Files
Aaru.Server/DiscImageChef.Filesystems/SysV.cs

991 lines
49 KiB
C#

// /***************************************************************************
// The Disc Image Chef
// ----------------------------------------------------------------------------
//
// Filename : SysV.cs
// Author(s) : Natalia Portillo <claunia@claunia.com>
//
// Component : UNIX System V filesystem plugin.
//
// --[ Description ] ----------------------------------------------------------
//
// Identifies the UNIX System V filesystem and shows information.
//
// --[ License ] --------------------------------------------------------------
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, see <http://www.gnu.org/licenses/>.
//
// ----------------------------------------------------------------------------
// Copyright © 2011-2018 Natalia Portillo
// ****************************************************************************/
using System;
using System.Collections.Generic;
using System.Diagnostics.CodeAnalysis;
using System.Linq;
using System.Text;
using DiscImageChef.CommonTypes;
using DiscImageChef.DiscImages;
using Schemas;
namespace DiscImageChef.Filesystems
{
// Information from the Linux kernel
[SuppressMessage("ReSharper", "InconsistentNaming")]
public class SysVfs : Filesystem
{
const uint XENIX_MAGIC = 0x002B5544;
const uint XENIX_CIGAM = 0x44552B00;
const uint SYSV_MAGIC = 0xFD187E20;
const uint SYSV_CIGAM = 0x207E18FD;
// Rest have no magic.
// Per a Linux kernel, Coherent fs has following:
const string COH_FNAME = "noname";
const string COH_FPACK = "nopack";
const string COH_XXXXX = "xxxxx";
const string COH_XXXXS = "xxxxx ";
const string COH_XXXXN = "xxxxx\n";
// SCO AFS
const ushort SCO_NFREE = 0xFFFF;
// UNIX 7th Edition has nothing to detect it, so check for a valid filesystem is a must :(
const ushort V7_NICINOD = 100;
const ushort V7_NICFREE = 100;
const uint V7_MAXSIZE = 0x00FFFFFF;
public SysVfs()
{
Name = "UNIX System V filesystem";
PluginUuid = new Guid("9B8D016A-8561-400E-A12A-A198283C211D");
CurrentEncoding = Encoding.GetEncoding("iso-8859-15");
}
public SysVfs(Encoding encoding)
{
Name = "UNIX System V filesystem";
PluginUuid = new Guid("9B8D016A-8561-400E-A12A-A198283C211D");
CurrentEncoding = encoding ?? Encoding.GetEncoding("iso-8859-15");
}
public SysVfs(ImagePlugin imagePlugin, Partition partition, Encoding encoding)
{
Name = "UNIX System V filesystem";
PluginUuid = new Guid("9B8D016A-8561-400E-A12A-A198283C211D");
CurrentEncoding = encoding ?? Encoding.GetEncoding("iso-8859-15");
}
public override bool Identify(ImagePlugin imagePlugin, Partition partition)
{
if(2 + partition.Start >= partition.End) return false;
byte sb_size_in_sectors;
if(imagePlugin.GetSectorSize() <= 0x400
) // Check if underlying device sector size is smaller than SuperBlock size
sb_size_in_sectors = (byte)(0x400 / imagePlugin.GetSectorSize());
else sb_size_in_sectors = 1; // If not a single sector can store it
if(partition.End <= partition.Start + 4 * (ulong)sb_size_in_sectors + sb_size_in_sectors
) // Device must be bigger than SB location + SB size + offset
return false;
// Sectors in a cylinder
int spc = (int)(imagePlugin.ImageInfo.Heads * imagePlugin.ImageInfo.SectorsPerTrack);
// Superblock can start on 0x000, 0x200, 0x600 and 0x800, not aligned, so we assume 16 (128 bytes/sector) sectors as a safe value
int[] locations =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
// Superblock can also skip one cylinder (for boot)
spc
};
foreach(byte[] sb_sector in locations
.TakeWhile(i => i + sb_size_in_sectors < (int)imagePlugin.ImageInfo.Sectors)
.Select(i => imagePlugin.ReadSectors((ulong)i + partition.Start, sb_size_in_sectors)))
{
uint magic = BitConverter.ToUInt32(sb_sector, 0x3F8);
if(magic == XENIX_MAGIC || magic == XENIX_CIGAM || magic == SYSV_MAGIC || magic == SYSV_CIGAM)
return true;
magic = BitConverter.ToUInt32(sb_sector, 0x1F8); // System V magic location
if(magic == SYSV_MAGIC || magic == SYSV_CIGAM) return true;
magic = BitConverter.ToUInt32(sb_sector, 0x1F0); // XENIX 3 magic location
if(magic == XENIX_MAGIC || magic == XENIX_CIGAM) return true;
byte[] coherent_string = new byte[6];
Array.Copy(sb_sector, 0x1E4, coherent_string, 0, 6); // Coherent UNIX s_fname location
string s_fname = StringHandlers.CToString(coherent_string, CurrentEncoding);
Array.Copy(sb_sector, 0x1EA, coherent_string, 0, 6); // Coherent UNIX s_fpack location
string s_fpack = StringHandlers.CToString(coherent_string, CurrentEncoding);
if(s_fname == COH_FNAME && s_fpack == COH_FPACK || s_fname == COH_XXXXX && s_fpack == COH_XXXXX ||
