigEndianBitConverter.ToUInt16(QSubChannel, 10);
diff --git a/DiscImageChef/Checksums/ReedSolomon.cs b/DiscImageChef/Checksums/ReedSolomon.cs
new file mode 100644
index 00000000..0f9166b6
--- /dev/null
+++ b/DiscImageChef/Checksums/ReedSolomon.cs
@@ -0,0 +1,650 @@
+/***************************************************************************
+The Disc Image Chef
+----------------------------------------------------------------------------
+
+Filename : ReedSolomon.cs
+Version : 1.0
+Author(s) : Natalia Portillo
+
+Component : Checksums.
+
+Revision : $Revision$
+Last change by : $Author$
+Date : $Date$
+
+--[ Description ] ----------------------------------------------------------
+
+Calculates a Reed-Solomon
+
+--[ License ] --------------------------------------------------------------
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as
+ published by the Free Software Foundation, either version 3 of the
+ License, or (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+
+----------------------------------------------------------------------------
+Copyright (C) 2011-2014 Claunia.com
+Copyright (C) 1996 Phil Karn
+Copyright (C) 1995 Robert Morelos-Zaragoza
+Copyright (C) 1995 Hari Thirumoorthy
+****************************************************************************/
+//$Id$
+
+/*
+ * Reed-Solomon coding and decoding
+ * Phil Karn (karn at ka9q.ampr.org) September 1996
+ *
+ * This file is derived from the program "new_rs_erasures.c" by Robert
+ * Morelos-Zaragoza (robert at spectra.eng.hawaii.edu) and Hari Thirumoorthy
+ * (harit at spectra.eng.hawaii.edu), Aug 1995
+ *
+ * I've made changes to improve performance, clean up the code and make it
+ * easier to follow. Data is now passed to the encoding and decoding functions
+ * through arguments rather than in global arrays. The decode function returns
+ * the number of corrected symbols, or -1 if the word is uncorrectable.
+ *
+ * This code supports a symbol size from 2 bits up to 16 bits,
+ * implying a block size of 3 2-bit symbols (6 bits) up to 65535
+ * 16-bit symbols (1,048,560 bits). The code parameters are set in rs.h.
+ *
+ * Note that if symbols larger than 8 bits are used, the type of each
+ * data array element switches from unsigned char to unsigned int. The
+ * caller must ensure that elements larger than the symbol range are
+ * not passed to the encoder or decoder.
+ *
+ */
+
+using System;
+
+namespace DiscImageChef.Checksums
+{
+ public class ReedSolomon
+ {
+ /* Primitive polynomials - see Lin & Costello, Error Control Coding Appendix A,
+ * and Lee & Messerschmitt, Digital Communication p. 453.
+ */
+ int[] Pp;
+ /* index->polynomial form conversion table */
+ int[] Alpha_to;
+ /* Polynomial->index form conversion table */
+ int[] Index_of;
+ /* Generator polynomial g(x)
+ * Degree of g(x) = 2*TT
+ * has roots @**B0, @**(B0+1), ... ,@^(B0+2*TT-1)
+ */
+ int[] Gg;
+ int MM, KK, NN;
+ /* No legal value in index form represents zero, so
+ * we need a special value for this purpose
+ */
+ int A0;
+ bool initialized;
+ /* Alpha exponent for the first root of the generator polynomial */
+ const int B0 = 1;
+
+ ///
+ /// Initializes the Reed-Solomon with RS(n,k) with GF(2^m)
+ ///
+ public void InitRS(int n, int k, int m)
+ {
+ switch (m)
+ {
+ case 2:
+ Pp = new []{ 1, 1, 1 };
+ break;
+ case 3:
+ Pp = new []{ 1, 1, 0, 1 };
+ break;
+ case 4:
+ Pp = new []{ 1, 1, 0, 0, 1 };
+ break;
+ case 5:
+ Pp = new []{ 1, 0, 1, 0, 0, 1 };
+ break;
+ case 6:
+ Pp = new []{ 1, 1, 0, 0, 0, 0, 1 };
+ break;
+ case 7:
+ Pp = new []{ 1, 0, 0, 1, 0, 0, 0, 1 };
+ break;
+ case 8:
+ Pp = new []{ 1, 0, 1, 1, 1, 0, 0, 0, 1 };
+ break;
+ case 9:
+ Pp = new []{ 1, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
+ break;
+ case 10:
+ Pp = new []{ 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
+ break;
+ case 11:
+ Pp = new []{ 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
+ break;
+ case 12:
