* DiscImageChef/Checksums/MD5Context.cs:

* DiscImageChef.Checksums/MD5Context.cs:
	* DiscImageChef/Checksums/CDChecksums.cs:
	* DiscImageChef.Checksums/ReedSolomon.cs:
	* DiscImageChef.Checksums/SHA1Context.cs:
	* DiscImageChef/Checksums/ReedSolomon.cs:
	* DiscImageChef/Checksums/SHA1Context.cs:
	* DiscImageChef.Checksums/CDChecksums.cs:
	* DiscImageChef/Checksums/CRC64Context.cs:
	* DiscImageChef/Checksums/CRC32Context.cs:
	* DiscImageChef/Checksums/CRC16Context.cs:
	* DiscImageChef.Checksums/CRC64Context.cs:
	* DiscImageChef.Checksums/CRC32Context.cs:
	* DiscImageChef.Checksums/CRC16Context.cs:
	* DiscImageChef/Checksums/SHA256Context.cs:
	* DiscImageChef.Checksums/SHA512Context.cs:
	* DiscImageChef.Checksums/SHA384Context.cs:
	* DiscImageChef/Checksums/SHA384Context.cs:
	* DiscImageChef/Checksums/SHA512Context.cs:
	* DiscImageChef.Checksums/SHA256Context.cs:
	* DiscImageChef.Checksums/Adler32Context.cs:
	* DiscImageChef/Checksums/SpamSumContext.cs:
	* DiscImageChef/Checksums/Adler32Context.cs:
	* DiscImageChef.Checksums/SpamSumContext.cs:
	* DiscImageChef.Checksums/FletcherContext.cs:
	* DiscImageChef/Checksums/FletcherContext.cs:
	* DiscImageChef.Checksums/RIPEMD160Context.cs:
	* DiscImageChef/Checksums/RIPEMD160Context.cs:
	* DiscImageChef.Checksums/Properties/AssemblyInfo.cs:
	* DiscImageChef.Checksums/DiscImageChef.Checksums.csproj:
	  Move checksums to a separate library.

	* DiscImageChef/Swapping.cs:
	* DiscImageChef/PrintHex.cs:
	* DiscImageChef/ArrayFill.cs:
	* DiscImageChef/DateHandlers.cs:
	* DiscImageChef/StringHandlers.cs:
	* DiscImageChef.Helpers/Swapping.cs:
	* DiscImageChef.Helpers/PrintHex.cs:
	* DiscImageChef/DiscImageChef.csproj:
	* DiscImageChef.Helpers/ArrayFill.cs:
	* DiscImageChef.Helpers/DateHandlers.cs:
	* DiscImageChef/BigEndianBitConverter.cs:
	* DiscImageChef.Helpers/StringHandlers.cs:
	* DiscImageChef/EndianAwareBinaryReader.cs:
	* DiscImageChef.Helpers/BigEndianBitConverter.cs:
	* DiscImageChef.Helpers/EndianAwareBinaryReader.cs:
	* DiscImageChef.Helpers/Properties/AssemblyInfo.cs:
	* DiscImageChef.Helpers/DiscImageChef.Helpers.csproj:
	  Move helpers to a separate library.

	* DiscImageChef.sln:
	  Move helpers to a separate library.
	Move checksums to a separate library.
This commit is contained in:
2015-10-05 18:58:13 +01:00
parent 4001c1b21e
commit 9530cc1a7a
31 changed files with 284 additions and 58 deletions

View File

@@ -1,70 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : ArrayFill.cs
Version : 1.0
Author(s) : https://github.com/mykohsu
Component : Helpers
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Fills an array with a
--[ License ] --------------------------------------------------------------
No license specified by creator.
Published on https://github.com/mykohsu/Extensions/blob/master/ArrayExtensions.cs
Assuming open source.
----------------------------------------------------------------------------
Copyright (C) 2014 mykohsu
****************************************************************************/
//$Id$
using System;
namespace DiscImageChef
{
public static class ArrayHelpers
{
public static void ArrayFill<T>(T[] destinationArray, T value)
{
// if called with a single value, wrap the value in an array and call the main function
ArrayFill<T>(destinationArray, new T[] { value });
}
public static void ArrayFill<T>(T[] destinationArray, T[] value)
{
if (destinationArray == null)
{
throw new ArgumentNullException("destinationArray");
}
if (value.Length > destinationArray.Length)
{
throw new ArgumentException("Length of value array must not be more than length of destination");
}
// set the initial array value
Array.Copy(value, destinationArray, value.Length);
int arrayToFillHalfLength = destinationArray.Length / 2;
int copyLength;
for(copyLength = value.Length; copyLength < arrayToFillHalfLength; copyLength <<= 1)
{
Array.Copy(destinationArray, 0, destinationArray, copyLength, copyLength);
}
Array.Copy(destinationArray, 0, destinationArray, copyLength, destinationArray.Length - copyLength);
}
}
}

View File

@@ -1,660 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : BigEndianBitConverter.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Program tools
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Override of System.BitConverter that knows how to handle big-endian.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
****************************************************************************/
//$Id$
using System;
using System.Linq;
namespace DiscImageChef
{
/// <summary>
/// Converts base data types to an array of bytes, and an array of bytes to base
/// data types.
/// All info taken from the meta data of System.BitConverter. This implementation
/// allows for Endianness consideration.
///</summary>
public static class BigEndianBitConverter
{
/// <summary>
/// Indicates the byte order ("endianess") in which data is stored in this computer
/// architecture.
///</summary>
public static bool IsLittleEndian { get; set; }
// should default to false, which is what we want for Empire
/// <summary>
/// Converts the specified double-precision floating point number to a 64-bit
/// signed integer.
///
/// Parameters:
/// value:
/// The number to convert.
///
/// Returns:
/// A 64-bit signed integer whose value is equivalent to value.
///</summary>
public static long DoubleToInt64Bits(double value)
{
throw new NotImplementedException();
}
///
/// <summary>
/// Returns the specified Boolean value as an array of bytes.
///
/// Parameters:
/// value:
/// A Boolean value.
///
/// Returns:
/// An array of bytes with length 1.
///</summary>
public static byte[] GetBytes(bool value)
{
return !IsLittleEndian ? BitConverter.GetBytes(value) : BitConverter.GetBytes(value).Reverse().ToArray();
}
///
/// <summary>
/// Returns the specified Unicode character value as an array of bytes.
///
/// Parameters:
/// value:
/// A character to convert.
///
/// Returns:
/// An array of bytes with length 2.
///</summary>
public static byte[] GetBytes(char value)
{
return !IsLittleEndian ? BitConverter.GetBytes(value) : BitConverter.GetBytes(value).Reverse().ToArray();
}
///
/// <summary>
/// Returns the specified double-precision floating point value as an array of
/// bytes.
///
/// Parameters:
/// value:
/// The number to convert.
///
/// Returns:
/// An array of bytes with length 8.
///</summary>
public static byte[] GetBytes(double value)
{
return !IsLittleEndian ? BitConverter.GetBytes(value) : BitConverter.GetBytes(value).Reverse().ToArray();
}
///
/// <summary>
/// Returns the specified single-precision floating point value as an array of
/// bytes.
///
/// Parameters:
/// value:
/// The number to convert.
///
/// Returns:
/// An array of bytes with length 4.
///</summary>
public static byte[] GetBytes(float value)
{
return !IsLittleEndian ? BitConverter.GetBytes(value) : BitConverter.GetBytes(value).Reverse().ToArray();
}
///
/// <summary>
/// Returns the specified 32-bit signed integer value as an array of bytes.
///
/// Parameters:
/// value:
/// The number to convert.
///
/// Returns:
/// An array of bytes with length 4.
///</summary>
public static byte[] GetBytes(int value)
{
return !IsLittleEndian ? BitConverter.GetBytes(value) : BitConverter.GetBytes(value).Reverse().ToArray();
}
///
/// <summary>
/// Returns the specified 64-bit signed integer value as an array of bytes.
///
/// Parameters:
/// value:
/// The number to convert.
///
/// Returns:
/// An array of bytes with length 8.
///</summary>
public static byte[] GetBytes(long value)
{
return !IsLittleEndian ? BitConverter.GetBytes(value) : BitConverter.GetBytes(value).Reverse().ToArray();
}
///
/// <summary>
/// Returns the specified 16-bit signed integer value as an array of bytes.
///
/// Parameters:
/// value:
/// The number to convert.
///
/// Returns:
/// An array of bytes with length 2.
///</summary>
public static byte[] GetBytes(short value)
{
return !IsLittleEndian ? BitConverter.GetBytes(value) : BitConverter.GetBytes(value).Reverse().ToArray();
}
///
/// <summary>
/// Returns the specified 32-bit unsigned integer value as an array of bytes.
///
/// Parameters:
/// value:
/// The number to convert.
///
/// Returns:
/// An array of bytes with length 4.
///</summary>
//[CLSCompliant(false)]
public static byte[] GetBytes(uint value)
{
return !IsLittleEndian ? BitConverter.GetBytes(value) : BitConverter.GetBytes(value).Reverse().ToArray();
}
///
/// <summary>
/// Returns the specified 64-bit unsigned integer value as an array of bytes.
///
/// Parameters:
/// value:
/// The number to convert.
///
/// Returns:
/// An array of bytes with length 8.
///</summary>
//[CLSCompliant(false)]
public static byte[] GetBytes(ulong value)
{
return !IsLittleEndian ? BitConverter.GetBytes(value) : BitConverter.GetBytes(value).Reverse().ToArray();
}
///
/// <summary>
/// Returns the specified 16-bit unsigned integer value as an array of bytes.
///
/// Parameters:
/// value:
/// The number to convert.
///
/// Returns:
/// An array of bytes with length 2.
///</summary>
public static byte[] GetBytes(ushort value)
{
return !IsLittleEndian ? BitConverter.GetBytes(value) : BitConverter.GetBytes(value).Reverse().ToArray();
}
///
/// <summary>
/// Converts the specified 64-bit signed integer to a double-precision floating
/// point number.
///
/// Parameters:
/// value:
/// The number to convert.
///
/// Returns:
/// A double-precision floating point number whose value is equivalent to value.
///</summary>
public static double Int64BitsToDouble(long value)
{
throw new NotImplementedException();
}
///
/// <summary>
/// Returns a Boolean value converted from one byte at a specified position in
/// a byte array.
///
/// Parameters:
/// value:
/// An array of bytes.
///
/// startIndex:
/// The starting position within value.
///
/// Returns:
/// true if the byte at startIndex in value is nonzero; otherwise, false.
///
/// Exceptions:
/// System.ArgumentNullException:
/// value is null.
///
/// System.ArgumentOutOfRangeException:
/// startIndex is less than zero or greater than the length of value minus 1.
///</summary>
public static bool ToBoolean(byte[] value, int startIndex)
{
throw new NotImplementedException();
}
///
/// <summary>
/// Returns a Unicode character converted from two bytes at a specified position
/// in a byte array.
///
/// Parameters:
/// value:
/// An array.
///
/// startIndex:
/// The starting position within value.
///
/// Returns:
/// A character formed by two bytes beginning at startIndex.
///
/// Exceptions:
/// System.ArgumentException:
/// startIndex equals the length of value minus 1.
///
/// System.ArgumentNullException:
/// value is null.
///
/// System.ArgumentOutOfRangeException:
/// startIndex is less than zero or greater than the length of value minus 1.
///</summary>
public static char ToChar(byte[] value, int startIndex)
{
throw new NotImplementedException();
}
///
/// <summary>
/// Returns a double-precision floating point number converted from eight bytes
/// at a specified position in a byte array.
///
/// Parameters:
/// value:
/// An array of bytes.
///
/// startIndex:
/// The starting position within value.
///
/// Returns:
/// A double precision floating point number formed by eight bytes beginning
/// at startIndex.
///
/// Exceptions:
/// System.ArgumentException:
/// startIndex is greater than or equal to the length of value minus 7, and is
/// less than or equal to the length of value minus 1.
///
/// System.ArgumentNullException:
/// value is null.
///
/// System.ArgumentOutOfRangeException:
/// startIndex is less than zero or greater than the length of value minus 1.
///</summary>
public static double ToDouble(byte[] value, int startIndex)
{
throw new NotImplementedException();
}
///
/// <summary>
/// Returns a 16-bit signed integer converted from two bytes at a specified position
/// in a byte array.
///
/// Parameters:
/// value:
/// An array of bytes.
///
/// startIndex:
/// The starting position within value.
///
/// Returns:
/// A 16-bit signed integer formed by two bytes beginning at startIndex.
///
/// Exceptions:
/// System.ArgumentException:
/// startIndex equals the length of value minus 1.
///
/// System.ArgumentNullException:
/// value is null.
///
/// System.ArgumentOutOfRangeException:
/// startIndex is less than zero or greater than the length of value minus 1.
///</summary>
public static short ToInt16(byte[] value, int startIndex)
{
return !IsLittleEndian ? BitConverter.ToInt16(value, startIndex) : BitConverter.ToInt16(value.Reverse().ToArray(), value.Length - sizeof(Int16) - startIndex);
}
///
/// <summary>
/// Returns a 32-bit signed integer converted from four bytes at a specified
/// position in a byte array.
///
/// Parameters:
/// value:
/// An array of bytes.
///
/// startIndex:
/// The starting position within value.
///
/// Returns:
/// A 32-bit signed integer formed by four bytes beginning at startIndex.
///
/// Exceptions:
/// System.ArgumentException:
/// startIndex is greater than or equal to the length of value minus 3, and is
/// less than or equal to the length of value minus 1.
///
/// System.ArgumentNullException:
/// value is null.
///
/// System.ArgumentOutOfRangeException:
/// startIndex is less than zero or greater than the length of value minus 1.
///</summary>
public static int ToInt32(byte[] value, int startIndex)
{
return !IsLittleEndian ? BitConverter.ToInt32(value, startIndex) : BitConverter.ToInt32(value.Reverse().ToArray(), value.Length - sizeof(Int32) - startIndex);
}
///
/// <summary>
/// Returns a 64-bit signed integer converted from eight bytes at a specified
/// position in a byte array.
///
/// Parameters:
/// value:
/// An array of bytes.
///
/// startIndex:
/// The starting position within value.
///
/// Returns:
/// A 64-bit signed integer formed by eight bytes beginning at startIndex.
///
/// Exceptions:
/// System.ArgumentException:
/// startIndex is greater than or equal to the length of value minus 7, and is
/// less than or equal to the length of value minus 1.
///
/// System.ArgumentNullException:
/// value is null.
///
/// System.ArgumentOutOfRangeException:
/// startIndex is less than zero or greater than the length of value minus 1.
///</summary>
public static long ToInt64(byte[] value, int startIndex)
{
return !IsLittleEndian ? BitConverter.ToInt64(value, startIndex) : BitConverter.ToInt64(value.Reverse().ToArray(), value.Length - sizeof(Int64) - startIndex);
}
///
/// <summary>
/// Returns a single-precision floating point number converted from four bytes
/// at a specified position in a byte array.
///
/// Parameters:
/// value:
/// An array of bytes.
///
/// startIndex:
/// The starting position within value.
///
/// Returns:
/// A single-precision floating point number formed by four bytes beginning at
/// startIndex.
///
/// Exceptions:
/// System.ArgumentException:
/// startIndex is greater than or equal to the length of value minus 3, and is
/// less than or equal to the length of value minus 1.
///
/// System.ArgumentNullException:
/// value is null.
///
/// System.ArgumentOutOfRangeException:
/// startIndex is less than zero or greater than the length of value minus 1.
///</summary>
public static float ToSingle(byte[] value, int startIndex)
{
return !IsLittleEndian ? BitConverter.ToSingle(value, startIndex) : BitConverter.ToSingle(value.Reverse().ToArray(), value.Length - sizeof(Single) - startIndex);
}
///
/// <summary>
/// Converts the numeric value of each element of a specified array of bytes
/// to its equivalent hexadecimal string representation.
///
/// Parameters:
/// value:
/// An array of bytes.
///
/// Returns:
/// A System.String of hexadecimal pairs separated by hyphens, where each pair
/// represents the corresponding element in value; for example, "7F-2C-4A".
///
/// Exceptions:
/// System.ArgumentNullException:
/// value is null.
///</summary>
public static string ToString(byte[] value)
{
return !IsLittleEndian ? BitConverter.ToString(value) : BitConverter.ToString(value.Reverse().ToArray());
}
///
/// <summary>
/// Converts the numeric value of each element of a specified subarray of bytes
/// to its equivalent hexadecimal string representation.
///
/// Parameters:
/// value:
/// An array of bytes.
///
/// startIndex:
/// The starting position within value.
///
/// Returns:
/// A System.String of hexadecimal pairs separated by hyphens, where each pair
/// represents the corresponding element in a subarray of value; for example,
/// "7F-2C-4A".
///
/// Exceptions:
/// System.ArgumentNullException:
/// value is null.
///
/// System.ArgumentOutOfRangeException:
/// startIndex is less than zero or greater than the length of value minus 1.
///</summary>
public static string ToString(byte[] value, int startIndex)
{
return !IsLittleEndian ? BitConverter.ToString(value, startIndex) : BitConverter.ToString(value.Reverse().ToArray(), startIndex);
}
///
/// <summary>
/// Converts the numeric value of each element of a specified subarray of bytes
/// to its equivalent hexadecimal string representation.
///
/// Parameters:
/// value:
/// An array of bytes.
///
/// startIndex:
/// The starting position within value.
///
/// length:
/// The number of array elements in value to convert.
///
/// Returns:
/// A System.String of hexadecimal pairs separated by hyphens, where each pair
/// represents the corresponding element in a subarray of value; for example,
/// "7F-2C-4A".
///
/// Exceptions:
/// System.ArgumentNullException:
/// value is null.
///
/// System.ArgumentOutOfRangeException:
/// startIndex or length is less than zero. -or- startIndex is greater than
/// zero and is greater than or equal to the length of value.
///
/// System.ArgumentException:
/// The combination of startIndex and length does not specify a position within
/// value; that is, the startIndex parameter is greater than the length of value
/// minus the length parameter.
///</summary>
public static string ToString(byte[] value, int startIndex, int length)
{
return !IsLittleEndian ? BitConverter.ToString(value, startIndex, length) : BitConverter.ToString(value.Reverse().ToArray(), startIndex, length);
}
///
/// <summary>
/// Returns a 16-bit unsigned integer converted from two bytes at a specified
/// position in a byte array.
///
/// Parameters:
/// value:
/// The array of bytes.
///
/// startIndex:
/// The starting position within value.
///
/// Returns:
/// A 16-bit unsigned integer formed by two bytes beginning at startIndex.
///
/// Exceptions:
/// System.ArgumentException:
/// startIndex equals the length of value minus 1.
///
/// System.ArgumentNullException:
/// value is null.
///
/// System.ArgumentOutOfRangeException:
/// startIndex is less than zero or greater than the length of value minus 1.
///</summary>
public static ushort ToUInt16(byte[] value, int startIndex)
{
return !IsLittleEndian ? BitConverter.ToUInt16(value, startIndex) : BitConverter.ToUInt16(value.Reverse().ToArray(), value.Length - sizeof(UInt16) - startIndex);
}
///
/// <summary>
/// Returns a 32-bit unsigned integer converted from four bytes at a specified
/// position in a byte array.
///
/// Parameters:
/// value:
/// An array of bytes.
///
/// startIndex:
/// The starting position within value.
///
/// Returns:
/// A 32-bit unsigned integer formed by four bytes beginning at startIndex.
///
/// Exceptions:
/// System.ArgumentException:
/// startIndex is greater than or equal to the length of value minus 3, and is
/// less than or equal to the length of value minus 1.
///
/// System.ArgumentNullException:
/// value is null.
///
/// System.ArgumentOutOfRangeException:
/// startIndex is less than zero or greater than the length of value minus 1.
///</summary>
public static uint ToUInt32(byte[] value, int startIndex)
{
return !IsLittleEndian ? BitConverter.ToUInt32(value, startIndex) : BitConverter.ToUInt32(value.Reverse().ToArray(), value.Length - sizeof(UInt32) - startIndex);
}
///
/// <summary>
/// Returns a 64-bit unsigned integer converted from eight bytes at a specified
/// position in a byte array.
///
/// Parameters:
/// value:
/// An array of bytes.
///
/// startIndex:
/// The starting position within value.
///
/// Returns:
/// A 64-bit unsigned integer formed by the eight bytes beginning at startIndex.
///
/// Exceptions:
/// System.ArgumentException:
/// startIndex is greater than or equal to the length of value minus 7, and is
/// less than or equal to the length of value minus 1.
///
/// System.ArgumentNullException:
/// value is null.
///
/// System.ArgumentOutOfRangeException:
/// startIndex is less than zero or greater than the length of value minus 1.
///</summary>
public static ulong ToUInt64(byte[] value, int startIndex)
{
return !IsLittleEndian ? BitConverter.ToUInt64(value, startIndex) : BitConverter.ToUInt64(value.Reverse().ToArray(), value.Length - sizeof(UInt64) - startIndex);
}
public static Guid ToGuid(byte[] value, int startIndex)
{
return new Guid(BigEndianBitConverter.ToUInt32(value, 0 + startIndex),
BigEndianBitConverter.ToUInt16(value, 4 + startIndex),
BigEndianBitConverter.ToUInt16(value, 6 + startIndex),
value[8 + startIndex + 0], value[8 + startIndex + 1],
value[8 + startIndex + 2], value[8 + startIndex + 3],
value[8 + startIndex + 5], value[8 + startIndex + 5],
value[8 + startIndex + 6], value[8 + startIndex + 7]);
}
}
}