s_fname == COH_XXXXS && s_fpack == COH_XXXXN) return true;
// Now try to identify 7th edition
uint s_fsize = BitConverter.ToUInt32(sb_sector, 0x002);
ushort s_nfree = BitConverter.ToUInt16(sb_sector, 0x006);
ushort s_ninode = BitConverter.ToUInt16(sb_sector, 0x0D0);
if(s_fsize <= 0 || s_fsize >= 0xFFFFFFFF || s_nfree <= 0 || s_nfree >= 0xFFFF || s_ninode <= 0 ||
s_ninode >= 0xFFFF) continue;
if((s_fsize & 0xFF) == 0x00 && (s_nfree & 0xFF) == 0x00 && (s_ninode & 0xFF) == 0x00)
{
// Byteswap
s_fsize = ((s_fsize & 0xFF) << 24) + ((s_fsize & 0xFF00) << 8) + ((s_fsize & 0xFF0000) >> 8) +
((s_fsize & 0xFF000000) >> 24);
s_nfree = (ushort)(s_nfree >> 8);
s_ninode = (ushort)(s_ninode >> 8);
}
if((s_fsize & 0xFF000000) != 0x00 || (s_nfree & 0xFF00) != 0x00 ||
(s_ninode & 0xFF00) != 0x00) continue;
if(s_fsize >= V7_MAXSIZE || s_nfree >= V7_NICFREE || s_ninode >= V7_NICINOD) continue;
if(s_fsize * 1024 == (partition.End - partition.Start) * imagePlugin.GetSectorSize() ||
s_fsize * 512 == (partition.End - partition.Start) * imagePlugin.GetSectorSize()) return true;
}
return false;
}
public override void GetInformation(ImagePlugin imagePlugin, Partition partition, out string information)
{
information = "";
StringBuilder sb = new StringBuilder();
BigEndianBitConverter.IsLittleEndian =
true; // Start in little endian until we know what are we handling here
int start = 0;
bool xenix = false;
bool sysv = false;
bool sys7th = false;
bool coherent = false;
bool xenix3 = false;
byte[] sb_sector;
byte sb_size_in_sectors;
int offset = 0;
if(imagePlugin.GetSectorSize() <= 0x400
) // Check if underlying device sector size is smaller than SuperBlock size
sb_size_in_sectors = (byte)(0x400 / imagePlugin.GetSectorSize());
else sb_size_in_sectors = 1; // If not a single sector can store it
// Sectors in a cylinder
int spc = (int)(imagePlugin.ImageInfo.Heads * imagePlugin.ImageInfo.SectorsPerTrack);
// Superblock can start on 0x000, 0x200, 0x600 and 0x800, not aligned, so we assume 16 (128 bytes/sector) sectors as a safe value
int[] locations =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
// Superblock can also skip one cylinder (for boot)
spc
};
foreach(int i in locations)
{
sb_sector = imagePlugin.ReadSectors((ulong)i + partition.Start, sb_size_in_sectors);
uint magic = BigEndianBitConverter.ToUInt32(sb_sector, 0x3F8);
if(magic == XENIX_MAGIC || magic == SYSV_MAGIC)
{
BigEndianBitConverter.IsLittleEndian = true; // Little endian
if(magic == SYSV_MAGIC)
{
sysv = true;
offset = 0x200;
}
else xenix = true;
start = i;
break;
}
if(magic == XENIX_CIGAM || magic == SYSV_CIGAM)
{
BigEndianBitConverter.IsLittleEndian = false; // Big endian
if(magic == SYSV_CIGAM)
{
sysv = true;
offset = 0x200;
}
else xenix = true;
start = i;
break;
}
magic = BigEndianBitConverter.ToUInt32(sb_sector, 0x1F0); // XENIX 3 magic location
if(magic == XENIX_MAGIC)
{
BigEndianBitConverter.IsLittleEndian = true; // Little endian
xenix3 = true;
start = i;
break;
}
if(magic == XENIX_CIGAM)
{
BigEndianBitConverter.IsLittleEndian = false; // Big endian
xenix3 = true;
start = i;
break;
}
magic = BigEndianBitConverter.ToUInt32(sb_sector, 0x1F8); // XENIX magic location
if(magic == SYSV_MAGIC)
{
BigEndianBitConverter.IsLittleEndian = true; // Little endian
sysv = true;
start = i;
break;
}
if(magic == SYSV_CIGAM)
{
BigEndianBitConverter.IsLittleEndian = false; // Big endian
sysv = true;
start = i;
break;
}
byte[] coherent_string = new byte[6];
Array.Copy(sb_sector, 0x1E4, coherent_string, 0, 6); // Coherent UNIX s_fname location
string s_fname = StringHandlers.CToString(coherent_string, CurrentEncoding);
Array.Copy(sb_sector, 0x1EA, coherent_string, 0, 6); // Coherent UNIX s_fpack location
string s_fpack = StringHandlers.CToString(coherent_string, CurrentEncoding);
if(s_fname == COH_FNAME && s_fpack == COH_FPACK || s_fname == COH_XXXXX && s_fpack == COH_XXXXX ||
s_fname == COH_XXXXS && s_fpack == COH_XXXXN)
{
BigEndianBitConverter.IsLittleEndian = true; // Coherent is in PDP endianness, use helper for that
coherent = true;
start = i;
break;
}
// Now try to identify 7th edition
uint s_fsize = BitConverter.ToUInt32(sb_sector, 0x002);
ushort s_nfree = BitConverter.ToUInt16(sb_sector, 0x006);
ushort s_ninode = BitConverter.ToUInt16(sb_sector, 0x0D0);
if(s_fsize <= 0 || s_fsize >= 0xFFFFFFFF || s_nfree <= 0 || s_nfree >= 0xFFFF || s_ninode <= 0 ||
s_ninode >= 0xFFFF) continue;
if((s_fsize & 0xFF) == 0x00 && (s_nfree & 0xFF) == 0x00 && (s_ninode & 0xFF) == 0x00)
{
// Byteswap
s_fsize = ((s_fsize & 0xFF) << 24) + ((s_fsize & 0xFF00) << 8) + ((s_fsize & 0xFF0000) >> 8) +