+ Pp = new []{ 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1 };
+ break;
+ case 13:
+ Pp = new []{ 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
+ break;
+ case 14:
+ Pp = new []{ 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 };
+ break;
+ case 15:
+ Pp = new []{ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
+ break;
+ case 16:
+ Pp = new []{ 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1 };
+ break;
+ default:
+ throw new ArgumentOutOfRangeException("m", "m must be between 2 and 16 inclusive");
+ }
+
+ MM = m;
+ KK = k;
+ NN = n;
+ A0 = n;
+ Alpha_to = new int[n + 1];
+ Index_of = new int[n + 1];
+
+
+ Gg = new int[NN - KK + 1];
+
+ generate_gf();
+ gen_poly();
+
+ initialized = true;
+ }
+
+ int modnn(int x)
+ {
+ while (x >= NN)
+ {
+ x -= NN;
+ x = (x >> MM) + (x & NN);
+ }
+ return x;
+ }
+
+ static int min(int a, int b)
+ {
+ return ((a) < (b) ? (a) : (b));
+ }
+
+ static void CLEAR(ref int[] a, int n)
+ {
+ int ci;
+ for (ci = (n) - 1; ci >= 0; ci--)
+ (a)[ci] = 0;
+ }
+
+ static void COPY(ref int[] a, ref int[] b, int n)
+ {
+ int ci;
+ for (ci = (n) - 1; ci >= 0; ci--)
+ (a)[ci] = (b)[ci];
+ }
+
+ static void COPYDOWN(ref int[] a, ref int[] b, int n)
+ {
+ int ci;
+ for (ci = (n) - 1; ci >= 0; ci--)
+ (a)[ci] = (b)[ci];
+ }
+
+ /* generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m]
+ lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
+ polynomial form -> index form index_of[j=alpha**i] = i
+ alpha=2 is the primitive element of GF(2**m)
+ HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
+ Let @ represent the primitive element commonly called "alpha" that
+ is the root of the primitive polynomial p(x). Then in GF(2^m), for any
+ 0 <= i <= 2^m-2,
+ @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
+ where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
+ of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
+ example the polynomial representation of @^5 would be given by the binary
+ representation of the integer "alpha_to[5]".
+ Similarily, index_of[] can be used as follows:
+ As above, let @ represent the primitive element of GF(2^m) that is
+ the root of the primitive polynomial p(x). In order to find the power
+ of @ (alpha) that has the polynomial representation
+ a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
+ we consider the integer "i" whose binary representation with a(0) being LSB
+ and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
+ "index_of[i]". Now, @^index_of[i] is that element whose polynomial
+ representation is (a(0),a(1),a(2),...,a(m-1)).
+ NOTE:
+ The element alpha_to[2^m-1] = 0 always signifying that the
+ representation of "@^infinity" = 0 is (0,0,0,...,0).
+ Similarily, the element index_of[0] = A0 always signifying
+ that the power of alpha which has the polynomial representation
+ (0,0,...,0) is "infinity".
+
+ */
+ void generate_gf()
+ {
+ int i, mask;
+
+ mask = 1;
+ Alpha_to[MM] = 0;
+ for (i = 0; i < MM; i++)
+ {
+ Alpha_to[i] = mask;
+ Index_of[Alpha_to[i]] = i;
+ /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
+ if (Pp[i] != 0)
+ Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */
+ mask <<= 1; /* single left-shift */
+ }
+ Index_of[Alpha_to[MM]] = MM;
+ /*
+ * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
+ * poly-repr of @^i shifted left one-bit and accounting for any @^MM
+ * term that may occur when poly-repr of @^i is shifted.
+ */
+ mask >>= 1;
+ for (i = MM + 1; i < NN; i++)
+ {
+ if (Alpha_to[i - 1] >= mask)
+ Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
+ else
+ Alpha_to[i] = Alpha_to[i - 1] << 1;
+ Index_of[Alpha_to[i]] = i;
+ }
+ Index_of[0] = A0;
+ Alpha_to[NN] = 0;
+ }
+
+ /*
+ * Obtain the generator polynomial of the TT-error correcting, length
+ * NN=(2**MM -1) Reed Solomon code from the product of (X+@**(B0+i)), i = 0,
+ * ... ,(2*TT-1)
+ *
+ * Examples:
+ *
+ * If B0 = 1, TT = 1. deg(g(x)) = 2*TT = 2.