View File

@@ -1,3 +1,31 @@
2015-10-05 Natalia Portillo <claunia@claunia.com>
* Swapping.cs:
* PrintHex.cs:
* ArrayFill.cs:
* DateHandlers.cs:
* StringHandlers.cs:
* DiscImageChef.csproj:
* BigEndianBitConverter.cs:
* EndianAwareBinaryReader.cs:
Move helpers to a separate library.
* Checksums/MD5Context.cs:
* Checksums/ReedSolomon.cs:
* Checksums/SHA1Context.cs:
* Checksums/CDChecksums.cs:
* Checksums/CRC32Context.cs:
* Checksums/CRC16Context.cs:
* Checksums/CRC64Context.cs:
* Checksums/SHA512Context.cs:
* Checksums/SHA384Context.cs:
* Checksums/SHA256Context.cs:
* Checksums/Adler32Context.cs:
* Checksums/SpamSumContext.cs:
* Checksums/FletcherContext.cs:
* Checksums/RIPEMD160Context.cs:
Move checksums to a separate library.
2015-08-25 Natalia Portillo <claunia@claunia.com>
* Decoders/Floppy.cs:

View File

@@ -1,193 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : Adler32Context.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Checksums.
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Implements an Adler-32 algorithm.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2015 Claunia.com
****************************************************************************/
//$Id$
using System;
using System.Text;
using System.IO;
namespace DiscImageChef.Checksums
{
public class Adler32Context
{
UInt16 sum1, sum2;
const UInt16 AdlerModule = 65521;
/// <summary>
/// Initializes the Adler-32 sums
/// </summary>
public void Init()
{
sum1 = 1;
sum2 = 0;
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of buffer to hash.</param>
public void Update(byte[] data, uint len)
{
for (int i = 0; i < len; i++)
{
sum1 = (ushort)((sum1 + data[i]) % AdlerModule);
sum2 = (ushort)((sum2 + sum1) % AdlerModule);
}
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
public void Update(byte[] data)
{
Update(data, (uint)data.Length);
}
/// <summary>
/// Returns a byte array of the hash value.
/// </summary>
public byte[] Final()
{
UInt32 finalSum = (uint)((sum2 << 16) | sum1);
return BigEndianBitConverter.GetBytes(finalSum);
}
/// <summary>
/// Returns a hexadecimal representation of the hash value.
/// </summary>
public string End()
{
UInt32 finalSum = (uint)((sum2 << 16) | sum1);
StringBuilder adlerOutput = new StringBuilder();
for (int i = 0; i < BigEndianBitConverter.GetBytes(finalSum).Length; i++)
{
adlerOutput.Append(BigEndianBitConverter.GetBytes(finalSum)[i].ToString("x2"));
}
return adlerOutput.ToString();
}
/// <summary>
/// Gets the hash of a file
/// </summary>
/// <param name="filename">File path.</param>
public static byte[] File(string filename)
{
byte[] hash;
File(filename, out hash);
return hash;
}
/// <summary>
/// Gets the hash of a file in hexadecimal and as a byte array.
/// </summary>
/// <param name="filename">File path.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string File(string filename, out byte[] hash)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
UInt16 localSum1, localSum2;
UInt32 finalSum;
localSum1 = 1;
localSum2 = 0;
localSum1 = (ushort)((localSum1 + fileStream.ReadByte()) % AdlerModule);
localSum2 = (ushort)((localSum2 + localSum1) % AdlerModule);
finalSum = (uint)((localSum2 << 16) | localSum1);
hash = BitConverter.GetBytes(finalSum);
StringBuilder adlerOutput = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
adlerOutput.Append(hash[i].ToString("x2"));
}
return adlerOutput.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of the data buffer to hash.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string Data(byte[] data, uint len, out byte[] hash)
{
UInt16 localSum1, localSum2;
UInt32 finalSum;
localSum1 = 1;
localSum2 = 0;
for (int i = 0; i < len; i++)
{
localSum1 = (ushort)((localSum1 + data[i]) % AdlerModule);
localSum2 = (ushort)((localSum2 + localSum1) % AdlerModule);
}
finalSum = (uint)((localSum2 << 16) | localSum1);
hash = BitConverter.GetBytes(finalSum);
StringBuilder adlerOutput = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
adlerOutput.Append(hash[i].ToString("x2"));
}
return adlerOutput.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string Data(byte[] data, out byte[] hash)
{
return Data(data, (uint)data.Length, out hash);
}
}
}