((s_fsize & 0xFF000000) >> 24);
s_nfree = (ushort)(s_nfree >> 8);
s_ninode = (ushort)(s_ninode >> 8);
}
if((s_fsize & 0xFF000000) != 0x00 || (s_nfree & 0xFF00) != 0x00 ||
(s_ninode & 0xFF00) != 0x00) continue;
if(s_fsize >= V7_MAXSIZE || s_nfree >= V7_NICFREE || s_ninode >= V7_NICINOD) continue;
if(s_fsize * 1024 != (partition.End - partition.Start) * imagePlugin.GetSectorSize() &&
s_fsize * 512 != (partition.End - partition.Start) * imagePlugin.GetSectorSize()) continue;
sys7th = true;
BigEndianBitConverter.IsLittleEndian = true;
start = i;
break;
}
if(!sys7th && !sysv && !coherent && !xenix && !xenix3) return;
XmlFsType = new FileSystemType();
if(xenix || xenix3)
{
byte[] xenix_strings = new byte[6];
XenixSuperBlock xnx_sb = new XenixSuperBlock();
sb_sector = imagePlugin.ReadSectors((ulong)start + partition.Start, sb_size_in_sectors);
if(xenix3)
{
xnx_sb.s_isize = BigEndianBitConverter.ToUInt16(sb_sector, 0x000);
xnx_sb.s_fsize = BigEndianBitConverter.ToUInt32(sb_sector, 0x002);
xnx_sb.s_nfree = BigEndianBitConverter.ToUInt16(sb_sector, 0x006);
xnx_sb.s_ninode = BigEndianBitConverter.ToUInt16(sb_sector, 0x0D0);
xnx_sb.s_flock = sb_sector[0x19A];
xnx_sb.s_ilock = sb_sector[0x19B];
xnx_sb.s_fmod = sb_sector[0x19C];
xnx_sb.s_ronly = sb_sector[0x19D];
xnx_sb.s_time = BigEndianBitConverter.ToInt32(sb_sector, 0x19E);
xnx_sb.s_tfree = BigEndianBitConverter.ToUInt32(sb_sector, 0x1A2);
xnx_sb.s_tinode = BigEndianBitConverter.ToUInt16(sb_sector, 0x1A6);
xnx_sb.s_cylblks = BigEndianBitConverter.ToUInt16(sb_sector, 0x1A8);
xnx_sb.s_gapblks = BigEndianBitConverter.ToUInt16(sb_sector, 0x1AA);
xnx_sb.s_dinfo0 = BigEndianBitConverter.ToUInt16(sb_sector, 0x1AC);
xnx_sb.s_dinfo1 = BigEndianBitConverter.ToUInt16(sb_sector, 0x1AE);
Array.Copy(sb_sector, 0x1B0, xenix_strings, 0, 6);
xnx_sb.s_fname = StringHandlers.CToString(xenix_strings, CurrentEncoding);
Array.Copy(sb_sector, 0x1B6, xenix_strings, 0, 6);
xnx_sb.s_fpack = StringHandlers.CToString(xenix_strings, CurrentEncoding);
xnx_sb.s_clean = sb_sector[0x1BC];
xnx_sb.s_magic = BigEndianBitConverter.ToUInt32(sb_sector, 0x1F0);
xnx_sb.s_type = BigEndianBitConverter.ToUInt32(sb_sector, 0x1F4);
}
else
{
xnx_sb.s_isize = BigEndianBitConverter.ToUInt16(sb_sector, 0x000);
xnx_sb.s_fsize = BigEndianBitConverter.ToUInt32(sb_sector, 0x002);
xnx_sb.s_nfree = BigEndianBitConverter.ToUInt16(sb_sector, 0x006);
xnx_sb.s_ninode = BigEndianBitConverter.ToUInt16(sb_sector, 0x198);
xnx_sb.s_flock = sb_sector[0x262];
xnx_sb.s_ilock = sb_sector[0x263];
xnx_sb.s_fmod = sb_sector[0x264];
xnx_sb.s_ronly = sb_sector[0x265];
xnx_sb.s_time = BigEndianBitConverter.ToInt32(sb_sector, 0x266);
xnx_sb.s_tfree = BigEndianBitConverter.ToUInt32(sb_sector, 0x26A);
xnx_sb.s_tinode = BigEndianBitConverter.ToUInt16(sb_sector, 0x26E);
xnx_sb.s_cylblks = BigEndianBitConverter.ToUInt16(sb_sector, 0x270);
xnx_sb.s_gapblks = BigEndianBitConverter.ToUInt16(sb_sector, 0x272);
xnx_sb.s_dinfo0 = BigEndianBitConverter.ToUInt16(sb_sector, 0x274);
xnx_sb.s_dinfo1 = BigEndianBitConverter.ToUInt16(sb_sector, 0x276);
Array.Copy(sb_sector, 0x278, xenix_strings, 0, 6);
xnx_sb.s_fname = StringHandlers.CToString(xenix_strings, CurrentEncoding);
Array.Copy(sb_sector, 0x27E, xenix_strings, 0, 6);
xnx_sb.s_fpack = StringHandlers.CToString(xenix_strings, CurrentEncoding);
xnx_sb.s_clean = sb_sector[0x284];
xnx_sb.s_magic = BigEndianBitConverter.ToUInt32(sb_sector, 0x3F8);
xnx_sb.s_type = BigEndianBitConverter.ToUInt32(sb_sector, 0x3FC);
}
uint bs = 512;
sb.AppendLine("XENIX filesystem");
XmlFsType.Type = "XENIX fs";
switch(xnx_sb.s_type)
{
case 1:
sb.AppendLine("512 bytes per block");
XmlFsType.ClusterSize = 512;
break;
case 2:
sb.AppendLine("1024 bytes per block");
bs = 1024;
XmlFsType.ClusterSize = 1024;
break;
case 3:
sb.AppendLine("2048 bytes per block");
bs = 2048;
XmlFsType.ClusterSize = 2048;
break;
default:
sb.AppendFormat("Unknown s_type value: 0x{0:X8}", xnx_sb.s_type).AppendLine();
break;
}
if(imagePlugin.GetSectorSize() == 2336 || imagePlugin.GetSectorSize() == 2352 ||
imagePlugin.GetSectorSize() == 2448)
{
if(bs != 2048)
sb
.AppendFormat("WARNING: Filesystem indicates {0} bytes/block while device indicates {1} bytes/sector",
bs, 2048).AppendLine();
}
else
{
if(bs != imagePlugin.GetSectorSize())
sb
.AppendFormat("WARNING: Filesystem indicates {0} bytes/block while device indicates {1} bytes/sector",
bs, imagePlugin.GetSectorSize()).AppendLine();
}
sb.AppendFormat("{0} zones on volume ({1} bytes)", xnx_sb.s_fsize, xnx_sb.s_fsize * bs).AppendLine();
sb.AppendFormat("{0} free zones on volume ({1} bytes)", xnx_sb.s_tfree, xnx_sb.s_tfree * bs)