+ * g(x) = (x+@) (x+@**2)
+ *
+ * If B0 = 0, TT = 2. deg(g(x)) = 2*TT = 4.
+ * g(x) = (x+1) (x+@) (x+@**2) (x+@**3)
+ */
+ void gen_poly()
+ {
+ int i, j;
+
+ Gg[0] = Alpha_to[B0];
+ Gg[1] = 1; /* g(x) = (X+@**B0) initially */
+ for (i = 2; i <= NN - KK; i++)
+ {
+ Gg[i] = 1;
+ /*
+ * Below multiply (Gg[0]+Gg[1]*x + ... +Gg[i]x^i) by
+ * (@**(B0+i-1) + x)
+ */
+ for (j = i - 1; j > 0; j--)
+ if (Gg[j] != 0)
+ Gg[j] = Gg[j - 1] ^ Alpha_to[modnn((Index_of[Gg[j]]) + B0 + i - 1)];
+ else
+ Gg[j] = Gg[j - 1];
+ /* Gg[0] can never be zero */
+ Gg[0] = Alpha_to[modnn((Index_of[Gg[0]]) + B0 + i - 1)];
+ }
+ /* convert Gg[] to index form for quicker encoding */
+ for (i = 0; i <= NN - KK; i++)
+ Gg[i] = Index_of[Gg[i]];
+ }
+
+ /*
+ * take the string of symbols in data[i], i=0..(k-1) and encode
+ * systematically to produce NN-KK parity symbols in bb[0]..bb[NN-KK-1] data[]
+ * is input and bb[] is output in polynomial form. Encoding is done by using
+ * a feedback shift register with appropriate connections specified by the
+ * elements of Gg[], which was generated above. Codeword is c(X) =
+ * data(X)*X**(NN-KK)+ b(X)
+ */
+ ///
+ /// Takes the symbols in data to output parity in bb.
+ ///
+ /// Returns -1 if an illegal symbol is found.
+ /// Data symbols.
+ /// Outs parity symbols.
+ public int encode_rs(int[] data, out int[] bb)
+ {
+ if (initialized)
+ {
+ int i, j;
+ int feedback;
+ bb = new int[NN - KK];
+
+ CLEAR(ref bb, NN - KK);
+ for (i = KK - 1; i >= 0; i--)
+ {
+ if (MM != 8)
+ {
+ if (data[i] > NN)
+ return -1; /* Illegal symbol */
+ }
+ feedback = Index_of[data[i] ^ bb[NN - KK - 1]];
+ if (feedback != A0)
+ { /* feedback term is non-zero */
+ for (j = NN - KK - 1; j > 0; j--)
+ if (Gg[j] != A0)
+ bb[j] = bb[j - 1] ^ Alpha_to[modnn(Gg[j] + feedback)];
+ else
+ bb[j] = bb[j - 1];
+ bb[0] = Alpha_to[modnn(Gg[0] + feedback)];
+ }
+ else
+ { /* feedback term is zero. encoder becomes a
+ * single-byte shifter */
+ for (j = NN - KK - 1; j > 0; j--)
+ bb[j] = bb[j - 1];
+ bb[0] = 0;
+ }
+ }
+ return 0;
+ }
+ throw new UnauthorizedAccessException("Trying to calculate RS without initializing!");
+ }
+
+ /*
+ * Performs ERRORS+ERASURES decoding of RS codes. If decoding is successful,
+ * writes the codeword into data[] itself. Otherwise data[] is unaltered.
+ *
+ * Return number of symbols corrected, or -1 if codeword is illegal
+ * or uncorrectable.
+ *
+ * First "no_eras" erasures are declared by the calling program. Then, the
+ * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
+ * If the number of channel errors is not greater than "t_after_eras" the
+ * transmitted codeword will be recovered. Details of algorithm can be found
+ * in R. Blahut's "Theory ... of Error-Correcting Codes".
+ */
+ ///
+ /// Decodes the RS. If decoding is successful outputs corrected data symbols.
+ ///
+ /// Returns corrected symbols, -1 if illegal or uncorrectable
+ /// Data symbols.
+ /// Position of erasures.
+ /// Number of erasures.