View File

@@ -1,615 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : CDChecksums.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Checksums.
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Checks a CD checksum
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
ECC algorithm from ECM (C) 2002-2011 Neill Corlett
****************************************************************************/
//$Id$
using System;
namespace DiscImageChef.Checksums
{
public static class CDChecksums
{
static byte[] ECC_F_Table;
static byte[] ECC_B_Table;
const UInt32 CDCRC32Poly = 0xD8018001;
const UInt32 CDCRC32Seed = 0x00000000;
public static bool? CheckCDSector(byte[] buffer)
{
switch (buffer.Length)
{
case 2448:
{
byte[] subchannel = new byte[96];
byte[] channel = new byte[2352];
Array.Copy(buffer, 0, channel, 0, 2352);
Array.Copy(buffer, 2352, subchannel, 0, 96);
bool? channelStatus = CheckCDSectorChannel(channel);
bool? subchannelStatus = CheckCDSectorSubChannel(subchannel);
bool? status = null;
if (channelStatus == null && subchannelStatus == null)
status = null;
if (channelStatus == false || subchannelStatus == false)
status = false;
if (channelStatus == null && subchannelStatus == true)
status = true;
if (channelStatus == true && subchannelStatus == null)
status = true;
if (channelStatus == true && subchannelStatus == true)
status = true;
return status;
}
case 2352:
return CheckCDSectorChannel(buffer);
default:
return null;
}
}
static void ECCInit()
{
ECC_F_Table = new byte[256];
ECC_B_Table = new byte[256];
for (UInt32 i = 0; i < 256; i++)
{
UInt32 j = (uint)((i << 1) ^ ((i & 0x80) == 0x80 ? 0x11D : 0));
ECC_F_Table[i] = (byte)j;
ECC_B_Table[i ^ j] = (byte)i;
}
}
static bool CheckECC(
byte[] address,
byte[] data,
UInt32 major_count,
UInt32 minor_count,
UInt32 major_mult,
UInt32 minor_inc,
byte[] ecc
)
{
UInt32 size = major_count * minor_count;
UInt32 major;
for (major = 0; major < major_count; major++)
{
UInt32 index = (major >> 1) * major_mult + (major & 1);
byte ecc_a = 0;
byte ecc_b = 0;
UInt32 minor;
for (minor = 0; minor < minor_count; minor++)
{
byte temp;
if (index < 4)
{
temp = address[index];
}
else
{
temp = data[index - 4];
}
index += minor_inc;
if (index >= size)
{
index -= size;
}
ecc_a ^= temp;
ecc_b ^= temp;
ecc_a = ECC_F_Table[ecc_a];
}
ecc_a = ECC_B_Table[ECC_F_Table[ecc_a] ^ ecc_b];
if (
ecc[major] != (ecc_a) ||
ecc[major + major_count] != (ecc_a ^ ecc_b))
{
return false;
}
}
return true;
}
static bool? CheckCDSectorChannel(byte[] channel)
{
ECCInit();
if (
channel[0x000] == 0x00 && // sync (12 bytes)
channel[0x001] == 0xFF &&
channel[0x002] == 0xFF &&
channel[0x003] == 0xFF &&
channel[0x004] == 0xFF &&
channel[0x005] == 0xFF &&
channel[0x006] == 0xFF &&
channel[0x007] == 0xFF &&
channel[0x008] == 0xFF &&
channel[0x009] == 0xFF &&
channel[0x00A] == 0xFF &&
channel[0x00B] == 0x00)
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Data sector, address {0:X2}:{1:X2}:{2:X2}", channel[0x00C], channel[0x00D], channel[0x00E]);
if (channel[0x00F] == 0x00) // mode (1 byte)
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Mode 0 sector at address {0:X2}:{1:X2}:{2:X2}", channel[0x00C], channel[0x00D], channel[0x00E]);
for (int i = 0x010; i < 0x930; i++)
{
if (channel[i] != 0x00)
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Mode 0 sector with error at address: {0:X2}:{1:X2}:{2:X2}", channel[0x00C], channel[0x00D], channel[0x00E]);
return false;
}
}
return true;
}
else if (channel[0x00F] == 0x01) // mode (1 byte)
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Mode 1 sector at address {0:X2}:{1:X2}:{2:X2}", channel[0x00C], channel[0x00D], channel[0x00E]);
if (channel[0x814] != 0x00 || // reserved (8 bytes)
channel[0x815] != 0x00 ||
channel[0x816] != 0x00 ||
channel[0x817] != 0x00 ||
channel[0x818] != 0x00 ||
channel[0x819] != 0x00 ||
channel[0x81A] != 0x00 ||
channel[0x81B] != 0x00)
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Mode 1 sector with data in reserved bytes at address: {0:X2}:{1:X2}:{2:X2}", channel[0x00C], channel[0x00D], channel[0x00E]);
return false;
}
byte[] address = new byte[4];
byte[] data = new byte[2060];
byte[] data2 = new byte[2232];
byte[] ecc_p = new byte[172];
byte[] ecc_q = new byte[104];
Array.Copy(channel, 0x0C, address, 0, 4);
Array.Copy(channel, 0x0C, data, 0, 2060);
Array.Copy(channel, 0x0C, data2, 0, 2232);
Array.Copy(channel, 0x81C, ecc_p, 0, 172);
Array.Copy(channel, 0x8C8, ecc_q, 0, 104);
bool FailedECC_P = CheckECC(address, data, 86, 24, 2, 86, ecc_p);
bool FailedECC_Q = CheckECC(address, data2, 52, 43, 86, 88, ecc_q);
if (FailedECC_P)
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Mode 1 sector at address: {0:X2}:{1:X2}:{2:X2}, fails ECC P check", channel[0x00C], channel[0x00D], channel[0x00E]);
if (FailedECC_Q)
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Mode 1 sector at address: {0:X2}:{1:X2}:{2:X2}, fails ECC Q check", channel[0x00C], channel[0x00D], channel[0x00E]);
if (FailedECC_P || FailedECC_Q)
return false;
byte[] SectorForCheck = new byte[0x810];
UInt32 StoredEDC = BitConverter.ToUInt32(channel, 0x810);
byte[] CalculatedEDCBytes;
Array.Copy(channel, 0, SectorForCheck, 0, 0x810);
CRC32Context.Data(SectorForCheck, 0x810, out CalculatedEDCBytes, CDCRC32Poly, CDCRC32Seed);
UInt32 CalculatedEDC = BitConverter.ToUInt32(CalculatedEDCBytes, 0);
if (CalculatedEDC != StoredEDC)
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Mode 1 sector at address: {0:X2}:{1:X2}:{2:X2}, got CRC 0x{3:X8} expected 0x{4:X8}", channel[0x00C], channel[0x00D], channel[0x00E], CalculatedEDC, StoredEDC);
return false;
}
return true;
}
else if (channel[0x00F] == 0x02) // mode (1 byte)
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Mode 2 sector at address {0:X2}:{1:X2}:{2:X2}", channel[0x00C], channel[0x00D], channel[0x00E]);
if ((channel[0x012] & 0x20) == 0x20) // mode 2 form 2
{
if (channel[0x010] != channel[0x014] || channel[0x011] != channel[0x015] || channel[0x012] != channel[0x016] || channel[0x013] != channel[0x017])
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Subheader copies differ in mode 2 form 2 sector at address: {0:X2}:{1:X2}:{2:X2}", channel[0x00C], channel[0x00D], channel[0x00E]);
}
byte[] SectorForCheck = new byte[0x91C];
UInt32 StoredEDC = BitConverter.ToUInt32(channel, 0x92C);
byte[] CalculatedEDCBytes;
Array.Copy(channel, 0x10, SectorForCheck, 0, 0x91C);
CRC32Context.Data(SectorForCheck, 0x91C, out CalculatedEDCBytes, CDCRC32Poly, CDCRC32Seed);
UInt32 CalculatedEDC = BitConverter.ToUInt32(CalculatedEDCBytes, 0);
if (CalculatedEDC != StoredEDC && StoredEDC != 0x00000000)
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Mode 2 form 2 sector at address: {0:X2}:{1:X2}:{2:X2}, got CRC 0x{3:X8} expected 0x{4:X8}", channel[0x00C], channel[0x00D], channel[0x00E], CalculatedEDC, StoredEDC);
return false;
}
}
else
{
if (channel[0x010] != channel[0x014] || channel[0x011] != channel[0x015] || channel[0x012] != channel[0x016] || channel[0x013] != channel[0x017])
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Subheader copies differ in mode 2 form 1 sector at address: {0:X2}:{1:X2}:{2:X2}", channel[0x00C], channel[0x00D], channel[0x00E]);
}
byte[] address = new byte[4];
byte[] data = new byte[2060];
byte[] data2 = new byte[2232];
byte[] ecc_p = new byte[172];
byte[] ecc_q = new byte[104];
address[0] = 0;
address[1] = 0;
address[2] = 0;
address[3] = 0;
Array.Copy(channel, 0x0C, data, 0, 2060);
Array.Copy(channel, 0x0C, data2, 0, 2232);
Array.Copy(channel, 0x80C, ecc_p, 0, 172);
Array.Copy(channel, 0x8B8, ecc_q, 0, 104);
bool FailedECC_P = CheckECC(address, data, 86, 24, 2, 86, ecc_p);
bool FailedECC_Q = CheckECC(address, data2, 52, 43, 86, 88, ecc_q);
if (FailedECC_P)
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Mode 2 form 1 sector at address: {0:X2}:{1:X2}:{2:X2}, fails ECC P check", channel[0x00C], channel[0x00D], channel[0x00E]);
if (FailedECC_Q)
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Mode 2 form 1 sector at address: {0:X2}:{1:X2}:{2:X2}, fails ECC Q check", channel[0x00F], channel[0x00C], channel[0x00D], channel[0x00E]);
if (FailedECC_P || FailedECC_Q)
return false;
byte[] SectorForCheck = new byte[0x808];
UInt32 StoredEDC = BitConverter.ToUInt32(channel, 0x818);
byte[] CalculatedEDCBytes;
Array.Copy(channel, 0x10, SectorForCheck, 0, 0x808);
CRC32Context.Data(SectorForCheck, 0x808, out CalculatedEDCBytes, CDCRC32Poly, CDCRC32Seed);
UInt32 CalculatedEDC = BitConverter.ToUInt32(CalculatedEDCBytes, 0);
if (CalculatedEDC != StoredEDC)
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Mode 2 form 1 sector at address: {0:X2}:{1:X2}:{2:X2}, got CRC 0x{3:X8} expected 0x{4:X8}", channel[0x00C], channel[0x00D], channel[0x00E], CalculatedEDC, StoredEDC);
return false;
}
}
return true;
}
else
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Unknown mode {0} sector at address: {1:X2}:{2:X2}:{3:X2}", channel[0x00F], channel[0x00C], channel[0x00D], channel[0x00E]);
return null;
}
}
return null;
}
static bool? CheckCDSectorSubChannel(byte[] subchannel)
{
bool? status = true;
byte[] QSubChannel = new byte[12];
byte[] CDTextPack1 = new byte[18];
byte[] CDTextPack2 = new byte[18];
byte[] CDTextPack3 = new byte[18];
byte[] CDTextPack4 = new byte[18];
byte[] CDSubRWPack1 = new byte[24];
byte[] CDSubRWPack2 = new byte[24];
byte[] CDSubRWPack3 = new byte[24];
byte[] CDSubRWPack4 = new byte[24];
int i = 0;
for (int j = 0; j < 12; j++)
QSubChannel[j] = 0;
for (int j = 0; j < 18; j++)
{
CDTextPack1[j] = 0;
CDTextPack2[j] = 0;
CDTextPack3[j] = 0;
CDTextPack4[j] = 0;
}
for (int j = 0; j < 24; j++)
{
CDSubRWPack1[j] = 0;
CDSubRWPack2[j] = 0;
CDSubRWPack3[j] = 0;
CDSubRWPack4[j] = 0;
}
for (int j = 0; j < 12; j++)
{
QSubChannel[j] = (byte)(QSubChannel[j] | ((subchannel[i++] & 0x40) << 1));
QSubChannel[j] = (byte)(QSubChannel[j] | (subchannel[i++] & 0x40));
QSubChannel[j] = (byte)(QSubChannel[j] | ((subchannel[i++] & 0x40) >> 1));
QSubChannel[j] = (byte)(QSubChannel[j] | ((subchannel[i++] & 0x40) >> 2));
QSubChannel[j] = (byte)(QSubChannel[j] | ((subchannel[i++] & 0x40) >> 3));
QSubChannel[j] = (byte)(QSubChannel[j] | ((subchannel[i++] & 0x40) >> 4));
QSubChannel[j] = (byte)(QSubChannel[j] | ((subchannel[i++] & 0x40) >> 5));
QSubChannel[j] = (byte)(QSubChannel[j] | ((subchannel[i++] & 0x40) >> 6));
}
i = 0;
for (int j = 0; j < 18; j++)
{
if (j < 18)
CDTextPack1[j] = (byte)(CDTextPack1[j] | ((subchannel[i++] & 0x3F) << 2));
if (j < 18)
CDTextPack1[j] = (byte)(CDTextPack1[j++] | ((subchannel[i] & 0xC0) >> 4));
if (j < 18)
CDTextPack1[j] = (byte)(CDTextPack1[j] | ((subchannel[i++] & 0x0F) << 4));
if (j < 18)
CDTextPack1[j] = (byte)(CDTextPack1[j++] | ((subchannel[i] & 0x3C) >> 2));
if (j < 18)
CDTextPack1[j] = (byte)(CDTextPack1[j] | ((subchannel[i++] & 0x03) << 6));
if (j < 18)
CDTextPack1[j] = (byte)(CDTextPack1[j] | (subchannel[i++] & 0x3F));
}
for (int j = 0; j < 18; j++)
{
if (j < 18)
CDTextPack2[j] = (byte)(CDTextPack2[j] | ((subchannel[i++] & 0x3F) << 2));
if (j < 18)
CDTextPack2[j] = (byte)(CDTextPack2[j++] | ((subchannel[i] & 0xC0) >> 4));
if (j < 18)
CDTextPack2[j] = (byte)(CDTextPack2[j] | ((subchannel[i++] & 0x0F) << 4));
if (j < 18)
CDTextPack2[j] = (byte)(CDTextPack2[j++] | ((subchannel[i] & 0x3C) >> 2));
if (j < 18)
CDTextPack2[j] = (byte)(CDTextPack2[j] | ((subchannel[i++] & 0x03) << 6));
if (j < 18)
CDTextPack2[j] = (byte)(CDTextPack2[j] | (subchannel[i++] & 0x3F));
}
for (int j = 0; j < 18; j++)
{
if (j < 18)
CDTextPack3[j] = (byte)(CDTextPack3[j] | ((subchannel[i++] & 0x3F) << 2));
if (j < 18)
CDTextPack3[j] = (byte)(CDTextPack3[j++] | ((subchannel[i] & 0xC0) >> 4));
if (j < 18)
CDTextPack3[j] = (byte)(CDTextPack3[j] | ((subchannel[i++] & 0x0F) << 4));
if (j < 18)
CDTextPack3[j] = (byte)(CDTextPack3[j++] | ((subchannel[i] & 0x3C) >> 2));
if (j < 18)
CDTextPack3[j] = (byte)(CDTextPack3[j] | ((subchannel[i++] & 0x03) << 6));
if (j < 18)
CDTextPack3[j] = (byte)(CDTextPack3[j] | (subchannel[i++] & 0x3F));
}
for (int j = 0; j < 18; j++)
{
if (j < 18)
CDTextPack4[j] = (byte)(CDTextPack4[j] | ((subchannel[i++] & 0x3F) << 2));
if (j < 18)
CDTextPack4[j] = (byte)(CDTextPack4[j++] | ((subchannel[i] & 0xC0) >> 4));
if (j < 18)
CDTextPack4[j] = (byte)(CDTextPack4[j] | ((subchannel[i++] & 0x0F) << 4));
if (j < 18)
CDTextPack4[j] = (byte)(CDTextPack4[j++] | ((subchannel[i] & 0x3C) >> 2));
if (j < 18)
CDTextPack4[j] = (byte)(CDTextPack4[j] | ((subchannel[i++] & 0x03) << 6));
if (j < 18)
CDTextPack4[j] = (byte)(CDTextPack4[j] | (subchannel[i++] & 0x3F));
}
i = 0;
for (int j = 0; j < 24; j++)
{
CDSubRWPack1[j] = (byte)(subchannel[i++] & 0x3F);
}
for (int j = 0; j < 24; j++)
{
CDSubRWPack2[j] = (byte)(subchannel[i++] & 0x3F);
}
for (int j = 0; j < 24; j++)
{
CDSubRWPack3[j] = (byte)(subchannel[i++] & 0x3F);
}
for (int j = 0; j < 24; j++)
{
CDSubRWPack4[j] = (byte)(subchannel[i++] & 0x3F);
}
if(MainClass.isDebug)
{
switch(CDSubRWPack1[0])
{
case 0x00:
Console.WriteLine("Detected Zero Pack in subchannel");
break;
case 0x08:
Console.WriteLine("Detected Line Graphics Pack in subchannel");
break;
case 0x09:
Console.WriteLine("Detected CD+G Pack in subchannel");
break;
case 0x0A:
Console.WriteLine("Detected CD+EG Pack in subchannel");
break;
case 0x14:
Console.WriteLine("Detected CD-TEXT Pack in subchannel");
break;
case 0x18:
Console.WriteLine("Detected CD+MIDI Pack in subchannel");
break;
case 0x38:
Console.WriteLine("Detected User Pack in subchannel");
break;
default:
Console.WriteLine("Detected unknown Pack type in subchannel: mode {0}, item {1}", Convert.ToString(CDSubRWPack1[0] & 0x38, 2), Convert.ToString(CDSubRWPack1[0] & 0x07, 2));
break;
}
}
BigEndianBitConverter.IsLittleEndian = true;
UInt16 QSubChannelCRC = BigEndianBitConverter.ToUInt16(QSubChannel, 10);
byte[] QSubChannelForCRC = new byte[10];
Array.Copy(QSubChannel, 0, QSubChannelForCRC, 0, 10);
UInt16 CalculatedQCRC = CalculateCCITT_CRC16(QSubChannelForCRC);
if (QSubChannelCRC != CalculatedQCRC)
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): Q subchannel CRC 0x{0:X4}, expected 0x{1:X4}", CalculatedQCRC, QSubChannelCRC);
status = false;
}
if ((CDTextPack1[0] & 0x80) == 0x80)
{
UInt16 CDTextPack1CRC = BigEndianBitConverter.ToUInt16(CDTextPack1, 16);
byte[] CDTextPack1ForCRC = new byte[16];
Array.Copy(CDTextPack1, 0, CDTextPack1ForCRC, 0, 16);
UInt16 CalculatedCDTP1CRC = CalculateCCITT_CRC16(CDTextPack1ForCRC);
if (CDTextPack1CRC != CalculatedCDTP1CRC && CDTextPack1CRC != 0)
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): CD-Text Pack 1 CRC 0x{0:X4}, expected 0x{1:X4}", CDTextPack1CRC, CalculatedCDTP1CRC);
status = false;
}
}
if ((CDTextPack2[0] & 0x80) == 0x80)
{
UInt16 CDTextPack2CRC = BigEndianBitConverter.ToUInt16(CDTextPack2, 16);
byte[] CDTextPack2ForCRC = new byte[16];
Array.Copy(CDTextPack2, 0, CDTextPack2ForCRC, 0, 16);
UInt16 CalculatedCDTP2CRC = CalculateCCITT_CRC16(CDTextPack2ForCRC);
Console.WriteLine("Cyclic CDTP2 0x{0:X4}, Calc CDTP2 0x{1:X4}", CDTextPack2CRC, CalculatedCDTP2CRC);
if (CDTextPack2CRC != CalculatedCDTP2CRC && CDTextPack2CRC != 0)
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): CD-Text Pack 2 CRC 0x{0:X4}, expected 0x{1:X4}", CDTextPack2CRC, CalculatedCDTP2CRC);
status = false;
}
}
if ((CDTextPack3[0] & 0x80) == 0x80)
{
UInt16 CDTextPack3CRC = BigEndianBitConverter.ToUInt16(CDTextPack3, 16);
byte[] CDTextPack3ForCRC = new byte[16];
Array.Copy(CDTextPack3, 0, CDTextPack3ForCRC, 0, 16);
UInt16 CalculatedCDTP3CRC = CalculateCCITT_CRC16(CDTextPack3ForCRC);
Console.WriteLine("Cyclic CDTP3 0x{0:X4}, Calc CDTP3 0x{1:X4}", CDTextPack3CRC, CalculatedCDTP3CRC);
if (CDTextPack3CRC != CalculatedCDTP3CRC && CDTextPack3CRC != 0)
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): CD-Text Pack 3 CRC 0x{0:X4}, expected 0x{1:X4}", CDTextPack3CRC, CalculatedCDTP3CRC);
status = false;
}
}
if ((CDTextPack4[0] & 0x80) == 0x80)
{
UInt16 CDTextPack4CRC = BigEndianBitConverter.ToUInt16(CDTextPack4, 16);
byte[] CDTextPack4ForCRC = new byte[16];
Array.Copy(CDTextPack4, 0, CDTextPack4ForCRC, 0, 16);
UInt16 CalculatedCDTP4CRC = CalculateCCITT_CRC16(CDTextPack4ForCRC);
Console.WriteLine("Cyclic CDTP4 0x{0:X4}, Calc CDTP4 0x{1:X4}", CDTextPack4CRC, CalculatedCDTP4CRC);
if (CDTextPack4CRC != CalculatedCDTP4CRC && CDTextPack4CRC != 0)
{
if (MainClass.isDebug)
Console.WriteLine("DEBUG (CDChecksums): CD-Text Pack 4 CRC 0x{0:X4}, expected 0x{1:X4}", CDTextPack4CRC, CalculatedCDTP4CRC);
status = false;
}
}
return status;
}
static readonly ushort[] CCITT_CRC16Table = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0,
};
static ushort CalculateCCITT_CRC16(byte[] buffer)
{
UInt16 CRC16=0;
for (int i = 0; i < buffer.Length; i++) {
CRC16 = (ushort)(CCITT_CRC16Table[(CRC16 >> 8) ^ buffer[i]] ^ (CRC16 << 8));
}
CRC16 = (ushort)~CRC16;
return CRC16;
}
}
}

View File

@@ -1,239 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : CRC16Context.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Checksums.
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Implements a CRC16-CCITT algorithm.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
****************************************************************************/
//$Id$
using System.Text;
using System.IO;
using System;
namespace DiscImageChef.Checksums
{
/// <summary>
/// Provides a UNIX similar API to calculate CRC16.
/// </summary>
public class CRC16Context
{
const UInt16 crc16Poly = 0xA001;
const UInt16 crc16Seed = 0x0000;
UInt16[] table;
UInt16 hashInt;
/// <summary>
/// Initializes the CRC16 table and seed
/// </summary>
public void Init()
{
hashInt = crc16Seed;
table = new UInt16[256];
for (int i = 0; i < 256; i++)
{
UInt16 entry = (UInt16)i;
for (int j = 0; j < 8; j++)
if ((entry & 1) == 1)
entry = (ushort)((entry >> 1) ^ crc16Poly);
else
entry = (ushort)(entry >> 1);
table[i] = entry;
}
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of buffer to hash.</param>
public void Update(byte[] data, uint len)
{
for (int i = 0; i < len; i++)
hashInt = (ushort)((hashInt >> 8) ^ table[data[i] ^ (hashInt & 0xFF)]);
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
public void Update(byte[] data)
{
Update(data, (uint)data.Length);
}
/// <summary>
/// Returns a byte array of the hash value.
/// </summary>
public byte[] Final()
{
hashInt ^= crc16Seed;
BigEndianBitConverter.IsLittleEndian = BitConverter.IsLittleEndian;
return BigEndianBitConverter.GetBytes(hashInt);
}
/// <summary>
/// Returns a hexadecimal representation of the hash value.
/// </summary>
public string End()
{
hashInt ^= crc16Seed;
StringBuilder crc16Output = new StringBuilder();
BigEndianBitConverter.IsLittleEndian = BitConverter.IsLittleEndian;
for (int i = 0; i < BigEndianBitConverter.GetBytes(hashInt).Length; i++)
{
crc16Output.Append(BigEndianBitConverter.GetBytes(hashInt)[i].ToString("x2"));
}
return crc16Output.ToString();
}
/// <summary>
/// Gets the hash of a file
/// </summary>
/// <param name="filename">File path.</param>
public static byte[] File(string filename)
{
byte[] hash;
File(filename, out hash);
return hash;
}
/// <summary>
/// Gets the hash of a file in hexadecimal and as a byte array.
/// </summary>
/// <param name="filename">File path.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string File(string filename, out byte[] hash)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
UInt16[] localTable;
UInt16 localhashInt;
localhashInt = crc16Seed;
localTable = new UInt16[256];
for (int i = 0; i < 256; i++)
{
UInt16 entry = (UInt16)i;
for (int j = 0; j < 8; j++)
if ((entry & 1) == 1)
entry = (ushort)((entry >> 1) ^ crc16Poly);
else
entry = (ushort)(entry >> 1);
localTable[i] = entry;
}
for (int i = 0; i < fileStream.Length; i++)
localhashInt = (ushort)((localhashInt >> 8) ^ localTable[fileStream.ReadByte() ^ localhashInt & 0xff]);
BigEndianBitConverter.IsLittleEndian = BitConverter.IsLittleEndian;
hash = BigEndianBitConverter.GetBytes(localhashInt);
StringBuilder crc16Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
crc16Output.Append(hash[i].ToString("x2"));
}
return crc16Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of the data buffer to hash.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string Data(byte[] data, uint len, out byte[] hash)
{
return Data(data, len, out hash, crc16Poly, crc16Seed);
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of the data buffer to hash.</param>
/// <param name="hash">Byte array of the hash value.</param>
/// <param name="polynomial">CRC polynomial</param>
/// <param name="seed">CRC seed</param>
public static string Data(byte[] data, uint len, out byte[] hash, UInt16 polynomial, UInt16 seed)
{
UInt16[] localTable;
UInt16 localhashInt;
localhashInt = seed;
localTable = new UInt16[256];
for (int i = 0; i < 256; i++)
{
UInt16 entry = (UInt16)i;
for (int j = 0; j < 8; j++)
if ((entry & 1) == 1)
entry = (ushort)((entry >> 1) ^ polynomial);
else
entry = (ushort)(entry >> 1);
localTable[i] = entry;
}
for (int i = 0; i < len; i++)
localhashInt = (ushort)((localhashInt >> 8) ^ localTable[data[i] ^ localhashInt & 0xff]);
BigEndianBitConverter.IsLittleEndian = BitConverter.IsLittleEndian;
hash = BigEndianBitConverter.GetBytes(localhashInt);
StringBuilder crc16Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
crc16Output.Append(hash[i].ToString("x2"));
}
return crc16Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string Data(byte[] data, out byte[] hash)
{
return Data(data, (uint)data.Length, out hash);
}
}
}