.AppendLine();
sb.AppendFormat("{0} free blocks on list ({1} bytes)", xnx_sb.s_nfree, xnx_sb.s_nfree * bs)
.AppendLine();
sb.AppendFormat("{0} blocks per cylinder ({1} bytes)", xnx_sb.s_cylblks, xnx_sb.s_cylblks * bs)
.AppendLine();
sb.AppendFormat("{0} blocks per gap ({1} bytes)", xnx_sb.s_gapblks, xnx_sb.s_gapblks * bs).AppendLine();
sb.AppendFormat("First data zone: {0}", xnx_sb.s_isize).AppendLine();
sb.AppendFormat("{0} free inodes on volume", xnx_sb.s_tinode).AppendLine();
sb.AppendFormat("{0} free inodes on list", xnx_sb.s_ninode).AppendLine();
if(xnx_sb.s_flock > 0) sb.AppendLine("Free block list is locked");
if(xnx_sb.s_ilock > 0) sb.AppendLine("inode cache is locked");
if(xnx_sb.s_fmod > 0) sb.AppendLine("Superblock is being modified");
if(xnx_sb.s_ronly > 0) sb.AppendLine("Volume is mounted read-only");
sb.AppendFormat("Superblock last updated on {0}", DateHandlers.UnixToDateTime(xnx_sb.s_time))
.AppendLine();
if(xnx_sb.s_time != 0)
{
XmlFsType.ModificationDate = DateHandlers.UnixToDateTime(xnx_sb.s_time);
XmlFsType.ModificationDateSpecified = true;
}
sb.AppendFormat("Volume name: {0}", xnx_sb.s_fname).AppendLine();
XmlFsType.VolumeName = xnx_sb.s_fname;
sb.AppendFormat("Pack name: {0}", xnx_sb.s_fpack).AppendLine();
if(xnx_sb.s_clean == 0x46) sb.AppendLine("Volume is clean");
else
{
sb.AppendLine("Volume is dirty");
XmlFsType.Dirty = true;
}
}
if(sysv)
{
sb_sector = imagePlugin.ReadSectors((ulong)start + partition.Start, sb_size_in_sectors);
byte[] sysv_strings = new byte[6];
SystemVRelease4SuperBlock sysv_sb = new SystemVRelease4SuperBlock
{
s_type = BigEndianBitConverter.ToUInt32(sb_sector, 0x1FC + offset)
};
uint bs = 512;
switch(sysv_sb.s_type)
{
case 1:
XmlFsType.ClusterSize = 512;
break;
case 2:
bs = 1024;
XmlFsType.ClusterSize = 1024;
break;
case 3:
bs = 2048;
XmlFsType.ClusterSize = 2048;
break;
default:
sb.AppendFormat("Unknown s_type value: 0x{0:X8}", sysv_sb.s_type).AppendLine();
break;
}
sysv_sb.s_fsize = BigEndianBitConverter.ToUInt32(sb_sector, 0x002 + offset);
bool sysvr4 = sysv_sb.s_fsize * bs <= 0 || sysv_sb.s_fsize * bs != partition.Size;
if(sysvr4)
{
sysv_sb.s_isize = BigEndianBitConverter.ToUInt16(sb_sector, 0x000 + offset);
sysv_sb.s_state = BigEndianBitConverter.ToUInt32(sb_sector, 0x1F4 + offset);
sysv_sb.s_magic = BigEndianBitConverter.ToUInt32(sb_sector, 0x1F8 + offset);
sysv_sb.s_fsize = BigEndianBitConverter.ToUInt32(sb_sector, 0x004 + offset);
sysv_sb.s_nfree = BigEndianBitConverter.ToUInt16(sb_sector, 0x008 + offset);
sysv_sb.s_ninode = BigEndianBitConverter.ToUInt16(sb_sector, 0x0D4 + offset);
sysv_sb.s_flock = sb_sector[0x1A0 + offset];
sysv_sb.s_ilock = sb_sector[0x1A1 + offset];
sysv_sb.s_fmod = sb_sector[0x1A2 + offset];
sysv_sb.s_ronly = sb_sector[0x1A3 + offset];
sysv_sb.s_time = BigEndianBitConverter.ToUInt32(sb_sector, 0x1A4 + offset);
sysv_sb.s_cylblks = BigEndianBitConverter.ToUInt16(sb_sector, 0x1A8 + offset);
sysv_sb.s_gapblks = BigEndianBitConverter.ToUInt16(sb_sector, 0x1AA + offset);
sysv_sb.s_dinfo0 = BigEndianBitConverter.ToUInt16(sb_sector, 0x1AC + offset);
sysv_sb.s_dinfo1 = BigEndianBitConverter.ToUInt16(sb_sector, 0x1AE + offset);
sysv_sb.s_tfree = BigEndianBitConverter.ToUInt32(sb_sector, 0x1B0 + offset);
sysv_sb.s_tinode = BigEndianBitConverter.ToUInt16(sb_sector, 0x1B4 + offset);
Array.Copy(sb_sector, 0x1B6 + offset, sysv_strings, 0, 6);
sysv_sb.s_fname = StringHandlers.CToString(sysv_strings, CurrentEncoding);
Array.Copy(sb_sector, 0x1BC + offset, sysv_strings, 0, 6);
sysv_sb.s_fpack = StringHandlers.CToString(sysv_strings, CurrentEncoding);
sb.AppendLine("System V Release 4 filesystem");
XmlFsType.Type = "SVR4 fs";
}
else
{
sysv_sb.s_isize = BigEndianBitConverter.ToUInt16(sb_sector, 0x000 + offset);
sysv_sb.s_state = BigEndianBitConverter.ToUInt32(sb_sector, 0x1F4 + offset);
sysv_sb.s_magic = BigEndianBitConverter.ToUInt32(sb_sector, 0x1F8 + offset);
sysv_sb.s_fsize = BigEndianBitConverter.ToUInt32(sb_sector, 0x002 + offset);
sysv_sb.s_nfree = BigEndianBitConverter.ToUInt16(sb_sector, 0x006 + offset);
sysv_sb.s_ninode = BigEndianBitConverter.ToUInt16(sb_sector, 0x0D0 + offset);
sysv_sb.s_flock = sb_sector[0x19A + offset];
sysv_sb.s_ilock = sb_sector[0x19B + offset];
sysv_sb.s_fmod = sb_sector[0x19C + offset];
sysv_sb.s_ronly = sb_sector[0x19D + offset];
sysv_sb.s_time = BigEndianBitConverter.ToUInt32(sb_sector, 0x19E + offset);
sysv_sb.s_cylblks = BigEndianBitConverter.ToUInt16(sb_sector, 0x1A2 + offset);
sysv_sb.s_gapblks = BigEndianBitConverter.ToUInt16(sb_sector, 0x1A4 + offset);
sysv_sb.s_dinfo0 = BigEndianBitConverter.ToUInt16(sb_sector, 0x1A6 + offset);