+ public int eras_dec_rs(ref int[] data, out int[] eras_pos, int no_eras)
+ {
+ if (initialized)
+ {
+ eras_pos = new int[NN - KK];
+ int deg_lambda, el, deg_omega;
+ int i, j, r;
+ int u, q, tmp, num1, num2, den, discr_r;
+ int[] recd = new int[NN];
+ int[] lambda = new int[NN - KK + 1]; /* Err+Eras Locator poly */
+ int[] s = new int[NN - KK + 1]; /* syndrome poly */
+ int[] b = new int[NN - KK + 1];
+ int[] t = new int[NN - KK + 1];
+ int[] omega = new int[NN - KK + 1];
+ int[] root = new int[NN - KK];
+ int[] reg = new int[NN - KK + 1];
+ int[] loc = new int[NN - KK];
+ int syn_error, count;
+
+ /* data[] is in polynomial form, copy and convert to index form */
+ for (i = NN - 1; i >= 0; i--)
+ {
+ if (MM != 8)
+ {
+ if (data[i] > NN)
+ return -1; /* Illegal symbol */
+ }
+ recd[i] = Index_of[data[i]];
+ }
+ /* first form the syndromes; i.e., evaluate recd(x) at roots of g(x)
+ * namely @**(B0+i), i = 0, ... ,(NN-KK-1)
+ */
+ syn_error = 0;
+ for (i = 1; i <= NN - KK; i++)
+ {
+ tmp = 0;
+ for (j = 0; j < NN; j++)
+ if (recd[j] != A0) /* recd[j] in index form */
+ tmp ^= Alpha_to[modnn(recd[j] + (B0 + i - 1) * j)];
+ syn_error |= tmp; /* set flag if non-zero syndrome =>
+ * error */
+ /* store syndrome in index form */
+ s[i] = Index_of[tmp];
+ }
+ if (syn_error == 0)
+ {
+ /*
+ * if syndrome is zero, data[] is a codeword and there are no
+ * errors to correct. So return data[] unmodified
+ */
+ return 0;
+ }
+ CLEAR(ref lambda, NN - KK);
+ lambda[0] = 1;
+ if (no_eras > 0)
+ {
+ /* Init lambda to be the erasure locator polynomial */
+ lambda[1] = Alpha_to[eras_pos[0]];
+ for (i = 1; i < no_eras; i++)
+ {
+ u = eras_pos[i];
+ for (j = i + 1; j > 0; j--)
+ {
+ tmp = Index_of[lambda[j - 1]];
+ if (tmp != A0)
+ lambda[j] ^= Alpha_to[modnn(u + tmp)];
+ }
+ }
+ if (MainClass.isDebug)
+ {
+ /* find roots of the erasure location polynomial */
+ for (i = 1; i <= no_eras; i++)
+ reg[i] = Index_of[lambda[i]];
+ count = 0;
+ for (i = 1; i <= NN; i++)
+ {
+ q = 1;
+ for (j = 1; j <= no_eras; j++)
+ if (reg[j] != A0)
+ {
+ reg[j] = modnn(reg[j] + j);
+ q ^= Alpha_to[reg[j]];
+ }
+ if (q == 0)
+ {
+ /* store root and error location
+ * number indices
+ */
+ root[count] = i;
+ loc[count] = NN - i;
+ count++;
+ }
+ }
+ if (count != no_eras)
+ {
+ Console.WriteLine("\n lambda(x) is WRONG\n");
+ return -1;
+ }
+
+ Console.WriteLine("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
+ for (i = 0; i < count; i++)
+ Console.WriteLine("{0} ", loc[i]);
+ Console.WriteLine("\n");
+ }
+ }
+ for (i = 0; i < NN - KK + 1; i++)
+ b[i] = Index_of[lambda[i]];
+
+ /*
+ * Begin Berlekamp-Massey algorithm to determine error+erasure
+ * locator polynomial
+ */
+ r = no_eras;
+ el = no_eras;
+ while (++r <= NN - KK)
+ { /* r is the step number */
+ /* Compute discrepancy at the r-th step in poly-form */
+ discr_r = 0;
+ for (i = 0; i < r; i++)
+ {
+ if ((lambda[i] != 0) && (s[r - i] != A0))
+ {
+ discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
+ }
+ }
+ discr_r = Index_of[discr_r]; /* Index form */
+ if (discr_r == A0)
+ {
+ /* 2 lines below: B(x) <-- x*B(x) */
+ COPYDOWN(ref b, ref b, NN - KK);
+ b[0] = A0;
+ }
+ else
+ {
+ /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