View File

@@ -1,240 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : CRC32Context.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Checksums.
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Implements a CRC32 algorithm.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
****************************************************************************/
//$Id$
using System.Text;
using System.IO;
using System;
namespace DiscImageChef.Checksums
{
/// <summary>
/// Provides a UNIX similar API to calculate CRC32.
/// </summary>
public class CRC32Context
{
const UInt32 crc32Poly = 0xEDB88320;
const UInt32 crc32Seed = 0xFFFFFFFF;
UInt32[] table;
UInt32 hashInt;
/// <summary>
/// Initializes the CRC32 table and seed
/// </summary>
public void Init()
{
hashInt = crc32Seed;
table = new UInt32[256];
for (int i = 0; i < 256; i++)
{
UInt32 entry = (UInt32)i;
for (int j = 0; j < 8; j++)
if ((entry & 1) == 1)
entry = (entry >> 1) ^ crc32Poly;
else
entry = entry >> 1;
table[i] = entry;
}
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of buffer to hash.</param>
public void Update(byte[] data, uint len)
{
for (int i = 0; i < len; i++)
hashInt = (hashInt >> 8) ^ table[data[i] ^ hashInt & 0xff];
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
public void Update(byte[] data)
{
Update(data, (uint)data.Length);
}
/// <summary>
/// Returns a byte array of the hash value.
/// </summary>
public byte[] Final()
{
hashInt ^= crc32Seed;
BigEndianBitConverter.IsLittleEndian = BitConverter.IsLittleEndian;
return BigEndianBitConverter.GetBytes(hashInt);
}
/// <summary>
/// Returns a hexadecimal representation of the hash value.
/// </summary>
public string End()
{
hashInt ^= crc32Seed;
StringBuilder crc32Output = new StringBuilder();
BigEndianBitConverter.IsLittleEndian = BitConverter.IsLittleEndian;
for (int i = 0; i < BigEndianBitConverter.GetBytes(hashInt).Length; i++)
{
crc32Output.Append(BigEndianBitConverter.GetBytes(hashInt)[i].ToString("x2"));
}
return crc32Output.ToString();
}
/// <summary>
/// Gets the hash of a file
/// </summary>
/// <param name="filename">File path.</param>
public static byte[] File(string filename)
{
byte[] hash;
File(filename, out hash);
return hash;
}
/// <summary>
/// Gets the hash of a file in hexadecimal and as a byte array.
/// </summary>
/// <param name="filename">File path.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string File(string filename, out byte[] hash)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
UInt32[] localTable;
UInt32 localhashInt;
localhashInt = crc32Seed;
localTable = new UInt32[256];
for (int i = 0; i < 256; i++)
{
UInt32 entry = (UInt32)i;
for (int j = 0; j < 8; j++)
if ((entry & 1) == 1)
entry = (entry >> 1) ^ crc32Poly;
else
entry = entry >> 1;
localTable[i] = entry;
}
for (int i = 0; i < fileStream.Length; i++)
localhashInt = (localhashInt >> 8) ^ localTable[fileStream.ReadByte() ^ localhashInt & 0xff];
BigEndianBitConverter.IsLittleEndian = BitConverter.IsLittleEndian;
hash = BitConverter.GetBytes(localhashInt);
StringBuilder crc32Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
crc32Output.Append(hash[i].ToString("x2"));
}
return crc32Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of the data buffer to hash.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string Data(byte[] data, uint len, out byte[] hash)
{
return Data(data, len, out hash, crc32Poly, crc32Seed);
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of the data buffer to hash.</param>
/// <param name="hash">Byte array of the hash value.</param>
/// <param name="polynomial">CRC polynomial</param>
/// <param name="seed">CRC seed</param>
public static string Data(byte[] data, uint len, out byte[] hash, UInt32 polynomial, UInt32 seed)
{
UInt32[] localTable;
UInt32 localhashInt;
localhashInt = seed;
localTable = new UInt32[256];
for (int i = 0; i < 256; i++)
{
UInt32 entry = (UInt32)i;
for (int j = 0; j < 8; j++)
if ((entry & 1) == 1)
entry = (entry >> 1) ^ polynomial;
else
entry = entry >> 1;
localTable[i] = entry;
}
for (int i = 0; i < len; i++)
localhashInt = (localhashInt >> 8) ^ localTable[data[i] ^ localhashInt & 0xff];
BigEndianBitConverter.IsLittleEndian = BitConverter.IsLittleEndian;
hash = BitConverter.GetBytes(localhashInt);
StringBuilder crc32Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
crc32Output.Append(hash[i].ToString("x2"));
}
return crc32Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string Data(byte[] data, out byte[] hash)
{
return Data(data, (uint)data.Length, out hash);
}
}
}

View File

@@ -1,239 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : CRC64Context.cs
Version : 1.0
Author(s) : Natalia Portillo
Checksums
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Implements a CRC64 algorithm.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
****************************************************************************/
//$Id$
using System.Text;
using System.IO;
using System;
namespace DiscImageChef.Checksums
{
/// <summary>
/// Provides a UNIX similar API to calculate CRC64 (ECMA).
/// </summary>
public class CRC64Context
{
const UInt64 crc64Poly = 0xC96C5795D7870F42;
const UInt64 crc64Seed = 0xFFFFFFFFFFFFFFFF;
UInt64[] table;
UInt64 hashInt;
/// <summary>
/// Initializes the CRC64 table and seed
/// </summary>
public void Init()
{
hashInt = crc64Seed;
table = new UInt64[256];
for (int i = 0; i < 256; i++)
{
UInt64 entry = (UInt64)i;
for (int j = 0; j < 8; j++)
if ((entry & 1) == 1)
entry = (entry >> 1) ^ crc64Poly;
else
entry = entry >> 1;
table[i] = entry;
}
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of buffer to hash.</param>
public void Update(byte[] data, uint len)
{
for (int i = 0; i < len; i++)
hashInt = (hashInt >> 8) ^ table[data[i] ^ hashInt & 0xff];
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
public void Update(byte[] data)
{
Update(data, (uint)data.Length);
}
/// <summary>
/// Returns a byte array of the hash value.
/// </summary>
public byte[] Final()
{
hashInt ^= crc64Seed;
BigEndianBitConverter.IsLittleEndian = BigEndianBitConverter.IsLittleEndian;
return BigEndianBitConverter.GetBytes(hashInt);
}
/// <summary>
/// Returns a hexadecimal representation of the hash value.
/// </summary>
public string End()
{
hashInt ^= crc64Seed;
StringBuilder crc64Output = new StringBuilder();
BigEndianBitConverter.IsLittleEndian = BigEndianBitConverter.IsLittleEndian;
for (int i = 0; i < BigEndianBitConverter.GetBytes(hashInt).Length; i++)
{
crc64Output.Append(BigEndianBitConverter.GetBytes(hashInt)[i].ToString("x2"));
}
return crc64Output.ToString();
}
/// <summary>
/// Gets the hash of a file
/// </summary>
/// <param name="filename">File path.</param>
public static byte[] File(string filename)
{
byte[] localHash;
File(filename, out localHash);
return localHash;
}
/// <summary>
/// Gets the hash of a file in hexadecimal and as a byte array.
/// </summary>
/// <param name="filename">File path.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string File(string filename, out byte[] hash)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
UInt64[] localTable;
UInt64 localhashInt;
localhashInt = crc64Seed;
localTable = new UInt64[256];
for (int i = 0; i < 256; i++)
{
UInt64 entry = (UInt64)i;
for (int j = 0; j < 8; j++)
if ((entry & 1) == 1)
entry = (entry >> 1) ^ crc64Poly;
else
entry = entry >> 1;
localTable[i] = entry;
}
for (int i = 0; i < fileStream.Length; i++)
localhashInt = (localhashInt >> 8) ^ localTable[(ulong)fileStream.ReadByte() ^ localhashInt & (ulong)0xff];
BigEndianBitConverter.IsLittleEndian = BigEndianBitConverter.IsLittleEndian;
hash = BitConverter.GetBytes(localhashInt);
StringBuilder crc64Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
crc64Output.Append(hash[i].ToString("x2"));
}
return crc64Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of the data buffer to hash.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string Data(byte[] data, uint len, out byte[] hash)
{
return Data(data, len, out hash, crc64Poly, crc64Seed);
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of the data buffer to hash.</param>
/// <param name="hash">Byte array of the hash value.</param>
/// <param name="polynomial">CRC polynomial</param>
/// <param name="seed">CRC seed</param>
public static string Data(byte[] data, uint len, out byte[] hash, UInt64 polynomial, UInt64 seed)
{
UInt64[] localTable;
UInt64 localhashInt;
localhashInt = seed;
localTable = new UInt64[256];
for (int i = 0; i < 256; i++)
{
UInt64 entry = (UInt64)i;
for (int j = 0; j < 8; j++)
if ((entry & 1) == 1)
entry = (entry >> 1) ^ polynomial;
else
entry = entry >> 1;
localTable[i] = entry;
}
for (int i = 0; i < len; i++)
localhashInt = (localhashInt >> 8) ^ localTable[data[i] ^ localhashInt & 0xff];
BigEndianBitConverter.IsLittleEndian = BigEndianBitConverter.IsLittleEndian;
hash = BitConverter.GetBytes(localhashInt);
StringBuilder crc64Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
crc64Output.Append(hash[i].ToString("x2"));
}
return crc64Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string Data(byte[] data, out byte[] hash)
{
return Data(data, (uint)data.Length, out hash);
}
}
}

View File

@@ -1,458 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : FletcherContext.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Checksums.
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Implements Fletcher-32 and Fletcher-16 algorithms.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2015 Claunia.com
****************************************************************************/
//$Id$
using System;
using System.Text;
using System.IO;
namespace DiscImageChef.Checksums
{
public class Fletcher32Context
{
UInt16 sum1, sum2;
byte oddValue;
bool inodd;
/// <summary>
/// Initializes the Fletcher32 sums
/// </summary>
public void Init()
{
sum1 = 0xFFFF;
sum2 = 0xFFFF;
oddValue = 0;
inodd = false;
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of buffer to hash.</param>
public void Update(byte[] data, uint len)
{
UInt16 block;
if (!inodd)
{
// Odd size
if (len % 2 != 0)
{
oddValue = data[len - 1];
inodd = true;
for (int i = 0; i < len - 1; i += 2)
{
block = BigEndianBitConverter.ToUInt16(data, i);
sum1 = (UInt16)((sum1 + block) % 0xFFFF);
sum2 = (UInt16)((sum2 + sum1) % 0xFFFF);
}
}
else
{
inodd = false;
for (int i = 0; i < len; i += 2)
{
block = BigEndianBitConverter.ToUInt16(data, i);
sum1 = (UInt16)((sum1 + block) % 0xFFFF);
sum2 = (UInt16)((sum2 + sum1) % 0xFFFF);
}
}
}
// Carrying odd
else
{
byte[] oddData = new byte[2];
oddData[0] = oddValue;
oddData[1] = data[0];
block = BigEndianBitConverter.ToUInt16(oddData, 0);
sum1 = (UInt16)((sum1 + block) % 0xFFFF);
sum2 = (UInt16)((sum2 + sum1) % 0xFFFF);
// Even size, carrying odd
if (len % 2 == 0)
{
oddValue = data[len - 1];
inodd = true;
for (int i = 1; i < len - 1; i += 2)
{
block = BigEndianBitConverter.ToUInt16(data, i);
sum1 = (UInt16)((sum1 + block) % 0xFFFF);
sum2 = (UInt16)((sum2 + sum1) % 0xFFFF);
}
}
else
{
inodd = false;
for (int i = 1; i < len; i += 2)
{
block = BigEndianBitConverter.ToUInt16(data, i);
sum1 = (UInt16)((sum1 + block) % 0xFFFF);
sum2 = (UInt16)((sum2 + sum1) % 0xFFFF);
}
}
}
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
public void Update(byte[] data)
{
Update(data, (uint)data.Length);
}
/// <summary>
/// Returns a byte array of the hash value.
/// </summary>
public byte[] Final()
{
UInt32 finalSum = (UInt32)(sum1 + (sum2 << 16));
return BigEndianBitConverter.GetBytes(finalSum);
}
/// <summary>
/// Returns a hexadecimal representation of the hash value.
/// </summary>
public string End()
{
UInt32 finalSum = (UInt32)(sum1 + (sum2 << 16));
StringBuilder fletcherOutput = new StringBuilder();
for (int i = 0; i < BigEndianBitConverter.GetBytes(finalSum).Length; i++)
{
fletcherOutput.Append(BigEndianBitConverter.GetBytes(finalSum)[i].ToString("x2"));
}
return fletcherOutput.ToString();
}
/// <summary>
/// Gets the hash of a file
/// </summary>
/// <param name="filename">File path.</param>
public static byte[] File(string filename)
{
byte[] hash;
File(filename, out hash);
return hash;
}
/// <summary>
/// Gets the hash of a file in hexadecimal and as a byte array.
/// </summary>
/// <param name="filename">File path.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string File(string filename, out byte[] hash)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
UInt16 localSum1, localSum2, block;
UInt32 finalSum;
byte[] blockBytes;
localSum1 = 0xFFFF;
localSum2 = 0xFFFF;
block = 0;
if (fileStream.Length % 2 == 0)
{
for (int i = 0; i < fileStream.Length; i += 2)
{
blockBytes = new byte[2];
fileStream.Read(blockBytes, 0, 2);
block = BigEndianBitConverter.ToUInt16(blockBytes, 0);
localSum1 = (UInt16)((localSum1 + block) % 0xFFFF);
localSum2 = (UInt16)((localSum2 + localSum1) % 0xFFFF);
}
}
else
{
for (int i = 0; i < fileStream.Length - 1; i += 2)
{
blockBytes = new byte[2];
fileStream.Read(blockBytes, 0, 2);
block = BigEndianBitConverter.ToUInt16(blockBytes, 0);
localSum1 = (UInt16)((localSum1 + block) % 0xFFFF);
localSum2 = (UInt16)((localSum2 + localSum1) % 0xFFFF);
}
byte[] oddData = new byte[2];
oddData[0] = (byte)fileStream.ReadByte();
oddData[1] = 0;
block = BigEndianBitConverter.ToUInt16(oddData, 0);
localSum1 = (UInt16)((localSum1 + block) % 0xFFFF);
localSum2 = (UInt16)((localSum2 + localSum1) % 0xFFFF);
}
finalSum = (UInt32)(localSum1 + (localSum2 << 16));
hash = BitConverter.GetBytes(finalSum);
StringBuilder fletcherOutput = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
fletcherOutput.Append(hash[i].ToString("x2"));
}
return fletcherOutput.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of the data buffer to hash.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string Data(byte[] data, uint len, out byte[] hash)
{
UInt16 localSum1, localSum2, block;
UInt32 finalSum;
localSum1 = 0xFFFF;
localSum2 = 0xFFFF;
block = 0;
if (len % 2 == 0)
{
for (int i = 0; i < len; i += 2)
{
block = BigEndianBitConverter.ToUInt16(data, i);
localSum1 = (UInt16)((localSum1 + block) % 0xFFFF);
localSum2 = (UInt16)((localSum2 + localSum1) % 0xFFFF);
}
}
else
{
for (int i = 0; i < len - 1; i += 2)
{
block = BigEndianBitConverter.ToUInt16(data, i);
localSum1 = (UInt16)((localSum1 + block) % 0xFFFF);
localSum2 = (UInt16)((localSum2 + localSum1) % 0xFFFF);
}
byte[] oddData = new byte[2];
oddData[0] = data[len - 1];
oddData[1] = 0;
block = BigEndianBitConverter.ToUInt16(oddData, 0);
localSum1 = (UInt16)((localSum1 + block) % 0xFFFF);
localSum2 = (UInt16)((localSum2 + localSum1) % 0xFFFF);
}
finalSum = (UInt32)(localSum1 + (localSum2 << 16));
hash = BitConverter.GetBytes(finalSum);
StringBuilder fletcherOutput = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
fletcherOutput.Append(hash[i].ToString("x2"));
}
return fletcherOutput.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string Data(byte[] data, out byte[] hash)
{
return Data(data, (uint)data.Length, out hash);
}
}
public class Fletcher16Context
{
byte sum1, sum2;
/// <summary>
/// Initializes the Fletcher16 sums
/// </summary>
public void Init()
{
sum1 = 0xFF;
sum2 = 0xFF;
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of buffer to hash.</param>
public void Update(byte[] data, uint len)
{
for (int i = 0; i < len; i++)
{
sum1 = (byte)((sum1 + data[i]) % 0xFF);
sum2 = (byte)((sum2 + sum1) % 0xFF);
}
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
public void Update(byte[] data)
{
Update(data, (uint)data.Length);
}
/// <summary>
/// Returns a byte array of the hash value.
/// </summary>
public byte[] Final()
{
UInt16 finalSum = (UInt16)(sum1 + (sum2 << 8));
return BigEndianBitConverter.GetBytes(finalSum);
}
/// <summary>
/// Returns a hexadecimal representation of the hash value.
/// </summary>
public string End()
{
UInt16 finalSum = (UInt16)(sum1 + (sum2 << 8));
StringBuilder fletcherOutput = new StringBuilder();
for (int i = 0; i < BigEndianBitConverter.GetBytes(finalSum).Length; i++)
{
fletcherOutput.Append(BigEndianBitConverter.GetBytes(finalSum)[i].ToString("x2"));
}
return fletcherOutput.ToString();
}
/// <summary>
/// Gets the hash of a file
/// </summary>
/// <param name="filename">File path.</param>
public static byte[] File(string filename)
{
byte[] hash;
File(filename, out hash);
return hash;
}
/// <summary>
/// Gets the hash of a file in hexadecimal and as a byte array.
/// </summary>
/// <param name="filename">File path.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string File(string filename, out byte[] hash)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
byte localSum1, localSum2, block;
UInt16 finalSum;
localSum1 = 0xFF;
localSum2 = 0xFF;
block = 0;
for (int i = 0; i < fileStream.Length; i += 2)
{
block = (byte)fileStream.ReadByte();
localSum1 = (byte)((localSum1 + block) % 0xFF);
localSum2 = (byte)((localSum2 + localSum1) % 0xFF);
}
finalSum = (UInt16)(localSum1 + (localSum2 << 8));
hash = BitConverter.GetBytes(finalSum);
StringBuilder fletcherOutput = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
fletcherOutput.Append(hash[i].ToString("x2"));
}
return fletcherOutput.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of the data buffer to hash.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string Data(byte[] data, uint len, out byte[] hash)
{
byte localSum1, localSum2;
UInt16 finalSum;
localSum1 = 0xFF;
localSum2 = 0xFF;
for (int i = 0; i < len; i++)
{
localSum1 = (byte)((localSum1 + data[i]) % 0xFF);
localSum2 = (byte)((localSum2 + localSum1) % 0xFF);
}
finalSum = (UInt16)(localSum1 + (localSum2 << 8));
hash = BitConverter.GetBytes(finalSum);
StringBuilder fletcherOutput = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
fletcherOutput.Append(hash[i].ToString("x2"));
}
return fletcherOutput.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string Data(byte[] data, out byte[] hash)
{
return Data(data, (uint)data.Length, out hash);
}
}
}