sysv_sb.s_dinfo1 = BigEndianBitConverter.ToUInt16(sb_sector, 0x1A8 + offset);
sysv_sb.s_tfree = BigEndianBitConverter.ToUInt32(sb_sector, 0x1AA + offset);
sysv_sb.s_tinode = BigEndianBitConverter.ToUInt16(sb_sector, 0x1AE + offset);
Array.Copy(sb_sector, 0x1B0 + offset, sysv_strings, 0, 6);
sysv_sb.s_fname = StringHandlers.CToString(sysv_strings, CurrentEncoding);
Array.Copy(sb_sector, 0x1B6 + offset, sysv_strings, 0, 6);
sysv_sb.s_fpack = StringHandlers.CToString(sysv_strings, CurrentEncoding);
sb.AppendLine("System V Release 2 filesystem");
XmlFsType.Type = "SVR2 fs";
}
sb.AppendFormat("{0} bytes per block", bs).AppendLine();
XmlFsType.Clusters = sysv_sb.s_fsize;
sb.AppendFormat("{0} zones on volume ({1} bytes)", sysv_sb.s_fsize, sysv_sb.s_fsize * bs).AppendLine();
sb.AppendFormat("{0} free zones on volume ({1} bytes)", sysv_sb.s_tfree, sysv_sb.s_tfree * bs)
.AppendLine();
sb.AppendFormat("{0} free blocks on list ({1} bytes)", sysv_sb.s_nfree, sysv_sb.s_nfree * bs)
.AppendLine();
sb.AppendFormat("{0} blocks per cylinder ({1} bytes)", sysv_sb.s_cylblks, sysv_sb.s_cylblks * bs)
.AppendLine();
sb.AppendFormat("{0} blocks per gap ({1} bytes)", sysv_sb.s_gapblks, sysv_sb.s_gapblks * bs)
.AppendLine();
sb.AppendFormat("First data zone: {0}", sysv_sb.s_isize).AppendLine();
sb.AppendFormat("{0} free inodes on volume", sysv_sb.s_tinode).AppendLine();
sb.AppendFormat("{0} free inodes on list", sysv_sb.s_ninode).AppendLine();
if(sysv_sb.s_flock > 0) sb.AppendLine("Free block list is locked");
if(sysv_sb.s_ilock > 0) sb.AppendLine("inode cache is locked");
if(sysv_sb.s_fmod > 0) sb.AppendLine("Superblock is being modified");
if(sysv_sb.s_ronly > 0) sb.AppendLine("Volume is mounted read-only");
sb.AppendFormat("Superblock last updated on {0}", DateHandlers.UnixUnsignedToDateTime(sysv_sb.s_time))
.AppendLine();
if(sysv_sb.s_time != 0)
{
XmlFsType.ModificationDate = DateHandlers.UnixUnsignedToDateTime(sysv_sb.s_time);
XmlFsType.ModificationDateSpecified = true;
}
sb.AppendFormat("Volume name: {0}", sysv_sb.s_fname).AppendLine();
XmlFsType.VolumeName = sysv_sb.s_fname;
sb.AppendFormat("Pack name: {0}", sysv_sb.s_fpack).AppendLine();
if(sysv_sb.s_state == 0x7C269D38 - sysv_sb.s_time) sb.AppendLine("Volume is clean");
else
{
sb.AppendLine("Volume is dirty");
XmlFsType.Dirty = true;
}
}
if(coherent)
{
sb_sector = imagePlugin.ReadSectors((ulong)start + partition.Start, sb_size_in_sectors);
CoherentSuperBlock coh_sb = new CoherentSuperBlock();
byte[] coh_strings = new byte[6];
coh_sb.s_isize = BitConverter.ToUInt16(sb_sector, 0x000);
coh_sb.s_fsize = Swapping.PDPFromLittleEndian(BitConverter.ToUInt32(sb_sector, 0x002));
coh_sb.s_nfree = BitConverter.ToUInt16(sb_sector, 0x006);
coh_sb.s_ninode = BitConverter.ToUInt16(sb_sector, 0x108);
coh_sb.s_flock = sb_sector[0x1D2];
coh_sb.s_ilock = sb_sector[0x1D3];
coh_sb.s_fmod = sb_sector[0x1D4];
coh_sb.s_ronly = sb_sector[0x1D5];
coh_sb.s_time = Swapping.PDPFromLittleEndian(BitConverter.ToUInt32(sb_sector, 0x1D6));
coh_sb.s_tfree = Swapping.PDPFromLittleEndian(BitConverter.ToUInt32(sb_sector, 0x1DA));
coh_sb.s_tinode = BitConverter.ToUInt16(sb_sector, 0x1DE);
coh_sb.s_int_m = BitConverter.ToUInt16(sb_sector, 0x1E0);
coh_sb.s_int_n = BitConverter.ToUInt16(sb_sector, 0x1E2);
Array.Copy(sb_sector, 0x1E4, coh_strings, 0, 6);
coh_sb.s_fname = StringHandlers.CToString(coh_strings, CurrentEncoding);
Array.Copy(sb_sector, 0x1EA, coh_strings, 0, 6);
coh_sb.s_fpack = StringHandlers.CToString(coh_strings, CurrentEncoding);
XmlFsType.Type = "Coherent fs";
XmlFsType.ClusterSize = 512;
XmlFsType.Clusters = coh_sb.s_fsize;
sb.AppendLine("Coherent UNIX filesystem");
if(imagePlugin.GetSectorSize() != 512)
sb
.AppendFormat("WARNING: Filesystem indicates {0} bytes/block while device indicates {1} bytes/sector",
512, 2048).AppendLine();
sb.AppendFormat("{0} zones on volume ({1} bytes)", coh_sb.s_fsize, coh_sb.s_fsize * 512).AppendLine();
sb.AppendFormat("{0} free zones on volume ({1} bytes)", coh_sb.s_tfree, coh_sb.s_tfree * 512)
.AppendLine();
sb.AppendFormat("{0} free blocks on list ({1} bytes)", coh_sb.s_nfree, coh_sb.s_nfree * 512)
.AppendLine();
sb.AppendFormat("First data zone: {0}", coh_sb.s_isize).AppendLine();
sb.AppendFormat("{0} free inodes on volume", coh_sb.s_tinode).AppendLine();
sb.AppendFormat("{0} free inodes on list", coh_sb.s_ninode).AppendLine();
if(coh_sb.s_flock > 0) sb.AppendLine("Free block list is locked");
if(coh_sb.s_ilock > 0) sb.AppendLine("inode cache is locked");
if(coh_sb.s_fmod > 0) sb.AppendLine("Superblock is being modified");