+ t[0] = lambda[0];
+ for (i = 0; i < NN - KK; i++)
+ {
+ if (b[i] != A0)
+ t[i + 1] = lambda[i + 1] ^ Alpha_to[modnn(discr_r + b[i])];
+ else
+ t[i + 1] = lambda[i + 1];
+ }
+ if (2 * el <= r + no_eras - 1)
+ {
+ el = r + no_eras - el;
+ /*
+ * 2 lines below: B(x) <-- inv(discr_r) *
+ * lambda(x)
+ */
+ for (i = 0; i <= NN - KK; i++)
+ b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
+ }
+ else
+ {
+ /* 2 lines below: B(x) <-- x*B(x) */
+ COPYDOWN(ref b, ref b, NN - KK);
+ b[0] = A0;
+ }
+ COPY(ref lambda, ref t, NN - KK + 1);
+ }
+ }
+
+ /* Convert lambda to index form and compute deg(lambda(x)) */
+ deg_lambda = 0;
+ for (i = 0; i < NN - KK + 1; i++)
+ {
+ lambda[i] = Index_of[lambda[i]];
+ if (lambda[i] != A0)
+ deg_lambda = i;
+ }
+ /*
+ * Find roots of the error+erasure locator polynomial. By Chien
+ * Search
+ */
+ int temp = reg[0];
+ COPY(ref reg, ref lambda, NN - KK);
+ reg[0] = temp;
+ count = 0; /* Number of roots of lambda(x) */
+ for (i = 1; i <= NN; i++)
+ {
+ q = 1;
+ for (j = deg_lambda; j > 0; j--)
+ if (reg[j] != A0)
+ {
+ reg[j] = modnn(reg[j] + j);
+ q ^= Alpha_to[reg[j]];
+ }
+ if (q == 0)
+ {
+ /* store root (index-form) and error location number */
+ root[count] = i;
+ loc[count] = NN - i;
+ count++;
+ }
+ }
+
+ if (MainClass.isDebug)
+ {
+ Console.WriteLine("\n Final error positions:\t");
+ for (i = 0; i < count; i++)
+ Console.WriteLine("{0} ", loc[i]);
+ Console.WriteLine("\n");
+ }
+ if (deg_lambda != count)
+ {
+ /*
+ * deg(lambda) unequal to number of roots => uncorrectable
+ * error detected
+ */
+ return -1;
+ }
+ /*
+ * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
+ * x**(NN-KK)). in index form. Also find deg(omega).
+ */
+ deg_omega = 0;
+ for (i = 0; i < NN - KK; i++)
+ {
+ tmp = 0;
+ j = (deg_lambda < i) ? deg_lambda : i;
+ for (; j >= 0; j--)
+ {
+ if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
+ tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
+ }
+ if (tmp != 0)
+ deg_omega = i;
+ omega[i] = Index_of[tmp];
+ }
+ omega[NN - KK] = A0;
+
+ /*
+ * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
+ * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
+ */
+ for (j = count - 1; j >= 0; j--)
+ {
+ num1 = 0;
+ for (i = deg_omega; i >= 0; i--)
+ {
+ if (omega[i] != A0)
+ num1 ^= Alpha_to[modnn(omega[i] + i * root[j])];
+ }
+ num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
+ den = 0;
+
+ /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
+ for (i = min(deg_lambda, NN - KK - 1) & ~1; i >= 0; i -= 2)
+ {
+ if (lambda[i + 1] != A0)
+ den ^= Alpha_to[modnn(lambda[i + 1] + i * root[j])];
+ }
+ if (den == 0)
+ {
+ if (MainClass.isDebug)
+ {
+ Console.WriteLine("\n ERROR: denominator = 0\n");
+ }
+ return -1;
+ }
+ /* Apply error to data */
+ if (num1 != 0)
+ {
+ data[loc[j]] ^= Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
+ }
+ }
+ return count;
+ }
+ throw new UnauthorizedAccessException("Trying to calculate RS without initializing!");
+ }
+ }
+}
diff --git a/DiscImageChef/DiscImageChef.csproj b/DiscImageChef/DiscImageChef.csproj
index 1851282c..58148609 100644
--- a/DiscImageChef/DiscImageChef.csproj
+++ b/DiscImageChef/DiscImageChef.csproj
@@ -97,6 +97,7 @@
+