Files
Aaru.Server/DiscImageChef.Checksums/ReedSolomon.cs

643 lines
25 KiB
C#

// /***************************************************************************
// The Disc Image Chef
// ----------------------------------------------------------------------------
//
// Filename : ReedSolomon.cs
// Author(s) : Natalia Portillo <claunia@claunia.com>
//
// Component : Checksums.
//
// --[ Description ] ----------------------------------------------------------
//
// Calculates a Reed-Solomon.
//
// --[ License ] --------------------------------------------------------------
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// ----------------------------------------------------------------------------
// Copyright © 2011-2017 Natalia Portillo
// Copyright (C) 1996 Phil Karn
// Copyright (C) 1995 Robert Morelos-Zaragoza
// Copyright (C) 1995 Hari Thirumoorthy
// ****************************************************************************/
/*
* Reed-Solomon coding and decoding
* Phil Karn (karn at ka9q.ampr.org) September 1996
*
* This file is derived from the program "new_rs_erasures.c" by Robert
* Morelos-Zaragoza (robert at spectra.eng.hawaii.edu) and Hari Thirumoorthy
* (harit at spectra.eng.hawaii.edu), Aug 1995
*
* I've made changes to improve performance, clean up the code and make it
* easier to follow. Data is now passed to the encoding and decoding functions
* through arguments rather than in global arrays. The decode function returns
* the number of corrected symbols, or -1 if the word is uncorrectable.
*
* This code supports a symbol size from 2 bits up to 16 bits,
* implying a block size of 3 2-bit symbols (6 bits) up to 65535
* 16-bit symbols (1,048,560 bits). The code parameters are set in rs.h.
*
* Note that if symbols larger than 8 bits are used, the type of each
* data array element switches from unsigned char to unsigned int. The
* caller must ensure that elements larger than the symbol range are
* not passed to the encoder or decoder.
*
*/
using System;
using DiscImageChef.Console;
namespace DiscImageChef.Checksums
{
public class ReedSolomon
{
/* Primitive polynomials - see Lin & Costello, Error Control Coding Appendix A,
* and Lee & Messerschmitt, Digital Communication p. 453.
*/
int[] Pp;
/* index->polynomial form conversion table */
int[] Alpha_to;
/* Polynomial->index form conversion table */
int[] Index_of;
/* Generator polynomial g(x)
* Degree of g(x) = 2*TT
* has roots @**B0, @**(B0+1), ... ,@^(B0+2*TT-1)
*/
int[] Gg;
int MM, KK, NN;
/* No legal value in index form represents zero, so
* we need a special value for this purpose
*/
int A0;
bool initialized;
/* Alpha exponent for the first root of the generator polynomial */
const int B0 = 1;
/// <summary>
/// Initializes the Reed-Solomon with RS(n,k) with GF(2^m)
/// </summary>
public void InitRS(int n, int k, int m)
{
switch(m)
{
case 2:
Pp = new[] { 1, 1, 1 };
break;
case 3:
Pp = new[] { 1, 1, 0, 1 };
break;
case 4:
Pp = new[] { 1, 1, 0, 0, 1 };
break;
case 5:
Pp = new[] { 1, 0, 1, 0, 0, 1 };
break;
case 6:
Pp = new[] { 1, 1, 0, 0, 0, 0, 1 };
break;
case 7:
Pp = new[] { 1, 0, 0, 1, 0, 0, 0, 1 };
break;
case 8:
Pp = new[] { 1, 0, 1, 1, 1, 0, 0, 0, 1 };
break;
case 9:
Pp = new[] { 1, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
break;
case 10:
Pp = new[] { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
break;
case 11:
Pp = new[] { 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
break;
case 12:
Pp = new[] { 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1 };
break;
case 13:
Pp = new[] { 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
break;
case 14:
Pp = new[] { 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 };
break;
case 15:
Pp = new[] { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
break;
case 16:
Pp = new[] { 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1 };
break;
default:
throw new ArgumentOutOfRangeException(nameof(m), "m must be between 2 and 16 inclusive");
}
MM = m;
KK = k;
NN = n;
A0 = n;
Alpha_to = new int[n + 1];
Index_of = new int[n + 1];
Gg = new int[NN - KK + 1];
generate_gf();
gen_poly();
initialized = true;
}
int modnn(int x)
{
while(x >= NN)
{
x -= NN;
x = (x >> MM) + (x & NN);
}
return x;
}
static int min(int a, int b)
{
return ((a) < (b) ? (a) : (b));
}
static void CLEAR(ref int[] a, int n)
{
int ci;
for(ci = (n) - 1; ci >= 0; ci--)
(a)[ci] = 0;
}
static void COPY(ref int[] a, ref int[] b, int n)
{
int ci;
for(ci = (n) - 1; ci >= 0; ci--)
(a)[ci] = (b)[ci];
}
static void COPYDOWN(ref int[] a, ref int[] b, int n)
{
int ci;
for(ci = (n) - 1; ci >= 0; ci--)
(a)[ci] = (b)[ci];
}
/* generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m]
lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
polynomial form -> index form index_of[j=alpha**i] = i
alpha=2 is the primitive element of GF(2**m)
HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
Let @ represent the primitive element commonly called "alpha" that
is the root of the primitive polynomial p(x). Then in GF(2^m), for any
0 <= i <= 2^m-2,
@^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
example the polynomial representation of @^5 would be given by the binary
representation of the integer "alpha_to[5]".