View File

@@ -1,162 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : MD5Context.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Checksums.
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Wraps up .NET MD5 implementation to a Init(), Update(), Final() context.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
****************************************************************************/
//$Id$
using System.Security.Cryptography;
using System.Text;
using System.IO;
namespace DiscImageChef.Checksums
{
/// <summary>
/// Provides a UNIX similar API to .NET MD5.
/// </summary>
public class MD5Context
{
MD5 _md5Provider;
/// <summary>
/// Initializes the MD5 hash provider
/// </summary>
public void Init()
{
_md5Provider = MD5.Create();
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of buffer to hash.</param>
public void Update(byte[] data, uint len)
{
_md5Provider.TransformBlock(data, 0, (int)len, data, 0);
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
public void Update(byte[] data)
{
Update(data, (uint)data.Length);
}
/// <summary>
/// Returns a byte array of the hash value.
/// </summary>
public byte[] Final()
{
_md5Provider.TransformFinalBlock(new byte[0], 0, 0);
return _md5Provider.Hash;
}
/// <summary>
/// Returns a hexadecimal representation of the hash value.
/// </summary>
public string End()
{
_md5Provider.TransformFinalBlock(new byte[0], 0, 0);
StringBuilder md5Output = new StringBuilder();
for (int i = 0; i < _md5Provider.Hash.Length; i++)
{
md5Output.Append(_md5Provider.Hash[i].ToString("x2"));
}
return md5Output.ToString();
}
/// <summary>
/// Gets the hash of a file
/// </summary>
/// <param name="filename">File path.</param>
public byte[] File(string filename)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
return _md5Provider.ComputeHash(fileStream);
}
/// <summary>
/// Gets the hash of a file in hexadecimal and as a byte array.
/// </summary>
/// <param name="filename">File path.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string File(string filename, out byte[] hash)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
hash = _md5Provider.ComputeHash(fileStream);
StringBuilder md5Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
md5Output.Append(hash[i].ToString("x2"));
}
return md5Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of the data buffer to hash.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string Data(byte[] data, uint len, out byte[] hash)
{
hash = _md5Provider.ComputeHash(data, 0, (int)len);
StringBuilder md5Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
md5Output.Append(hash[i].ToString("x2"));
}
return md5Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string Data(byte[] data, out byte[] hash)
{
return Data(data, (uint)data.Length, out hash);
}
}
}

View File

@@ -1,162 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : RIPEMD160Context.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Checksums.
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Wraps up .NET RIPEMD160 implementation to a Init(), Update(), Final() context.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
****************************************************************************/
//$Id$
using System.Security.Cryptography;
using System.Text;
using System.IO;
namespace DiscImageChef.Checksums
{
/// <summary>
/// Provides a UNIX similar API to .NET RIPEMD160.
/// </summary>
public class RIPEMD160Context
{
RIPEMD160 _ripemd160Provider;
/// <summary>
/// Initializes the RIPEMD160 hash provider
/// </summary>
public void Init()
{
_ripemd160Provider = RIPEMD160.Create();
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of buffer to hash.</param>
public void Update(byte[] data, uint len)
{
_ripemd160Provider.TransformBlock(data, 0, (int)len, data, 0);
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
public void Update(byte[] data)
{
Update(data, (uint)data.Length);
}
/// <summary>
/// Returns a byte array of the hash value.
/// </summary>
public byte[] Final()
{
_ripemd160Provider.TransformFinalBlock(new byte[0], 0, 0);
return _ripemd160Provider.Hash;
}
/// <summary>
/// Returns a hexadecimal representation of the hash value.
/// </summary>
public string End()
{
_ripemd160Provider.TransformFinalBlock(new byte[0], 0, 0);
StringBuilder ripemd160Output = new StringBuilder();
for (int i = 0; i < _ripemd160Provider.Hash.Length; i++)
{
ripemd160Output.Append(_ripemd160Provider.Hash[i].ToString("x2"));
}
return ripemd160Output.ToString();
}
/// <summary>
/// Gets the hash of a file
/// </summary>
/// <param name="filename">File path.</param>
public byte[] File(string filename)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
return _ripemd160Provider.ComputeHash(fileStream);
}
/// <summary>
/// Gets the hash of a file in hexadecimal and as a byte array.
/// </summary>
/// <param name="filename">File path.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string File(string filename, out byte[] hash)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
hash = _ripemd160Provider.ComputeHash(fileStream);
StringBuilder ripemd160Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
ripemd160Output.Append(hash[i].ToString("x2"));
}
return ripemd160Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of the data buffer to hash.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string Data(byte[] data, uint len, out byte[] hash)
{
hash = _ripemd160Provider.ComputeHash(data, 0, (int)len);
StringBuilder ripemd160Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
ripemd160Output.Append(hash[i].ToString("x2"));
}
return ripemd160Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string Data(byte[] data, out byte[] hash)
{
return Data(data, (uint)data.Length, out hash);
}
}
}