if(coh_sb.s_ronly > 0) sb.AppendLine("Volume is mounted read-only");
sb.AppendFormat("Superblock last updated on {0}", DateHandlers.UnixUnsignedToDateTime(coh_sb.s_time))
.AppendLine();
if(coh_sb.s_time != 0)
{
XmlFsType.ModificationDate = DateHandlers.UnixUnsignedToDateTime(coh_sb.s_time);
XmlFsType.ModificationDateSpecified = true;
}
sb.AppendFormat("Volume name: {0}", coh_sb.s_fname).AppendLine();
XmlFsType.VolumeName = coh_sb.s_fname;
sb.AppendFormat("Pack name: {0}", coh_sb.s_fpack).AppendLine();
}
if(sys7th)
{
sb_sector = imagePlugin.ReadSectors((ulong)start + partition.Start, sb_size_in_sectors);
UNIX7thEditionSuperBlock v7_sb = new UNIX7thEditionSuperBlock();
byte[] sys7_strings = new byte[6];
v7_sb.s_isize = BigEndianBitConverter.ToUInt16(sb_sector, 0x000);
v7_sb.s_fsize = BigEndianBitConverter.ToUInt32(sb_sector, 0x002);
v7_sb.s_nfree = BigEndianBitConverter.ToUInt16(sb_sector, 0x006);
v7_sb.s_ninode = BigEndianBitConverter.ToUInt16(sb_sector, 0x0D0);
v7_sb.s_flock = sb_sector[0x19A];
v7_sb.s_ilock = sb_sector[0x19B];
v7_sb.s_fmod = sb_sector[0x19C];
v7_sb.s_ronly = sb_sector[0x19D];
v7_sb.s_time = BigEndianBitConverter.ToUInt32(sb_sector, 0x19E);
v7_sb.s_tfree = BigEndianBitConverter.ToUInt32(sb_sector, 0x1A2);
v7_sb.s_tinode = BigEndianBitConverter.ToUInt16(sb_sector, 0x1A6);
v7_sb.s_int_m = BigEndianBitConverter.ToUInt16(sb_sector, 0x1A8);
v7_sb.s_int_n = BigEndianBitConverter.ToUInt16(sb_sector, 0x1AA);
Array.Copy(sb_sector, 0x1AC, sys7_strings, 0, 6);
v7_sb.s_fname = StringHandlers.CToString(sys7_strings, CurrentEncoding);
Array.Copy(sb_sector, 0x1B2, sys7_strings, 0, 6);
v7_sb.s_fpack = StringHandlers.CToString(sys7_strings, CurrentEncoding);
XmlFsType.Type = "UNIX 7th Edition fs";
XmlFsType.ClusterSize = 512;
XmlFsType.Clusters = v7_sb.s_fsize;
sb.AppendLine("UNIX 7th Edition filesystem");
if(imagePlugin.GetSectorSize() != 512)
sb
.AppendFormat("WARNING: Filesystem indicates {0} bytes/block while device indicates {1} bytes/sector",
512, 2048).AppendLine();
sb.AppendFormat("{0} zones on volume ({1} bytes)", v7_sb.s_fsize, v7_sb.s_fsize * 512).AppendLine();
sb.AppendFormat("{0} free zones on volume ({1} bytes)", v7_sb.s_tfree, v7_sb.s_tfree * 512)
.AppendLine();
sb.AppendFormat("{0} free blocks on list ({1} bytes)", v7_sb.s_nfree, v7_sb.s_nfree * 512).AppendLine();
sb.AppendFormat("First data zone: {0}", v7_sb.s_isize).AppendLine();
sb.AppendFormat("{0} free inodes on volume", v7_sb.s_tinode).AppendLine();
sb.AppendFormat("{0} free inodes on list", v7_sb.s_ninode).AppendLine();
if(v7_sb.s_flock > 0) sb.AppendLine("Free block list is locked");
if(v7_sb.s_ilock > 0) sb.AppendLine("inode cache is locked");
if(v7_sb.s_fmod > 0) sb.AppendLine("Superblock is being modified");
if(v7_sb.s_ronly > 0) sb.AppendLine("Volume is mounted read-only");
sb.AppendFormat("Superblock last updated on {0}", DateHandlers.UnixUnsignedToDateTime(v7_sb.s_time))
.AppendLine();
if(v7_sb.s_time != 0)
{
XmlFsType.ModificationDate = DateHandlers.UnixUnsignedToDateTime(v7_sb.s_time);
XmlFsType.ModificationDateSpecified = true;
}
sb.AppendFormat("Volume name: {0}", v7_sb.s_fname).AppendLine();
XmlFsType.VolumeName = v7_sb.s_fname;
sb.AppendFormat("Pack name: {0}", v7_sb.s_fpack).AppendLine();
}
information = sb.ToString();
BigEndianBitConverter.IsLittleEndian = false; // Return to default (bigendian)
}
public override Errno Mount()
{
return Errno.NotImplemented;
}
public override Errno Mount(bool debug)
{
return Errno.NotImplemented;
}
public override Errno Unmount()
{
return Errno.NotImplemented;
}
public override Errno MapBlock(string path, long fileBlock, ref long deviceBlock)
{
return Errno.NotImplemented;
}
public override Errno GetAttributes(string path, ref FileAttributes attributes)
{
return Errno.NotImplemented;
}
public override Errno ListXAttr(string path, ref List<string> xattrs)
{
return Errno.NotImplemented;
}
public override Errno GetXattr(string path, string xattr, ref byte[] buf)
{
return Errno.NotImplemented;
}
public override Errno Read(string path, long offset, long size, ref byte[] buf)
{
return Errno.NotImplemented;
}
public override Errno ReadDir(string path, ref List<string> contents)
{
return Errno.NotImplemented;
}
public override Errno StatFs(ref FileSystemInfo stat)
{
return Errno.NotImplemented;
}
public override Errno Stat(string path, ref FileEntryInfo stat)
{
return Errno.NotImplemented;
}
public override Errno ReadLink(string path, ref string dest)
{
return Errno.NotImplemented;
}
// Old XENIX use different offsets
struct XenixSuperBlock
{
/// <summary>0x000, index of first data zone</summary>
public ushort s_isize;