Similarily, index_of[] can be used as follows:
As above, let @ represent the primitive element of GF(2^m) that is
the root of the primitive polynomial p(x). In order to find the power
of @ (alpha) that has the polynomial representation
a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
we consider the integer "i" whose binary representation with a(0) being LSB
and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
"index_of[i]". Now, @^index_of[i] is that element whose polynomial
representation is (a(0),a(1),a(2),...,a(m-1)).
NOTE:
The element alpha_to[2^m-1] = 0 always signifying that the
representation of "@^infinity" = 0 is (0,0,0,...,0).
Similarily, the element index_of[0] = A0 always signifying
that the power of alpha which has the polynomial representation
(0,0,...,0) is "infinity".
*/
void generate_gf()
{
int i, mask;
mask = 1;
Alpha_to[MM] = 0;
for(i = 0; i < MM; i++)
{
Alpha_to[i] = mask;
Index_of[Alpha_to[i]] = i;
/* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
if(Pp[i] != 0)
Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */
mask <<= 1; /* single left-shift */
}
Index_of[Alpha_to[MM]] = MM;
/*
* Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
* poly-repr of @^i shifted left one-bit and accounting for any @^MM
* term that may occur when poly-repr of @^i is shifted.
*/
mask >>= 1;
for(i = MM + 1; i < NN; i++)
{
if(Alpha_to[i - 1] >= mask)
Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
else
Alpha_to[i] = Alpha_to[i - 1] << 1;
Index_of[Alpha_to[i]] = i;
}
Index_of[0] = A0;
Alpha_to[NN] = 0;
}
/*
* Obtain the generator polynomial of the TT-error correcting, length
* NN=(2**MM -1) Reed Solomon code from the product of (X+@**(B0+i)), i = 0,
* ... ,(2*TT-1)
*
* Examples:
*
* If B0 = 1, TT = 1. deg(g(x)) = 2*TT = 2.
* g(x) = (x+@) (x+@**2)
*
* If B0 = 0, TT = 2. deg(g(x)) = 2*TT = 4.
* g(x) = (x+1) (x+@) (x+@**2) (x+@**3)
*/
void gen_poly()
{
int i, j;
Gg[0] = Alpha_to[B0];
Gg[1] = 1; /* g(x) = (X+@**B0) initially */
for(i = 2; i <= NN - KK; i++)
{
Gg[i] = 1;
/*
* Below multiply (Gg[0]+Gg[1]*x + ... +Gg[i]x^i) by
* (@**(B0+i-1) + x)
*/
for(j = i - 1; j > 0; j--)
if(Gg[j] != 0)
Gg[j] = Gg[j - 1] ^ Alpha_to[modnn((Index_of[Gg[j]]) + B0 + i - 1)];
else
Gg[j] = Gg[j - 1];
/* Gg[0] can never be zero */
Gg[0] = Alpha_to[modnn((Index_of[Gg[0]]) + B0 + i - 1)];
}
/* convert Gg[] to index form for quicker encoding */
for(i = 0; i <= NN - KK; i++)
Gg[i] = Index_of[Gg[i]];
}
/*
* take the string of symbols in data[i], i=0..(k-1) and encode
* systematically to produce NN-KK parity symbols in bb[0]..bb[NN-KK-1] data[]
* is input and bb[] is output in polynomial form. Encoding is done by using
* a feedback shift register with appropriate connections specified by the
* elements of Gg[], which was generated above. Codeword is c(X) =
* data(X)*X**(NN-KK)+ b(X)
*/
/// <summary>
/// Takes the symbols in data to output parity in bb.