View File

@@ -1,650 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : ReedSolomon.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Checksums.
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Calculates a Reed-Solomon
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
Copyright (C) 1996 Phil Karn
Copyright (C) 1995 Robert Morelos-Zaragoza
Copyright (C) 1995 Hari Thirumoorthy
****************************************************************************/
//$Id$
/*
* Reed-Solomon coding and decoding
* Phil Karn (karn at ka9q.ampr.org) September 1996
*
* This file is derived from the program "new_rs_erasures.c" by Robert
* Morelos-Zaragoza (robert at spectra.eng.hawaii.edu) and Hari Thirumoorthy
* (harit at spectra.eng.hawaii.edu), Aug 1995
*
* I've made changes to improve performance, clean up the code and make it
* easier to follow. Data is now passed to the encoding and decoding functions
* through arguments rather than in global arrays. The decode function returns
* the number of corrected symbols, or -1 if the word is uncorrectable.
*
* This code supports a symbol size from 2 bits up to 16 bits,
* implying a block size of 3 2-bit symbols (6 bits) up to 65535
* 16-bit symbols (1,048,560 bits). The code parameters are set in rs.h.
*
* Note that if symbols larger than 8 bits are used, the type of each
* data array element switches from unsigned char to unsigned int. The
* caller must ensure that elements larger than the symbol range are
* not passed to the encoder or decoder.
*
*/
using System;
namespace DiscImageChef.Checksums
{
public class ReedSolomon
{
/* Primitive polynomials - see Lin & Costello, Error Control Coding Appendix A,
* and Lee & Messerschmitt, Digital Communication p. 453.
*/
int[] Pp;
/* index->polynomial form conversion table */
int[] Alpha_to;
/* Polynomial->index form conversion table */
int[] Index_of;
/* Generator polynomial g(x)
* Degree of g(x) = 2*TT
* has roots @**B0, @**(B0+1), ... ,@^(B0+2*TT-1)
*/
int[] Gg;
int MM, KK, NN;
/* No legal value in index form represents zero, so
* we need a special value for this purpose
*/
int A0;
bool initialized;
/* Alpha exponent for the first root of the generator polynomial */
const int B0 = 1;
/// <summary>
/// Initializes the Reed-Solomon with RS(n,k) with GF(2^m)
/// </summary>
public void InitRS(int n, int k, int m)
{
switch (m)
{
case 2:
Pp = new []{ 1, 1, 1 };
break;
case 3:
Pp = new []{ 1, 1, 0, 1 };
break;
case 4:
Pp = new []{ 1, 1, 0, 0, 1 };
break;
case 5:
Pp = new []{ 1, 0, 1, 0, 0, 1 };
break;
case 6:
Pp = new []{ 1, 1, 0, 0, 0, 0, 1 };
break;
case 7:
Pp = new []{ 1, 0, 0, 1, 0, 0, 0, 1 };
break;
case 8:
Pp = new []{ 1, 0, 1, 1, 1, 0, 0, 0, 1 };
break;
case 9:
Pp = new []{ 1, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
break;
case 10:
Pp = new []{ 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
break;
case 11:
Pp = new []{ 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
break;
case 12:
Pp = new []{ 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1 };
break;
case 13:
Pp = new []{ 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
break;
case 14:
Pp = new []{ 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 };
break;
case 15:
Pp = new []{ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
break;
case 16:
Pp = new []{ 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1 };
break;
default:
throw new ArgumentOutOfRangeException("m", "m must be between 2 and 16 inclusive");
}
MM = m;
KK = k;
NN = n;
A0 = n;
Alpha_to = new int[n + 1];
Index_of = new int[n + 1];
Gg = new int[NN - KK + 1];
generate_gf();
gen_poly();
initialized = true;
}
int modnn(int x)
{
while (x >= NN)
{
x -= NN;
x = (x >> MM) + (x & NN);
}
return x;
}
static int min(int a, int b)
{
return ((a) < (b) ? (a) : (b));
}
static void CLEAR(ref int[] a, int n)
{
int ci;
for (ci = (n) - 1; ci >= 0; ci--)
(a)[ci] = 0;
}
static void COPY(ref int[] a, ref int[] b, int n)
{
int ci;
for (ci = (n) - 1; ci >= 0; ci--)
(a)[ci] = (b)[ci];
}
static void COPYDOWN(ref int[] a, ref int[] b, int n)
{
int ci;
for (ci = (n) - 1; ci >= 0; ci--)
(a)[ci] = (b)[ci];
}
/* generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m]
lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
polynomial form -> index form index_of[j=alpha**i] = i
alpha=2 is the primitive element of GF(2**m)
HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
Let @ represent the primitive element commonly called "alpha" that
is the root of the primitive polynomial p(x). Then in GF(2^m), for any
0 <= i <= 2^m-2,
@^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
example the polynomial representation of @^5 would be given by the binary
representation of the integer "alpha_to[5]".
Similarily, index_of[] can be used as follows:
As above, let @ represent the primitive element of GF(2^m) that is
the root of the primitive polynomial p(x). In order to find the power
of @ (alpha) that has the polynomial representation
a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
we consider the integer "i" whose binary representation with a(0) being LSB
and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
"index_of[i]". Now, @^index_of[i] is that element whose polynomial
representation is (a(0),a(1),a(2),...,a(m-1)).
NOTE:
The element alpha_to[2^m-1] = 0 always signifying that the
representation of "@^infinity" = 0 is (0,0,0,...,0).
Similarily, the element index_of[0] = A0 always signifying
that the power of alpha which has the polynomial representation
(0,0,...,0) is "infinity".
*/
void generate_gf()
{
int i, mask;
mask = 1;
Alpha_to[MM] = 0;
for (i = 0; i < MM; i++)
{
Alpha_to[i] = mask;
Index_of[Alpha_to[i]] = i;
/* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
if (Pp[i] != 0)
Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */
mask <<= 1; /* single left-shift */
}
Index_of[Alpha_to[MM]] = MM;
/*
* Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
* poly-repr of @^i shifted left one-bit and accounting for any @^MM
* term that may occur when poly-repr of @^i is shifted.
*/
mask >>= 1;
for (i = MM + 1; i < NN; i++)
{
if (Alpha_to[i - 1] >= mask)
Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
else
Alpha_to[i] = Alpha_to[i - 1] << 1;
Index_of[Alpha_to[i]] = i;
}
Index_of[0] = A0;
Alpha_to[NN] = 0;
}
/*
* Obtain the generator polynomial of the TT-error correcting, length
* NN=(2**MM -1) Reed Solomon code from the product of (X+@**(B0+i)), i = 0,
* ... ,(2*TT-1)
*
* Examples:
*
* If B0 = 1, TT = 1. deg(g(x)) = 2*TT = 2.
* g(x) = (x+@) (x+@**2)
*
* If B0 = 0, TT = 2. deg(g(x)) = 2*TT = 4.
* g(x) = (x+1) (x+@) (x+@**2) (x+@**3)
*/
void gen_poly()
{
int i, j;
Gg[0] = Alpha_to[B0];
Gg[1] = 1; /* g(x) = (X+@**B0) initially */
for (i = 2; i <= NN - KK; i++)
{
Gg[i] = 1;
/*
* Below multiply (Gg[0]+Gg[1]*x + ... +Gg[i]x^i) by
* (@**(B0+i-1) + x)
*/
for (j = i - 1; j > 0; j--)
if (Gg[j] != 0)
Gg[j] = Gg[j - 1] ^ Alpha_to[modnn((Index_of[Gg[j]]) + B0 + i - 1)];
else
Gg[j] = Gg[j - 1];
/* Gg[0] can never be zero */
Gg[0] = Alpha_to[modnn((Index_of[Gg[0]]) + B0 + i - 1)];
}
/* convert Gg[] to index form for quicker encoding */
for (i = 0; i <= NN - KK; i++)
Gg[i] = Index_of[Gg[i]];
}
/*
* take the string of symbols in data[i], i=0..(k-1) and encode
* systematically to produce NN-KK parity symbols in bb[0]..bb[NN-KK-1] data[]
* is input and bb[] is output in polynomial form. Encoding is done by using
* a feedback shift register with appropriate connections specified by the
* elements of Gg[], which was generated above. Codeword is c(X) =
* data(X)*X**(NN-KK)+ b(X)
*/
/// <summary>
/// Takes the symbols in data to output parity in bb.
/// </summary>
/// <returns>Returns -1 if an illegal symbol is found.</returns>
/// <param name="data">Data symbols.</param>
/// <param name="bb">Outs parity symbols.</param>
public int encode_rs(int[] data, out int[] bb)
{
if (initialized)
{
int i, j;
int feedback;
bb = new int[NN - KK];
CLEAR(ref bb, NN - KK);
for (i = KK - 1; i >= 0; i--)
{
if (MM != 8)
{
if (data[i] > NN)
return -1; /* Illegal symbol */
}
feedback = Index_of[data[i] ^ bb[NN - KK - 1]];
if (feedback != A0)
{ /* feedback term is non-zero */
for (j = NN - KK - 1; j > 0; j--)
if (Gg[j] != A0)
bb[j] = bb[j - 1] ^ Alpha_to[modnn(Gg[j] + feedback)];
else
bb[j] = bb[j - 1];
bb[0] = Alpha_to[modnn(Gg[0] + feedback)];
}
else
{ /* feedback term is zero. encoder becomes a
* single-byte shifter */
for (j = NN - KK - 1; j > 0; j--)
bb[j] = bb[j - 1];
bb[0] = 0;
}
}
return 0;
}
throw new UnauthorizedAccessException("Trying to calculate RS without initializing!");
}
/*
* Performs ERRORS+ERASURES decoding of RS codes. If decoding is successful,
* writes the codeword into data[] itself. Otherwise data[] is unaltered.
*
* Return number of symbols corrected, or -1 if codeword is illegal
* or uncorrectable.
*
* First "no_eras" erasures are declared by the calling program. Then, the
* maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
* If the number of channel errors is not greater than "t_after_eras" the
* transmitted codeword will be recovered. Details of algorithm can be found
* in R. Blahut's "Theory ... of Error-Correcting Codes".
*/
/// <summary>
/// Decodes the RS. If decoding is successful outputs corrected data symbols.
/// </summary>
/// <returns>Returns corrected symbols, -1 if illegal or uncorrectable</returns>
/// <param name="data">Data symbols.</param>
/// <param name="eras_pos">Position of erasures.</param>
/// <param name="no_eras">Number of erasures.</param>
public int eras_dec_rs(ref int[] data, out int[] eras_pos, int no_eras)
{
if (initialized)
{
eras_pos = new int[NN - KK];
int deg_lambda, el, deg_omega;
int i, j, r;
int u, q, tmp, num1, num2, den, discr_r;
int[] recd = new int[NN];
int[] lambda = new int[NN - KK + 1]; /* Err+Eras Locator poly */
int[] s = new int[NN - KK + 1]; /* syndrome poly */
int[] b = new int[NN - KK + 1];
int[] t = new int[NN - KK + 1];
int[] omega = new int[NN - KK + 1];
int[] root = new int[NN - KK];
int[] reg = new int[NN - KK + 1];
int[] loc = new int[NN - KK];
int syn_error, count;
/* data[] is in polynomial form, copy and convert to index form */
for (i = NN - 1; i >= 0; i--)
{
if (MM != 8)
{
if (data[i] > NN)
return -1; /* Illegal symbol */
}
recd[i] = Index_of[data[i]];
}
/* first form the syndromes; i.e., evaluate recd(x) at roots of g(x)
* namely @**(B0+i), i = 0, ... ,(NN-KK-1)
*/
syn_error = 0;
for (i = 1; i <= NN - KK; i++)
{
tmp = 0;
for (j = 0; j < NN; j++)
if (recd[j] != A0) /* recd[j] in index form */
tmp ^= Alpha_to[modnn(recd[j] + (B0 + i - 1) * j)];
syn_error |= tmp; /* set flag if non-zero syndrome =>
* error */
/* store syndrome in index form */
s[i] = Index_of[tmp];
}
if (syn_error == 0)
{
/*
* if syndrome is zero, data[] is a codeword and there are no
* errors to correct. So return data[] unmodified
*/
return 0;
}
CLEAR(ref lambda, NN - KK);
lambda[0] = 1;
if (no_eras > 0)
{
/* Init lambda to be the erasure locator polynomial */
lambda[1] = Alpha_to[eras_pos[0]];
for (i = 1; i < no_eras; i++)
{
u = eras_pos[i];
for (j = i + 1; j > 0; j--)
{
tmp = Index_of[lambda[j - 1]];
if (tmp != A0)
lambda[j] ^= Alpha_to[modnn(u + tmp)];
}
}
if (MainClass.isDebug)
{
/* find roots of the erasure location polynomial */
for (i = 1; i <= no_eras; i++)
reg[i] = Index_of[lambda[i]];
count = 0;
for (i = 1; i <= NN; i++)
{
q = 1;
for (j = 1; j <= no_eras; j++)
if (reg[j] != A0)
{
reg[j] = modnn(reg[j] + j);
q ^= Alpha_to[reg[j]];
}
if (q == 0)
{
/* store root and error location
* number indices
*/
root[count] = i;
loc[count] = NN - i;
count++;
}
}
if (count != no_eras)
{
Console.WriteLine("\n lambda(x) is WRONG\n");
return -1;
}
Console.WriteLine("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
for (i = 0; i < count; i++)
Console.WriteLine("{0} ", loc[i]);
Console.WriteLine("\n");
}
}
for (i = 0; i < NN - KK + 1; i++)
b[i] = Index_of[lambda[i]];
/*
* Begin Berlekamp-Massey algorithm to determine error+erasure
* locator polynomial
*/
r = no_eras;
el = no_eras;
while (++r <= NN - KK)
{ /* r is the step number */
/* Compute discrepancy at the r-th step in poly-form */
discr_r = 0;
for (i = 0; i < r; i++)
{
if ((lambda[i] != 0) && (s[r - i] != A0))
{
discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
}
}
discr_r = Index_of[discr_r]; /* Index form */
if (discr_r == A0)
{
/* 2 lines below: B(x) <-- x*B(x) */
COPYDOWN(ref b, ref b, NN - KK);
b[0] = A0;
}
else
{
/* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
t[0] = lambda[0];
for (i = 0; i < NN - KK; i++)
{
if (b[i] != A0)
t[i + 1] = lambda[i + 1] ^ Alpha_to[modnn(discr_r + b[i])];
else
t[i + 1] = lambda[i + 1];
}
if (2 * el <= r + no_eras - 1)
{
el = r + no_eras - el;
/*
* 2 lines below: B(x) <-- inv(discr_r) *
* lambda(x)
*/
for (i = 0; i <= NN - KK; i++)
b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
}
else
{
/* 2 lines below: B(x) <-- x*B(x) */
COPYDOWN(ref b, ref b, NN - KK);
b[0] = A0;
}
COPY(ref lambda, ref t, NN - KK + 1);
}
}
/* Convert lambda to index form and compute deg(lambda(x)) */
deg_lambda = 0;
for (i = 0; i < NN - KK + 1; i++)
{
lambda[i] = Index_of[lambda[i]];
if (lambda[i] != A0)
deg_lambda = i;
}
/*
* Find roots of the error+erasure locator polynomial. By Chien
* Search
*/
int temp = reg[0];
COPY(ref reg, ref lambda, NN - KK);
reg[0] = temp;
count = 0; /* Number of roots of lambda(x) */
for (i = 1; i <= NN; i++)
{
q = 1;
for (j = deg_lambda; j > 0; j--)
if (reg[j] != A0)
{
reg[j] = modnn(reg[j] + j);
q ^= Alpha_to[reg[j]];
}
if (q == 0)
{
/* store root (index-form) and error location number */
root[count] = i;
loc[count] = NN - i;
count++;
}
}
if (MainClass.isDebug)
{
Console.WriteLine("\n Final error positions:\t");
for (i = 0; i < count; i++)
Console.WriteLine("{0} ", loc[i]);
Console.WriteLine("\n");
}
if (deg_lambda != count)
{
/*
* deg(lambda) unequal to number of roots => uncorrectable
* error detected
*/
return -1;
}
/*
* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
* x**(NN-KK)). in index form. Also find deg(omega).
*/
deg_omega = 0;
for (i = 0; i < NN - KK; i++)
{
tmp = 0;
j = (deg_lambda < i) ? deg_lambda : i;
for (; j >= 0; j--)
{
if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
}
if (tmp != 0)
deg_omega = i;
omega[i] = Index_of[tmp];
}
omega[NN - KK] = A0;
/*
* Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
* inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
*/
for (j = count - 1; j >= 0; j--)
{
num1 = 0;
for (i = deg_omega; i >= 0; i--)
{
if (omega[i] != A0)
num1 ^= Alpha_to[modnn(omega[i] + i * root[j])];
}
num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
den = 0;
/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
for (i = min(deg_lambda, NN - KK - 1) & ~1; i >= 0; i -= 2)
{
if (lambda[i + 1] != A0)
den ^= Alpha_to[modnn(lambda[i + 1] + i * root[j])];
}
if (den == 0)
{
if (MainClass.isDebug)
{
Console.WriteLine("\n ERROR: denominator = 0\n");
}
return -1;
}
/* Apply error to data */
if (num1 != 0)
{
data[loc[j]] ^= Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
}
}
return count;
}
throw new UnauthorizedAccessException("Trying to calculate RS without initializing!");
}
}
}

View File

@@ -1,162 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : SHA1Context.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Checksums.
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Wraps up .NET SHA1 implementation to a Init(), Update(), Final() context.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
****************************************************************************/
//$Id$
using System.Security.Cryptography;
using System.Text;
using System.IO;
namespace DiscImageChef.Checksums
{
/// <summary>
/// Provides a UNIX similar API to .NET SHA1.
/// </summary>
public class SHA1Context
{
SHA1 _sha1Provider;
/// <summary>
/// Initializes the SHA1 hash provider
/// </summary>
public void Init()
{
_sha1Provider = SHA1.Create();
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of buffer to hash.</param>
public void Update(byte[] data, uint len)
{
_sha1Provider.TransformBlock(data, 0, (int)len, data, 0);
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
public void Update(byte[] data)
{
Update(data, (uint)data.Length);
}
/// <summary>
/// Returns a byte array of the hash value.
/// </summary>
public byte[] Final()
{
_sha1Provider.TransformFinalBlock(new byte[0], 0, 0);
return _sha1Provider.Hash;
}
/// <summary>
/// Returns a hexadecimal representation of the hash value.
/// </summary>
public string End()
{
_sha1Provider.TransformFinalBlock(new byte[0], 0, 0);
StringBuilder sha1Output = new StringBuilder();
for (int i = 0; i < _sha1Provider.Hash.Length; i++)
{
sha1Output.Append(_sha1Provider.Hash[i].ToString("x2"));
}
return sha1Output.ToString();
}
/// <summary>
/// Gets the hash of a file
/// </summary>
/// <param name="filename">File path.</param>
public byte[] File(string filename)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
return _sha1Provider.ComputeHash(fileStream);
}
/// <summary>
/// Gets the hash of a file in hexadecimal and as a byte array.
/// </summary>
/// <param name="filename">File path.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string File(string filename, out byte[] hash)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
hash = _sha1Provider.ComputeHash(fileStream);
StringBuilder sha1Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
sha1Output.Append(hash[i].ToString("x2"));
}
return sha1Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of the data buffer to hash.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string Data(byte[] data, uint len, out byte[] hash)
{
hash = _sha1Provider.ComputeHash(data, 0, (int)len);
StringBuilder sha1Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
sha1Output.Append(hash[i].ToString("x2"));
}
return sha1Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string Data(byte[] data, out byte[] hash)
{
return Data(data, (uint)data.Length, out hash);
}
}
}

View File

@@ -1,162 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : SHA256Context.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Checksums.
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Wraps up .NET SHA256 implementation to a Init(), Update(), Final() context.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
****************************************************************************/
//$Id$
using System.Security.Cryptography;
using System.Text;
using System.IO;
namespace DiscImageChef.Checksums
{
/// <summary>
/// Provides a UNIX similar API to .NET SHA256.
/// </summary>
public class SHA256Context
{
SHA256 _sha256Provider;
/// <summary>
/// Initializes the SHA256 hash provider
/// </summary>
public void Init()
{
_sha256Provider = SHA256.Create();
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of buffer to hash.</param>
public void Update(byte[] data, uint len)
{
_sha256Provider.TransformBlock(data, 0, (int)len, data, 0);
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
public void Update(byte[] data)
{
Update(data, (uint)data.Length);
}
/// <summary>
/// Returns a byte array of the hash value.
/// </summary>
public byte[] Final()
{
_sha256Provider.TransformFinalBlock(new byte[0], 0, 0);
return _sha256Provider.Hash;
}
/// <summary>
/// Returns a hexadecimal representation of the hash value.
/// </summary>
public string End()
{
_sha256Provider.TransformFinalBlock(new byte[0], 0, 0);
StringBuilder sha256Output = new StringBuilder();
for (int i = 0; i < _sha256Provider.Hash.Length; i++)
{
sha256Output.Append(_sha256Provider.Hash[i].ToString("x2"));
}
return sha256Output.ToString();
}
/// <summary>
/// Gets the hash of a file
/// </summary>
/// <param name="filename">File path.</param>
public byte[] File(string filename)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
return _sha256Provider.ComputeHash(fileStream);
}
/// <summary>
/// Gets the hash of a file in hexadecimal and as a byte array.
/// </summary>
/// <param name="filename">File path.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string File(string filename, out byte[] hash)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
hash = _sha256Provider.ComputeHash(fileStream);
StringBuilder sha256Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
sha256Output.Append(hash[i].ToString("x2"));
}
return sha256Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of the data buffer to hash.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string Data(byte[] data, uint len, out byte[] hash)
{
hash = _sha256Provider.ComputeHash(data, 0, (int)len);
StringBuilder sha256Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
sha256Output.Append(hash[i].ToString("x2"));
}
return sha256Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string Data(byte[] data, out byte[] hash)
{
return Data(data, (uint)data.Length, out hash);
}
}
}

View File

@@ -1,162 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : SHA384Context.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Checksums.
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Wraps up .NET SHA384 implementation to a Init(), Update(), Final() context.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
****************************************************************************/
//$Id$
using System.Security.Cryptography;
using System.Text;
using System.IO;
namespace DiscImageChef.Checksums
{
/// <summary>
/// Provides a UNIX similar API to .NET SHA384.
/// </summary>
public class SHA384Context
{
SHA384 _sha384Provider;
/// <summary>
/// Initializes the SHA384 hash provider
/// </summary>
public void Init()
{
_sha384Provider = SHA384.Create();
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of buffer to hash.</param>
public void Update(byte[] data, uint len)
{
_sha384Provider.TransformBlock(data, 0, (int)len, data, 0);
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
public void Update(byte[] data)
{
Update(data, (uint)data.Length);
}
/// <summary>
/// Returns a byte array of the hash value.
/// </summary>
public byte[] Final()
{
_sha384Provider.TransformFinalBlock(new byte[0], 0, 0);
return _sha384Provider.Hash;
}
/// <summary>
/// Returns a hexadecimal representation of the hash value.
/// </summary>
public string End()
{
_sha384Provider.TransformFinalBlock(new byte[0], 0, 0);
StringBuilder sha384Output = new StringBuilder();
for (int i = 0; i < _sha384Provider.Hash.Length; i++)
{
sha384Output.Append(_sha384Provider.Hash[i].ToString("x2"));
}
return sha384Output.ToString();
}
/// <summary>
/// Gets the hash of a file
/// </summary>
/// <param name="filename">File path.</param>
public byte[] File(string filename)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
return _sha384Provider.ComputeHash(fileStream);
}
/// <summary>
/// Gets the hash of a file in hexadecimal and as a byte array.
/// </summary>
/// <param name="filename">File path.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string File(string filename, out byte[] hash)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
hash = _sha384Provider.ComputeHash(fileStream);
StringBuilder sha384Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
sha384Output.Append(hash[i].ToString("x2"));
}
return sha384Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of the data buffer to hash.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string Data(byte[] data, uint len, out byte[] hash)
{
hash = _sha384Provider.ComputeHash(data, 0, (int)len);
StringBuilder sha384Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
sha384Output.Append(hash[i].ToString("x2"));
}
return sha384Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string Data(byte[] data, out byte[] hash)
{
return Data(data, (uint)data.Length, out hash);
}
}
}