/// <summary>0x002, total number of zones of this volume</summary>
public uint s_fsize;
// the start of the free block list:
/// <summary>0x006, blocks in s_free, &lt;=100</summary>
public ushort s_nfree;
/// <summary>0x008, 100 entries, 50 entries for Xenix 3, first free block list chunk</summary>
public uint[] s_free;
// the cache of free inodes:
/// <summary>0x198 (0xD0), number of inodes in s_inode, &lt;= 100</summary>
public ushort s_ninode;
/// <summary>0x19A (0xD2), 100 entries, some free inodes</summary>
public ushort[] s_inode;
/// <summary>0x262 (0x19A), free block list manipulation lock</summary>
public byte s_flock;
/// <summary>0x263 (0x19B), inode cache manipulation lock</summary>
public byte s_ilock;
/// <summary>0x264 (0x19C), superblock modification flag</summary>
public byte s_fmod;
/// <summary>0x265 (0x19D), read-only mounted flag</summary>
public byte s_ronly;
/// <summary>0x266 (0x19E), time of last superblock update</summary>
public int s_time;
/// <summary>0x26A (0x1A2), total number of free zones</summary>
public uint s_tfree;
/// <summary>0x26E (0x1A6), total number of free inodes</summary>
public ushort s_tinode;
/// <summary>0x270 (0x1A8), blocks per cylinder</summary>
public ushort s_cylblks;
/// <summary>0x272 (0x1AA), blocks per gap</summary>
public ushort s_gapblks;
/// <summary>0x274 (0x1AC), device information ??</summary>
public ushort s_dinfo0;
/// <summary>0x276 (0x1AE), device information ??</summary>
public ushort s_dinfo1;
/// <summary>0x278 (0x1B0), 6 bytes, volume name</summary>
public string s_fname;
/// <summary>0x27E (0x1B6), 6 bytes, pack name</summary>
public string s_fpack;
/// <summary>0x284 (0x1BC), 0x46 if volume is clean</summary>
public byte s_clean;
/// <summary>0x285 (0x1BD), 371 bytes, 51 bytes for Xenix 3</summary>
public byte[] s_fill;
/// <summary>0x3F8 (0x1F0), magic</summary>
public uint s_magic;
/// <summary>0x3FC (0x1F4), filesystem type (1 = 512 bytes/blk, 2 = 1024 bytes/blk, 3 = 2048 bytes/blk)</summary>
public uint s_type;
}
struct SystemVRelease4SuperBlock
{
/// <summary>0x000, index of first data zone</summary>
public ushort s_isize;
/// <summary>0x002, padding</summary>
public ushort s_pad0;
/// <summary>0x004, total number of zones of this volume</summary>
public uint s_fsize;
// the start of the free block list:
/// <summary>0x008, blocks in s_free, &lt;=100</summary>
public ushort s_nfree;
/// <summary>0x00A, padding</summary>
public ushort s_pad1;
/// <summary>0x00C, 50 entries, first free block list chunk</summary>
public uint[] s_free;
// the cache of free inodes:
/// <summary>0x0D4, number of inodes in s_inode, &lt;= 100</summary>
public ushort s_ninode;
/// <summary>0x0D6, padding</summary>
public ushort s_pad2;
/// <summary>0x0D8, 100 entries, some free inodes</summary>
public ushort[] s_inode;
/// <summary>0x1A0, free block list manipulation lock</summary>
public byte s_flock;
/// <summary>0x1A1, inode cache manipulation lock</summary>
public byte s_ilock;
/// <summary>0x1A2, superblock modification flag</summary>
public byte s_fmod;
/// <summary>0x1A3, read-only mounted flag</summary>
public byte s_ronly;
/// <summary>0x1A4, time of last superblock update</summary>
public uint s_time;
/// <summary>0x1A8, blocks per cylinder</summary>
public ushort s_cylblks;
/// <summary>0x1AA, blocks per gap</summary>
public ushort s_gapblks;
/// <summary>0x1AC, device information ??</summary>
public ushort s_dinfo0;
/// <summary>0x1AE, device information ??</summary>
public ushort s_dinfo1;
/// <summary>0x1B0, total number of free zones</summary>
public uint s_tfree;
/// <summary>0x1B4, total number of free inodes</summary>
public ushort s_tinode;
/// <summary>0x1B6, padding</summary>
public ushort s_pad3;
/// <summary>0x1B8, 6 bytes, volume name</summary>
public string s_fname;
/// <summary>0x1BE, 6 bytes, pack name</summary>
public string s_fpack;
/// <summary>0x1C4, 48 bytes</summary>
public byte[] s_fill;
/// <summary>0x1F4, if s_state == (0x7C269D38 - s_time) then filesystem is clean</summary>
public uint s_state;
/// <summary>0x1F8, magic</summary>
public uint s_magic;
/// <summary>0x1FC, filesystem type (1 = 512 bytes/blk, 2 = 1024 bytes/blk)</summary>
public uint s_type;
}
struct SystemVRelease2SuperBlock
{
/// <summary>0x000, index of first data zone</summary>
public ushort s_isize;
/// <summary>0x002, total number of zones of this volume</summary>
public uint s_fsize;
// the start of the free block list:
/// <summary>0x006, blocks in s_free, &lt;=100</summary>
public ushort s_nfree;
/// <summary>0x008, 50 entries, first free block list chunk</summary>