/// </summary>
/// <returns>Returns -1 if an illegal symbol is found.</returns>
/// <param name="data">Data symbols.</param>
/// <param name="bb">Outs parity symbols.</param>
public int encode_rs(int[] data, out int[] bb)
{
if(initialized)
{
int i, j;
int feedback;
bb = new int[NN - KK];
CLEAR(ref bb, NN - KK);
for(i = KK - 1; i >= 0; i--)
{
if(MM != 8)
{
if(data[i] > NN)
return -1; /* Illegal symbol */
}
feedback = Index_of[data[i] ^ bb[NN - KK - 1]];
if(feedback != A0)
{ /* feedback term is non-zero */
for(j = NN - KK - 1; j > 0; j--)
if(Gg[j] != A0)
bb[j] = bb[j - 1] ^ Alpha_to[modnn(Gg[j] + feedback)];
else
bb[j] = bb[j - 1];
bb[0] = Alpha_to[modnn(Gg[0] + feedback)];
}
else
{ /* feedback term is zero. encoder becomes a
* single-byte shifter */
for(j = NN - KK - 1; j > 0; j--)
bb[j] = bb[j - 1];
bb[0] = 0;
}
}
return 0;
}
throw new UnauthorizedAccessException("Trying to calculate RS without initializing!");
}
/*
* Performs ERRORS+ERASURES decoding of RS codes. If decoding is successful,
* writes the codeword into data[] itself. Otherwise data[] is unaltered.
*
* Return number of symbols corrected, or -1 if codeword is illegal
* or uncorrectable.
*
* First "no_eras" erasures are declared by the calling program. Then, the
* maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
* If the number of channel errors is not greater than "t_after_eras" the
* transmitted codeword will be recovered. Details of algorithm can be found
* in R. Blahut's "Theory ... of Error-Correcting Codes".
*/
/// <summary>
/// Decodes the RS. If decoding is successful outputs corrected data symbols.
/// </summary>
/// <returns>Returns corrected symbols, -1 if illegal or uncorrectable</returns>
/// <param name="data">Data symbols.</param>
/// <param name="eras_pos">Position of erasures.</param>
/// <param name="no_eras">Number of erasures.</param>
public int eras_dec_rs(ref int[] data, out int[] eras_pos, int no_eras)
{
if(initialized)
{
eras_pos = new int[NN - KK];
int deg_lambda, el, deg_omega;
int i, j, r;
int u, q, tmp, num1, num2, den, discr_r;
int[] recd = new int[NN];
int[] lambda = new int[NN - KK + 1]; /* Err+Eras Locator poly */
int[] s = new int[NN - KK + 1]; /* syndrome poly */
int[] b = new int[NN - KK + 1];
int[] t = new int[NN - KK + 1];
int[] omega = new int[NN - KK + 1];
int[] root = new int[NN - KK];
int[] reg = new int[NN - KK + 1];
int[] loc = new int[NN - KK];
int syn_error, count;
/* data[] is in polynomial form, copy and convert to index form */
for(i = NN - 1; i >= 0; i--)
{
if(MM != 8)
{
if(data[i] > NN)
return -1; /* Illegal symbol */
}
recd[i] = Index_of[data[i]];
}
/* first form the syndromes; i.e., evaluate recd(x) at roots of g(x)
* namely @**(B0+i), i = 0, ... ,(NN-KK-1)
*/
syn_error = 0;
for(i = 1; i <= NN - KK; i++)
{
tmp = 0;
for(j = 0; j < NN; j++)
if(recd[j] != A0) /* recd[j] in index form */
tmp ^= Alpha_to[modnn(recd[j] + (B0 + i - 1) * j)];
syn_error |= tmp; /* set flag if non-zero syndrome =>
* error */
/* store syndrome in index form */
s[i] = Index_of[tmp];
}
if(syn_error == 0)
{
/*
* if syndrome is zero, data[] is a codeword and there are no
* errors to correct. So return data[] unmodified
*/
return 0;
}
CLEAR(ref lambda, NN - KK);
lambda[0] = 1;
if(no_eras > 0)
{
/* Init lambda to be the erasure locator polynomial */
lambda[1] = Alpha_to[eras_pos[0]];
for(i = 1; i < no_eras; i++)
{
u = eras_pos[i];
for(j = i + 1; j > 0; j--)
{
tmp = Index_of[lambda[j - 1]];
if(tmp != A0)
lambda[j] ^= Alpha_to[modnn(u + tmp)];
}
}
#if DEBUG
/* find roots of the erasure location polynomial */
for(i = 1; i <= no_eras; i++)
reg[i] = Index_of[lambda[i]];
count = 0;
for(i = 1; i <= NN; i++)
{
q = 1;
for(j = 1; j <= no_eras; j++)
if(reg[j] != A0)
{
reg[j] = modnn(reg[j] + j);
q ^= Alpha_to[reg[j]];
}
if(q == 0)
{
/* store root and error location