View File

@@ -1,162 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : SHA512Context.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Checksums.
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Wraps up .NET SHA512 implementation to a Init(), Update(), Final() context.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
****************************************************************************/
//$Id$
using System.Security.Cryptography;
using System.Text;
using System.IO;
namespace DiscImageChef.Checksums
{
/// <summary>
/// Provides a UNIX similar API to .NET SHA512.
/// </summary>
public class SHA512Context
{
SHA512 _sha512Provider;
/// <summary>
/// Initializes the SHA512 hash provider
/// </summary>
public void Init()
{
_sha512Provider = SHA512.Create();
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of buffer to hash.</param>
public void Update(byte[] data, uint len)
{
_sha512Provider.TransformBlock(data, 0, (int)len, data, 0);
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
public void Update(byte[] data)
{
Update(data, (uint)data.Length);
}
/// <summary>
/// Returns a byte array of the hash value.
/// </summary>
public byte[] Final()
{
_sha512Provider.TransformFinalBlock(new byte[0], 0, 0);
return _sha512Provider.Hash;
}
/// <summary>
/// Returns a hexadecimal representation of the hash value.
/// </summary>
public string End()
{
_sha512Provider.TransformFinalBlock(new byte[0], 0, 0);
StringBuilder sha512Output = new StringBuilder();
for (int i = 0; i < _sha512Provider.Hash.Length; i++)
{
sha512Output.Append(_sha512Provider.Hash[i].ToString("x2"));
}
return sha512Output.ToString();
}
/// <summary>
/// Gets the hash of a file
/// </summary>
/// <param name="filename">File path.</param>
public byte[] File(string filename)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
return _sha512Provider.ComputeHash(fileStream);
}
/// <summary>
/// Gets the hash of a file in hexadecimal and as a byte array.
/// </summary>
/// <param name="filename">File path.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string File(string filename, out byte[] hash)
{
FileStream fileStream = new FileStream(filename, FileMode.Open);
hash = _sha512Provider.ComputeHash(fileStream);
StringBuilder sha512Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
sha512Output.Append(hash[i].ToString("x2"));
}
return sha512Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of the data buffer to hash.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string Data(byte[] data, uint len, out byte[] hash)
{
hash = _sha512Provider.ComputeHash(data, 0, (int)len);
StringBuilder sha512Output = new StringBuilder();
for (int i = 0; i < hash.Length; i++)
{
sha512Output.Append(hash[i].ToString("x2"));
}
return sha512Output.ToString();
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="hash">Byte array of the hash value.</param>
public string Data(byte[] data, out byte[] hash)
{
return Data(data, (uint)data.Length, out hash);
}
}
}

View File

@@ -1,534 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : SpamSumContext.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Checksums.
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Implements the SpamSum fuzzy hashing algorithm.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2015 Claunia.com
****************************************************************************/
// Based on ssdeep
// Copyright (C) 2002 Andrew Tridgell <tridge@samba.org>
// Copyright (C) 2006 ManTech International Corporation
// Copyright (C) 2013 Helmut Grohne <helmut@subdivi.de>
//
// Earlier versions of this code were named fuzzy.c and can be found at:
// http://www.samba.org/ftp/unpacked/junkcode/spamsum/
// http://ssdeep.sf.net/
using System;
using System.Text;
namespace DiscImageChef.Checksums
{
/// <summary>
/// Provides a UNIX similar API to calculate Fuzzy Hash (SpamSum).
/// </summary>
public class SpamSumContext
{
const UInt32 ROLLING_WINDOW = 7;
const UInt32 MIN_BLOCKSIZE = 3;
const UInt32 HASH_PRIME = 0x01000193;
const UInt32 HASH_INIT = 0x28021967;
const UInt32 NUM_BLOCKHASHES = 31;
const UInt32 SPAMSUM_LENGTH = 64;
const UInt32 FUZZY_MAX_RESULT = (2 * SPAMSUM_LENGTH + 20);
//"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
readonly byte[] b64 =
{0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, 0x50,
0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, 0x5A, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E,
0x6F, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76,
0x77, 0x78, 0x79, 0x7A, 0x30, 0x31, 0x32, 0x33,
0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x2B, 0x2F
};
struct roll_state
{
public byte[] window;
// ROLLING_WINDOW
public UInt32 h1;
public UInt32 h2;
public UInt32 h3;
public UInt32 n;
}
/* A blockhash contains a signature state for a specific (implicit) blocksize.
* The blocksize is given by SSDEEP_BS(index). The h and halfh members are the
* FNV hashes, where halfh stops to be reset after digest is SPAMSUM_LENGTH/2
* long. The halfh hash is needed be able to truncate digest for the second
* output hash to stay compatible with ssdeep output. */
struct blockhash_context
{
public UInt32 h;
public UInt32 halfh;
public byte[] digest;
// SPAMSUM_LENGTH
public byte halfdigest;
public UInt32 dlen;
}
struct fuzzy_state
{
public UInt32 bhstart;
public UInt32 bhend;
public blockhash_context[] bh;
//NUM_BLOCKHASHES
public UInt64 total_size;
public roll_state roll;
}
fuzzy_state self;
void roll_init()
{
self.roll = new roll_state();
self.roll.window = new byte[ROLLING_WINDOW];
}
/// <summary>
/// Initializes the SpamSum structures
/// </summary>
public void Init()
{
self = new fuzzy_state();
self.bh = new blockhash_context[NUM_BLOCKHASHES];
for (int i = 0; i < NUM_BLOCKHASHES; i++)
self.bh[i].digest = new byte[SPAMSUM_LENGTH];
self.bhstart = 0;
self.bhend = 1;
self.bh[0].h = HASH_INIT;
self.bh[0].halfh = HASH_INIT;
self.bh[0].digest[0] = 0;
self.bh[0].halfdigest = 0;
self.bh[0].dlen = 0;
self.total_size = 0;
roll_init();
}
/*
* a rolling hash, based on the Adler checksum. By using a rolling hash
* we can perform auto resynchronisation after inserts/deletes
* internally, h1 is the sum of the bytes in the window and h2
* is the sum of the bytes times the index
* h3 is a shift/xor based rolling hash, and is mostly needed to ensure that
* we can cope with large blocksize values
*/
void roll_hash(byte c)
{
self.roll.h2 -= self.roll.h1;
self.roll.h2 += ROLLING_WINDOW * (UInt32)c;
self.roll.h1 += (UInt32)c;
self.roll.h1 -= (UInt32)self.roll.window[self.roll.n % ROLLING_WINDOW];
self.roll.window[self.roll.n % ROLLING_WINDOW] = c;
self.roll.n++;
/* The original spamsum AND'ed this value with 0xFFFFFFFF which
* in theory should have no effect. This AND has been removed
* for performance (jk) */
self.roll.h3 <<= 5;
self.roll.h3 ^= c;
}
UInt32 roll_sum()
{
return self.roll.h1 + self.roll.h2 + self.roll.h3;
}
/* A simple non-rolling hash, based on the FNV hash. */
static UInt32 sum_hash(byte c, UInt32 h)
{
return (h * HASH_PRIME) ^ c;
}
static UInt32 SSDEEP_BS(UInt32 index)
{
return (MIN_BLOCKSIZE << (int)index);
}
void fuzzy_try_fork_blockhash()
{
uint obh, nbh;
if (self.bhend >= NUM_BLOCKHASHES)
return;
if (self.bhend == 0) // assert
throw new Exception("Assertion failed");
obh = self.bhend - 1;
nbh = self.bhend;
self.bh[nbh].h = self.bh[obh].h;
self.bh[nbh].halfh = self.bh[obh].halfh;
self.bh[nbh].digest[0] = 0;
self.bh[nbh].halfdigest = 0;
self.bh[nbh].dlen = 0;
++self.bhend;
}
void fuzzy_try_reduce_blockhash()
{
if (self.bhstart >= self.bhend)
throw new Exception("Assertion failed");
if (self.bhend - self.bhstart < 2)
/* Need at least two working hashes. */
return;
if ((UInt64)SSDEEP_BS(self.bhstart) * SPAMSUM_LENGTH >=
self.total_size)
/* Initial blocksize estimate would select this or a smaller
* blocksize. */
return;
if (self.bh[self.bhstart + 1].dlen < SPAMSUM_LENGTH / 2)
/* Estimate adjustment would select this blocksize. */
return;
/* At this point we are clearly no longer interested in the
* start_blocksize. Get rid of it. */
++self.bhstart;
}
void fuzzy_engine_step(byte c)
{
UInt64 h;
UInt32 i;
/* At each character we update the rolling hash and the normal hashes.
* When the rolling hash hits a reset value then we emit a normal hash
* as a element of the signature and reset the normal hash. */
roll_hash(c);
h = roll_sum();
for (i = self.bhstart; i < self.bhend; ++i)
{
self.bh[i].h = sum_hash(c, self.bh[i].h);
self.bh[i].halfh = sum_hash(c, self.bh[i].halfh);
}
for (i = self.bhstart; i < self.bhend; ++i)
{
/* With growing blocksize almost no runs fail the next test. */
if (h % SSDEEP_BS(i) != SSDEEP_BS(i) - 1)
/* Once this condition is false for one bs, it is
* automatically false for all further bs. I.e. if
* h === -1 (mod 2*bs) then h === -1 (mod bs). */
break;
/* We have hit a reset point. We now emit hashes which are
* based on all characters in the piece of the message between
* the last reset point and this one */
if (0 == self.bh[i].dlen)
{
/* Can only happen 30 times. */
/* First step for this blocksize. Clone next. */
fuzzy_try_fork_blockhash();
}
self.bh[i].digest[self.bh[i].dlen] = b64[self.bh[i].h % 64];
self.bh[i].halfdigest = b64[self.bh[i].halfh % 64];
if (self.bh[i].dlen < SPAMSUM_LENGTH - 1)
{
/* We can have a problem with the tail overflowing. The
* easiest way to cope with this is to only reset the
* normal hash if we have room for more characters in
* our signature. This has the effect of combining the
* last few pieces of the message into a single piece
* */
self.bh[i].digest[++(self.bh[i].dlen)] = 0;
self.bh[i].h = HASH_INIT;
if (self.bh[i].dlen < SPAMSUM_LENGTH / 2)
{
self.bh[i].halfh = HASH_INIT;
self.bh[i].halfdigest = 0;
}
}
else
fuzzy_try_reduce_blockhash();
}
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of buffer to hash.</param>
public void Update(byte[] data, uint len)
{
self.total_size += len;
for (int i = 0; i < len; i++)
fuzzy_engine_step(data[i]);
}
/// <summary>
/// Updates the hash with data.
/// </summary>
/// <param name="data">Data buffer.</param>
public void Update(byte[] data)
{
Update(data, (uint)data.Length);
}
// CLAUNIA: Flags seems to never be used in ssdeep, so I just removed it for code simplicity
UInt32 fuzzy_digest(out byte[] result)
{
StringBuilder sb = new StringBuilder();
UInt32 bi = self.bhstart;
UInt32 h = roll_sum();
int i, result_off;
int remain = (int)(FUZZY_MAX_RESULT - 1); /* Exclude terminating '\0'. */
result = new byte[FUZZY_MAX_RESULT];
/* Verify that our elimination was not overeager. */
if (!(bi == 0 || (UInt64)SSDEEP_BS(bi) / 2 * SPAMSUM_LENGTH < self.total_size))
throw new Exception("Assertion failed");
result_off = 0;
/* Initial blocksize guess. */
while ((UInt64)SSDEEP_BS(bi) * SPAMSUM_LENGTH < self.total_size)
{
++bi;
if (bi >= NUM_BLOCKHASHES)
{
throw new OverflowException("The input exceeds data types.");
}
}
/* Adapt blocksize guess to actual digest length. */
while (bi >= self.bhend)
--bi;
while (bi > self.bhstart && self.bh[bi].dlen < SPAMSUM_LENGTH / 2)
--bi;
if ((bi > 0 && self.bh[bi].dlen < SPAMSUM_LENGTH / 2))
throw new Exception("Assertion failed");
sb.AppendFormat("{0}:", SSDEEP_BS(bi));
i = Encoding.ASCII.GetBytes(sb.ToString()).Length;
if (i <= 0)
/* Maybe snprintf has set errno here? */
throw new OverflowException("The input exceeds data types.");
if (i >= remain)
throw new Exception("Assertion failed");
remain -= i;
Array.Copy(Encoding.ASCII.GetBytes(sb.ToString()), 0, result, 0, i);
result_off += i;
i = (int)self.bh[bi].dlen;
if (i > remain)
throw new Exception("Assertion failed");
Array.Copy(self.bh[bi].digest, 0, result, result_off, i);
result_off += i;
remain -= i;
if (h != 0)
{
if (remain <= 0)
throw new Exception("Assertion failed");
result[result_off] = b64[self.bh[bi].h % 64];
if (i < 3 ||
result[result_off] != result[result_off - 1] ||
result[result_off] != result[result_off - 2] ||
result[result_off] != result[result_off - 3])
{
++result_off;
--remain;
}
}
else if (self.bh[bi].digest[i] != 0)
{
if (remain <= 0)
throw new Exception("Assertion failed");
result[result_off] = self.bh[bi].digest[i];
if (i < 3 ||
result[result_off] != result[result_off - 1] ||
result[result_off] != result[result_off - 2] ||
result[result_off] != result[result_off - 3])
{
++result_off;
--remain;
}
}
if (remain <= 0)
throw new Exception("Assertion failed");
result[result_off++] = 0x3A; // ':'
--remain;
if (bi < self.bhend - 1)
{
++bi;
i = (int)self.bh[bi].dlen;
if (i > remain)
throw new Exception("Assertion failed");
Array.Copy(self.bh[bi].digest, 0, result, result_off, i);
result_off += i;
remain -= i;
if (h != 0)
{
if (remain <= 0)
throw new Exception("Assertion failed");
h = self.bh[bi].halfh;
result[result_off] = b64[h % 64];
if (i < 3 ||
result[result_off] != result[result_off - 1] ||
result[result_off] != result[result_off - 2] ||
result[result_off] != result[result_off - 3])
{
++result_off;
--remain;
}
}
else
{
i = self.bh[bi].halfdigest;
if (i != 0)
{
if (remain <= 0)
throw new Exception("Assertion failed");
result[result_off] = (byte)i;
if (i < 3 ||
result[result_off] != result[result_off - 1] ||
result[result_off] != result[result_off - 2] ||
result[result_off] != result[result_off - 3])
{
++result_off;
--remain;
}
}
}
}
else if (h != 0)
{
if (self.bh[bi].dlen != 0)
throw new Exception("Assertion failed");
if (remain <= 0)
throw new Exception("Assertion failed");
result[result_off++] = b64[self.bh[bi].h % 64];
/* No need to bother with FUZZY_FLAG_ELIMSEQ, because this
* digest has length 1. */
--remain;
}
result[result_off] = 0;
return 0;
}
/// <summary>
/// Returns a byte array of the hash value.
/// </summary>
public byte[] Final()
{
// SpamSum does not have a binary representation, or so it seems
throw new NotImplementedException("SpamSum does not have a binary representation.");
}
/// <summary>
/// Returns a base64 representation of the hash value.
/// </summary>
public string End()
{
byte[] result;
fuzzy_digest(out result);
return CToString(result);
}
/// <summary>
/// Gets the hash of a file
/// </summary>
/// <param name="filename">File path.</param>
public static byte[] File(string filename)
{
// SpamSum does not have a binary representation, or so it seems
throw new NotImplementedException("SpamSum does not have a binary representation.");
}
/// <summary>
/// Gets the hash of a file in hexadecimal and as a byte array.
/// </summary>
/// <param name="filename">File path.</param>
/// <param name="hash">Byte array of the hash value.</param>
public static string File(string filename, out byte[] hash)
{
// SpamSum does not have a binary representation, or so it seems
throw new NotImplementedException("Not yet implemented.");
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="len">Length of the data buffer to hash.</param>
/// <param name="hash">null</param>
/// <returns>Base64 representation of SpamSum $blocksize:$hash:$hash</returns>
public string Data(byte[] data, uint len, out byte[] hash)
{
SpamSumContext fuzzyContext = new SpamSumContext();
fuzzyContext.Init();
fuzzyContext.Update(data, len);
hash = null;
byte[] result;
fuzzy_digest(out result);
return CToString(result);
}
/// <summary>
/// Gets the hash of the specified data buffer.
/// </summary>
/// <param name="data">Data buffer.</param>
/// <param name="hash">null</param>
/// <returns>Base64 representation of SpamSum $blocksize:$hash:$hash</returns>
public string Data(byte[] data, out byte[] hash)
{
return Data(data, (uint)data.Length, out hash);
}
// Converts an ASCII null-terminated string to .NET string
private string CToString(byte[] CString)
{
StringBuilder sb = new StringBuilder();
for (int i = 0; i < CString.Length; i++)
{
if (CString[i] == 0)
break;
sb.Append(Encoding.ASCII.GetString(CString, i, 1));
}
return sb.ToString();
}
}
}