public uint[] s_free;
// the cache of free inodes:
/// <summary>0x0D0, number of inodes in s_inode, &lt;= 100</summary>
public ushort s_ninode;
/// <summary>0x0D2, 100 entries, some free inodes</summary>
public ushort[] s_inode;
/// <summary>0x19A, free block list manipulation lock</summary>
public byte s_flock;
/// <summary>0x19B, inode cache manipulation lock</summary>
public byte s_ilock;
/// <summary>0x19C, superblock modification flag</summary>
public byte s_fmod;
/// <summary>0x19D, read-only mounted flag</summary>
public byte s_ronly;
/// <summary>0x19E, time of last superblock update</summary>
public uint s_time;
/// <summary>0x1A2, blocks per cylinder</summary>
public ushort s_cylblks;
/// <summary>0x1A4, blocks per gap</summary>
public ushort s_gapblks;
/// <summary>0x1A6, device information ??</summary>
public ushort s_dinfo0;
/// <summary>0x1A8, device information ??</summary>
public ushort s_dinfo1;
/// <summary>0x1AA, total number of free zones</summary>
public uint s_tfree;
/// <summary>0x1AE, total number of free inodes</summary>
public ushort s_tinode;
/// <summary>0x1B0, 6 bytes, volume name</summary>
public string s_fname;
/// <summary>0x1B6, 6 bytes, pack name</summary>
public string s_fpack;
/// <summary>0x1BC, 56 bytes</summary>
public byte[] s_fill;
/// <summary>0x1F4, if s_state == (0x7C269D38 - s_time) then filesystem is clean</summary>
public uint s_state;
/// <summary>0x1F8, magic</summary>
public uint s_magic;
/// <summary>0x1FC, filesystem type (1 = 512 bytes/blk, 2 = 1024 bytes/blk)</summary>
public uint s_type;
}
struct UNIX7thEditionSuperBlock
{
/// <summary>0x000, index of first data zone</summary>
public ushort s_isize;
/// <summary>0x002, total number of zones of this volume</summary>
public uint s_fsize;
// the start of the free block list:
/// <summary>0x006, blocks in s_free, &lt;=100</summary>
public ushort s_nfree;
/// <summary>0x008, 50 entries, first free block list chunk</summary>
public uint[] s_free;
// the cache of free inodes:
/// <summary>0x0D0, number of inodes in s_inode, &lt;= 100</summary>
public ushort s_ninode;
/// <summary>0x0D2, 100 entries, some free inodes</summary>
public ushort[] s_inode;
/// <summary>0x19A, free block list manipulation lock</summary>
public byte s_flock;
/// <summary>0x19B, inode cache manipulation lock</summary>
public byte s_ilock;
/// <summary>0x19C, superblock modification flag</summary>
public byte s_fmod;
/// <summary>0x19D, read-only mounted flag</summary>
public byte s_ronly;
/// <summary>0x19E, time of last superblock update</summary>
public uint s_time;
/// <summary>0x1A2, total number of free zones</summary>
public uint s_tfree;
/// <summary>0x1A6, total number of free inodes</summary>
public ushort s_tinode;
/// <summary>0x1A8, interleave factor</summary>
public ushort s_int_m;
/// <summary>0x1AA, interleave factor</summary>
public ushort s_int_n;
/// <summary>0x1AC, 6 bytes, volume name</summary>
public string s_fname;
/// <summary>0x1B2, 6 bytes, pack name</summary>
public string s_fpack;
}
struct CoherentSuperBlock
{
/// <summary>0x000, index of first data zone</summary>
public ushort s_isize;
/// <summary>0x002, total number of zones of this volume</summary>
public uint s_fsize;
// the start of the free block list:
/// <summary>0x006, blocks in s_free, &lt;=100</summary>
public ushort s_nfree;
/// <summary>0x008, 64 entries, first free block list chunk</summary>
public uint[] s_free;
// the cache of free inodes:
/// <summary>0x108, number of inodes in s_inode, &lt;= 100</summary>
public ushort s_ninode;
/// <summary>0x10A, 100 entries, some free inodes</summary>
public ushort[] s_inode;
/// <summary>0x1D2, free block list manipulation lock</summary>
public byte s_flock;
/// <summary>0x1D3, inode cache manipulation lock</summary>
public byte s_ilock;
/// <summary>0x1D4, superblock modification flag</summary>
public byte s_fmod;
/// <summary>0x1D5, read-only mounted flag</summary>
public byte s_ronly;
/// <summary>0x1D6, time of last superblock update</summary>
public uint s_time;
/// <summary>0x1DE, total number of free zones</summary>
public uint s_tfree;
/// <summary>0x1E2, total number of free inodes</summary>
public ushort s_tinode;
/// <summary>0x1E4, interleave factor</summary>
public ushort s_int_m;
/// <summary>0x1E6, interleave factor</summary>
public ushort s_int_n;
/// <summary>0x1E8, 6 bytes, volume name</summary>
public string s_fname;
/// <summary>0x1EE, 6 bytes, pack name</summary>
public string s_fpack;
/// <summary>0x1F4, zero-filled</summary>
public uint s_unique;
}
}
}