* number indices
*/
root[count] = i;
loc[count] = NN - i;
count++;
}
}
if(count != no_eras)
{
DicConsole.DebugWriteLine("Reed Solomon", "\n lambda(x) is WRONG\n");
return -1;
}
DicConsole.DebugWriteLine("Reed Solomon", "\n Erasure positions as determined by roots of Eras Loc Poly:\n");
for(i = 0; i < count; i++)
DicConsole.DebugWriteLine("Reed Solomon", "{0} ", loc[i]);
DicConsole.DebugWriteLine("Reed Solomon", "\n");
#endif
}
for(i = 0; i < NN - KK + 1; i++)
b[i] = Index_of[lambda[i]];
/*
* Begin Berlekamp-Massey algorithm to determine error+erasure
* locator polynomial
*/
r = no_eras;
el = no_eras;
while(++r <= NN - KK)
{ /* r is the step number */
/* Compute discrepancy at the r-th step in poly-form */
discr_r = 0;
for(i = 0; i < r; i++)
{
if((lambda[i] != 0) && (s[r - i] != A0))
{
discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
}
}
discr_r = Index_of[discr_r]; /* Index form */
if(discr_r == A0)
{
/* 2 lines below: B(x) <-- x*B(x) */
COPYDOWN(ref b, ref b, NN - KK);
b[0] = A0;
}
else
{
/* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
t[0] = lambda[0];
for(i = 0; i < NN - KK; i++)
{
if(b[i] != A0)
t[i + 1] = lambda[i + 1] ^ Alpha_to[modnn(discr_r + b[i])];
else
t[i + 1] = lambda[i + 1];
}
if(2 * el <= r + no_eras - 1)
{
el = r + no_eras - el;
/*
* 2 lines below: B(x) <-- inv(discr_r) *
* lambda(x)
*/
for(i = 0; i <= NN - KK; i++)
b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
}
else
{
/* 2 lines below: B(x) <-- x*B(x) */
COPYDOWN(ref b, ref b, NN - KK);
b[0] = A0;
}
COPY(ref lambda, ref t, NN - KK + 1);
}
}
/* Convert lambda to index form and compute deg(lambda(x)) */
deg_lambda = 0;
for(i = 0; i < NN - KK + 1; i++)
{
lambda[i] = Index_of[lambda[i]];
if(lambda[i] != A0)
deg_lambda = i;
}
/*
* Find roots of the error+erasure locator polynomial. By Chien
* Search
*/
int temp = reg[0];
COPY(ref reg, ref lambda, NN - KK);
reg[0] = temp;
count = 0; /* Number of roots of lambda(x) */
for(i = 1; i <= NN; i++)
{
q = 1;
for(j = deg_lambda; j > 0; j--)
if(reg[j] != A0)
{
reg[j] = modnn(reg[j] + j);
q ^= Alpha_to[reg[j]];
}
if(q == 0)
{
/* store root (index-form) and error location number */
root[count] = i;
loc[count] = NN - i;
count++;
}
}
#if DEBUG
DicConsole.DebugWriteLine("Reed Solomon", "\n Final error positions:\t");
for(i = 0; i < count; i++)
DicConsole.DebugWriteLine("Reed Solomon", "{0} ", loc[i]);
DicConsole.DebugWriteLine("Reed Solomon", "\n");
#endif
if(deg_lambda != count)
{
/*
* deg(lambda) unequal to number of roots => uncorrectable
* error detected
*/
return -1;
}
/*
* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
* x**(NN-KK)). in index form. Also find deg(omega).
*/
deg_omega = 0;
for(i = 0; i < NN - KK; i++)
{
tmp = 0;
j = (deg_lambda < i) ? deg_lambda : i;
for(; j >= 0; j--)
{
if((s[i + 1 - j] != A0) && (lambda[j] != A0))
tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
}
if(tmp != 0)
deg_omega = i;
omega[i] = Index_of[tmp];
}
omega[NN - KK] = A0;
/*
* Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
* inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
*/
for(j = count - 1; j >= 0; j--)
{
num1 = 0;
for(i = deg_omega; i >= 0; i--)
{
if(omega[i] != A0)
num1 ^= Alpha_to[modnn(omega[i] + i * root[j])];
}
num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
den = 0;
/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
for(i = min(deg_lambda, NN - KK - 1) & ~1; i >= 0; i -= 2)
{
if(lambda[i + 1] != A0)
den ^= Alpha_to[modnn(lambda[i + 1] + i * root[j])];
}
if(den == 0)
{
DicConsole.DebugWriteLine("Reed Solomon", "\n ERROR: denominator = 0\n");
return -1;
}
/* Apply error to data */
if(num1 != 0)
{
data[loc[j]] ^= Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
}
}
return count;
}
throw new UnauthorizedAccessException("Trying to calculate RS without initializing!");
}
}
}