View File

@@ -1,158 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : DateHandlers.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Program tools
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Convert several timestamp formats to C# DateTime.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
****************************************************************************/
//$Id$
using System;
namespace DiscImageChef
{
public static class DateHandlers
{
static readonly DateTime LisaEpoch = new DateTime(1901, 1, 1, 0, 0, 0);
static readonly DateTime MacEpoch = new DateTime(1904, 1, 1, 0, 0, 0);
static readonly DateTime UNIXEpoch = new DateTime(1970, 1, 1, 0, 0, 0);
// Day 0 of Julian Date system
static readonly DateTime JulianEpoch = new DateTime(1858, 11, 17, 0, 0, 0);
static readonly DateTime AmigaEpoch = new DateTime(1978, 1, 1, 0, 0, 0);
public static DateTime MacToDateTime(ulong MacTimeStamp)
{
return MacEpoch.AddTicks((long)(MacTimeStamp * 10000000));
}
public static DateTime LisaToDateTime(UInt32 LisaTimeStamp)
{
return LisaEpoch.AddSeconds(LisaTimeStamp);
}
public static DateTime UNIXToDateTime(Int32 UNIXTimeStamp)
{
return UNIXEpoch.AddSeconds(UNIXTimeStamp);
}
public static DateTime UNIXUnsignedToDateTime(UInt32 UNIXTimeStamp)
{
return UNIXEpoch.AddSeconds(UNIXTimeStamp);
}
public static DateTime ISO9660ToDateTime(byte[] VDDateTime)
{
int year, month, day, hour, minute, second, hundredths;
byte[] twocharvalue = new byte[2];
byte[] fourcharvalue = new byte[4];
fourcharvalue[0] = VDDateTime[0];
fourcharvalue[1] = VDDateTime[1];
fourcharvalue[2] = VDDateTime[2];
fourcharvalue[3] = VDDateTime[3];
if (MainClass.isDebug)
Console.WriteLine("DEBUG (ISO9600ToDateTime handler): year = \"{0}\"", StringHandlers.CToString(fourcharvalue));
if (!Int32.TryParse(StringHandlers.CToString(fourcharvalue), out year))
year = 0;
// year = Convert.ToInt32(StringHandlers.CToString(fourcharvalue));
twocharvalue[0] = VDDateTime[4];
twocharvalue[1] = VDDateTime[5];
if (MainClass.isDebug)
Console.WriteLine("DEBUG (ISO9600ToDateTime handler): month = \"{0}\"", StringHandlers.CToString(twocharvalue));
if (!Int32.TryParse(StringHandlers.CToString(twocharvalue), out month))
month = 0;
// month = Convert.ToInt32(StringHandlers.CToString(twocharvalue));
twocharvalue[0] = VDDateTime[6];
twocharvalue[1] = VDDateTime[7];
if (MainClass.isDebug)
Console.WriteLine("DEBUG (ISO9600ToDateTime handler): day = \"{0}\"", StringHandlers.CToString(twocharvalue));
if (!Int32.TryParse(StringHandlers.CToString(twocharvalue), out day))
day = 0;
// day = Convert.ToInt32(StringHandlers.CToString(twocharvalue));
twocharvalue[0] = VDDateTime[8];
twocharvalue[1] = VDDateTime[9];
if (MainClass.isDebug)
Console.WriteLine("DEBUG (ISO9600ToDateTime handler): hour = \"{0}\"", StringHandlers.CToString(twocharvalue));
if (!Int32.TryParse(StringHandlers.CToString(twocharvalue), out hour))
hour = 0;
// hour = Convert.ToInt32(StringHandlers.CToString(twocharvalue));
twocharvalue[0] = VDDateTime[10];
twocharvalue[1] = VDDateTime[11];
if (MainClass.isDebug)
Console.WriteLine("DEBUG (ISO9600ToDateTime handler): minute = \"{0}\"", StringHandlers.CToString(twocharvalue));
if (!Int32.TryParse(StringHandlers.CToString(twocharvalue), out minute))
minute = 0;
// minute = Convert.ToInt32(StringHandlers.CToString(twocharvalue));
twocharvalue[0] = VDDateTime[12];
twocharvalue[1] = VDDateTime[13];
if (MainClass.isDebug)
Console.WriteLine("DEBUG (ISO9600ToDateTime handler): second = \"{0}\"", StringHandlers.CToString(twocharvalue));
if (!Int32.TryParse(StringHandlers.CToString(twocharvalue), out second))
second = 0;
// second = Convert.ToInt32(StringHandlers.CToString(twocharvalue));
twocharvalue[0] = VDDateTime[14];
twocharvalue[1] = VDDateTime[15];
if (MainClass.isDebug)
Console.WriteLine("DEBUG (ISO9600ToDateTime handler): hundredths = \"{0}\"", StringHandlers.CToString(twocharvalue));
if (!Int32.TryParse(StringHandlers.CToString(twocharvalue), out hundredths))
hundredths = 0;
// hundredths = Convert.ToInt32(StringHandlers.CToString(twocharvalue));
if (MainClass.isDebug)
Console.WriteLine("DEBUG (ISO9600ToDateTime handler): decodedDT = new DateTime({0}, {1}, {2}, {3}, {4}, {5}, {6}, DateTimeKind.Unspecified);", year, month, day, hour, minute, second, hundredths * 10);
DateTime decodedDT = new DateTime(year, month, day, hour, minute, second, hundredths * 10, DateTimeKind.Unspecified);
return decodedDT;
}
// C# works in UTC, VMS on Julian Date, some displacement may occur on disks created outside UTC
public static DateTime VMSToDateTime(UInt64 vmsDate)
{
double delta = vmsDate * 0.0001; // Tenths of microseconds to milliseconds, will lose some detail
return JulianEpoch.AddMilliseconds(delta);
}
public static DateTime AmigaToDateTime(UInt32 days, UInt32 minutes, UInt32 ticks)
{
DateTime temp = AmigaEpoch.AddDays(days);
temp = temp.AddMinutes(minutes);
return temp.AddMilliseconds(ticks * 20);
}
}
}

View File

@@ -40,7 +40,6 @@
<Compile Include="Main.cs" />
<Compile Include="AssemblyInfo.cs" />
<Compile Include="Plugins\AppleMFS.cs" />
<Compile Include="Swapping.cs" />
<Compile Include="Plugins\Plugin.cs" />
<Compile Include="Plugins.cs" />
<Compile Include="Plugins\ISO9660.cs" />
@@ -61,21 +60,15 @@
<Compile Include="Plugins\Symbian.cs" />
<Compile Include="Plugins\extFS.cs" />
<Compile Include="Plugins\ext2FS.cs" />
<Compile Include="DateHandlers.cs" />
<Compile Include="EndianAwareBinaryReader.cs" />
<Compile Include="StringHandlers.cs" />
<Compile Include="Plugins\MinixFS.cs" />
<Compile Include="Plugins\SolarFS.cs" />
<Compile Include="Plugins\UNIXBFS.cs" />
<Compile Include="Plugins\SysV.cs" />
<Compile Include="ImagePlugins\ImagePlugin.cs" />
<Compile Include="ImagePlugins\CDRWin.cs" />
<Compile Include="BigEndianBitConverter.cs" />
<Compile Include="ImagePlugins\DiskCopy42.cs" />
<Compile Include="Plugins\LisaFS.cs" />
<Compile Include="ImagePlugins\TeleDisk.cs" />
<Compile Include="ArrayFill.cs" />
<Compile Include="PrintHex.cs" />
<Compile Include="ImagePlugins\ZZZRawImage.cs" />
<Compile Include="Options.cs" />
<Compile Include="Commands\Formats.cs" />
@@ -86,18 +79,7 @@
<Compile Include="Commands\Commands.cs" />
<Compile Include="ImagePlugins\DetectImageFormat.cs" />
<Compile Include="ImagePlugins\ImageInfo.cs" />
<Compile Include="Checksums\MD5Context.cs" />
<Compile Include="Checksums\RIPEMD160Context.cs" />
<Compile Include="Checksums\SHA1Context.cs" />
<Compile Include="Checksums\SHA256Context.cs" />
<Compile Include="Checksums\SHA384Context.cs" />
<Compile Include="Checksums\SHA512Context.cs" />
<Compile Include="Checksums\CRC32Context.cs" />
<Compile Include="Checksums\CRC64Context.cs" />
<Compile Include="ImagePlugins\Nero.cs" />
<Compile Include="Checksums\CRC16Context.cs" />
<Compile Include="Checksums\CDChecksums.cs" />
<Compile Include="Checksums\ReedSolomon.cs" />
<Compile Include="Commands\PrintHex.cs" />
<Compile Include="Commands\Decode.cs" />
<Compile Include="Decoders\SCSI.cs" />
@@ -106,9 +88,6 @@
<Compile Include="Decoders\BD.cs" />
<Compile Include="Decoders\DVD.cs" />
<Compile Include="Plugins\ProDOS.cs" />
<Compile Include="Checksums\Adler32Context.cs" />
<Compile Include="Checksums\FletcherContext.cs" />
<Compile Include="Checksums\SpamSumContext.cs" />
<Compile Include="ImagePlugins\Apple2MG.cs" />
<Compile Include="PartPlugins\RDB.cs" />
<Compile Include="Plugins\AmigaDOS.cs" />
@@ -213,5 +192,13 @@
<Project>{5DEA2811-2FFA-4959-830B-CAD3ACACABEB}</Project>
<Name>CommandLine35</Name>
</ProjectReference>
<ProjectReference Include="..\DiscImageChef.Checksums\DiscImageChef.Checksums.csproj">
<Project>{CC48B324-A532-4A45-87A6-6F91F7141E8D}</Project>
<Name>DiscImageChef.Checksums</Name>
</ProjectReference>
<ProjectReference Include="..\DiscImageChef.Helpers\DiscImageChef.Helpers.csproj">
<Project>{F8BDF57B-1571-4CD0-84B3-B422088D359A}</Project>
<Name>DiscImageChef.Helpers</Name>
</ProjectReference>
</ItemGroup>
</Project>

View File

@@ -1,162 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : EndianAwareBinaryReader.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Program tools
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Override for System.IO.Binary.Reader that knows how to handle big-endian.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
****************************************************************************/
//$Id$
using System;
using System.IO;
using System.Linq;
using System.Text;
namespace DiscImageChef
{
public class EndianAwareBinaryReader : BinaryReader
{
byte[] buffer = new byte[8];
public EndianAwareBinaryReader(Stream input, Encoding encoding, bool isLittleEndian)
: base(input, encoding)
{
IsLittleEndian = isLittleEndian;
}
public EndianAwareBinaryReader(Stream input, bool isLittleEndian)
: this(input, Encoding.UTF8, isLittleEndian)
{
}
public bool IsLittleEndian
{
get;
set;
}
public override double ReadDouble()
{
if (IsLittleEndian)
return base.ReadDouble();
FillMyBuffer(8);
return BitConverter.ToDouble(buffer.Take(8).Reverse().ToArray(), 0);
}
public override short ReadInt16()
{
if (IsLittleEndian)
return base.ReadInt16();
FillMyBuffer(2);
return BitConverter.ToInt16(buffer.Take(2).Reverse().ToArray(), 0);
}
public override int ReadInt32()
{
if (IsLittleEndian)
return base.ReadInt32();
FillMyBuffer(4);
return BitConverter.ToInt32(buffer.Take(4).Reverse().ToArray(), 0);
}
public override long ReadInt64()
{
if (IsLittleEndian)
return base.ReadInt64();
FillMyBuffer(8);
return BitConverter.ToInt64(buffer.Take(8).Reverse().ToArray(), 0);
}
public override float ReadSingle()
{
if (IsLittleEndian)
return base.ReadSingle();
FillMyBuffer(4);
return BitConverter.ToSingle(buffer.Take(4).Reverse().ToArray(), 0);
}
public override ushort ReadUInt16()
{
if (IsLittleEndian)
return base.ReadUInt16();
FillMyBuffer(2);
return BitConverter.ToUInt16(buffer.Take(2).Reverse().ToArray(), 0);
}
public override uint ReadUInt32()
{
if (IsLittleEndian)
return base.ReadUInt32();
FillMyBuffer(4);
return BitConverter.ToUInt32(buffer.Take(4).Reverse().ToArray(), 0);
}
public override ulong ReadUInt64()
{
if (IsLittleEndian)
return base.ReadUInt64();
FillMyBuffer(8);
return BitConverter.ToUInt64(buffer.Take(8).Reverse().ToArray(), 0);
}
void FillMyBuffer(int numBytes)
{
int offset = 0;
int num2;
if (numBytes == 1)
{
num2 = BaseStream.ReadByte();
if (num2 == -1)
{
throw new EndOfStreamException("Attempted to read past the end of the stream.");
}
buffer[0] = (byte)num2;
}
else
{
do
{
num2 = BaseStream.Read(buffer, offset, numBytes - offset);
if (num2 == 0)
{
throw new EndOfStreamException("Attempted to read past the end of the stream.");
}
offset += num2;
}
while (offset < numBytes);
}
}
}
}

View File

@@ -1,93 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : PrintHex.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Helpers
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Prints a byte array as hexadecimal in console.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
****************************************************************************/
//$Id$
using System;
namespace DiscImageChef
{
public static class PrintHex
{
public static void PrintHexArray(byte[] array, int width)
{
Console.WriteLine(ByteArrayToHexArrayString(array, width));
}
public static string ByteArrayToHexArrayString(byte[] array, int width)
{
System.Text.StringBuilder sb = new System.Text.StringBuilder();
int counter = 0;
int subcounter = 0;
for (long i = 0; i < array.LongLength; i++)
{
if (counter == 0)
{
sb.AppendLine();
sb.AppendFormat("{0:X16} ", i);
}
else
{
if (subcounter == 3 )
{
Console.Write(" ");
subcounter = 0;
}
else
{
Console.Write(" ");
subcounter++;
}
}
sb.AppendFormat("{0:X2}", array[i]);
if (counter == width - 1)
{
counter = 0;
subcounter = 0;
}
else
counter++;
}
sb.AppendLine();
sb.AppendLine();
return sb.ToString();
}
}
}

View File

@@ -1,113 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : StringHandlers.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Program tools
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Convert byte arrays to C# strings.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
****************************************************************************/
//$Id$
using System;
using System.Text;
namespace DiscImageChef
{
public static class StringHandlers
{
/// <summary>
/// Converts a null-terminated (aka C string) ASCII byte array to a C# string
/// </summary>
/// <returns>The corresponding C# string</returns>
/// <param name="CString">A null-terminated (aka C string) ASCII byte array</param>
public static string CToString(byte[] CString)
{
StringBuilder sb = new StringBuilder();
for (int i = 0; i < CString.Length; i++)
{
if (CString[i] == 0)
break;
sb.Append(Encoding.ASCII.GetString(CString, i, 1));
}
return sb.ToString();
}
/// <summary>
/// Converts a length-prefixed (aka Pascal string) ASCII byte array to a C# string
/// </summary>
/// <returns>The corresponding C# string</returns>
/// <param name="PascalString">A length-prefixed (aka Pascal string) ASCII byte array</param>
public static string PascalToString(byte[] PascalString)
{
StringBuilder sb = new StringBuilder();
byte length = PascalString[0];
for (int i = 1; i < length + 1; i++)
{
sb.Append(Encoding.ASCII.GetString(PascalString, i, 1));
}
return sb.ToString();
}
/// <summary>
/// Converts a space (' ', 0x20, ASCII SPACE) padded ASCII byte array to a C# string
/// </summary>
/// <returns>The corresponding C# string</returns>
/// <param name="SpacePaddedString">A space (' ', 0x20, ASCII SPACE) padded ASCII byte array</param>
public static string SpacePaddedToString(byte[] SpacePaddedString)
{
int length = 0;
for (int i = SpacePaddedString.Length; i >= 0; i--)
{
if (i == 0)
return "";
if (SpacePaddedString[i - 1] != 0x20)
{
length = i;
break;
}
}
if (length == 0)
return "";
return Encoding.ASCII.GetString(SpacePaddedString, 0, length);
}
}
}

View File

@@ -1,111 +0,0 @@
/***************************************************************************
The Disc Image Chef
----------------------------------------------------------------------------
Filename : Swapping.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Program tools
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Byte-swapping methods
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
****************************************************************************/
//$Id$
using System;
namespace DiscImageChef
{
static class Swapping
{
public static byte[] SwapTenBytes(byte[] source)
{
byte[] destination = new byte[8];
destination[0] = source[9];
destination[1] = source[8];
destination[2] = source[7];
destination[3] = source[6];
destination[4] = source[5];
destination[5] = source[4];
destination[6] = source[3];
destination[7] = source[2];
destination[8] = source[1];
destination[9] = source[0];
return destination;
}
public static byte[] SwapEightBytes(byte[] source)
{
byte[] destination = new byte[8];
destination[0] = source[7];
destination[1] = source[6];
destination[2] = source[5];
destination[3] = source[4];
destination[4] = source[3];
destination[5] = source[2];
destination[6] = source[1];
destination[7] = source[0];
return destination;
}
public static byte[] SwapFourBytes(byte[] source)
{
byte[] destination = new byte[4];
destination[0] = source[3];
destination[1] = source[2];
destination[2] = source[1];
destination[3] = source[0];
return destination;
}
public static byte[] SwapTwoBytes(byte[] source)
{
byte[] destination = new byte[2];
destination[0] = source[1];
destination[1] = source[0];
return destination;
}
public static UInt32 PDPFromLittleEndian(UInt32 x)
{
return ((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16);
}
public static UInt32 PDPFromBigEndian(UInt32 x)
{
return ((x & 0xff00ff) << 8) | ((x & 0xff00ff00) >> 8);
}
}
}