/*************************************************************************** FileSystem identifier and checker ---------------------------------------------------------------------------- Filename : MinixFS.cs Version : 1.0 Author(s) : Natalia Portillo Component : Filesystem plugins Revision : $Revision$ Last change by : $Author$ Date : $Date$ --[ Description ] ---------------------------------------------------------- Identifies Minix v1, v2 and v3 filesystems and shows information. --[ License ] -------------------------------------------------------------- This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . ---------------------------------------------------------------------------- Copyright (C) 2011-2014 Claunia.com ****************************************************************************/ //$Id$ using System; using System.Text; using FileSystemIDandChk; // Information from the Linux kernel namespace FileSystemIDandChk.Plugins { class MinixFS : Plugin { const UInt16 MINIX_MAGIC = 0x137F; // Minix v1, 14 char filenames const UInt16 MINIX_MAGIC2 = 0x138F; // Minix v1, 30 char filenames const UInt16 MINIX2_MAGIC = 0x2468; // Minix v2, 14 char filenames const UInt16 MINIX2_MAGIC2 = 0x2478; // Minix v2, 30 char filenames const UInt16 MINIX3_MAGIC = 0x4D5A; // Minix v3, 60 char filenames // Byteswapped const UInt16 MINIX_CIGAM = 0x7F13; // Minix v1, 14 char filenames const UInt16 MINIX_CIGAM2 = 0x8F13; // Minix v1, 30 char filenames const UInt16 MINIX2_CIGAM = 0x6824; // Minix v2, 14 char filenames const UInt16 MINIX2_CIGAM2 = 0x7824; // Minix v2, 30 char filenames const UInt16 MINIX3_CIGAM = 0x5A4D; // Minix v3, 60 char filenames public MinixFS(PluginBase Core) { Name = "Minix Filesystem"; PluginUUID = new Guid("FE248C3B-B727-4AE5-A39F-79EA9A07D4B3"); } public override bool Identify(ImagePlugins.ImagePlugin imagePlugin, ulong partitionOffset) { UInt16 magic; byte[] minix_sb_sector = imagePlugin.ReadSector(2 + partitionOffset); magic = BitConverter.ToUInt16(minix_sb_sector, 0x010); // Here should reside magic number on Minix V1 & V2 if (magic == MINIX_MAGIC || magic == MINIX_MAGIC2 || magic == MINIX2_MAGIC || magic == MINIX2_MAGIC2 || magic == MINIX_CIGAM || magic == MINIX_CIGAM2 || magic == MINIX2_CIGAM || magic == MINIX2_CIGAM2) return true; magic = BitConverter.ToUInt16(minix_sb_sector, 0x018); // Here should reside magic number on Minix V3 if (magic == MINIX3_MAGIC || magic == MINIX3_CIGAM) return true; return false; } public override void GetInformation(ImagePlugins.ImagePlugin imagePlugin, ulong partitionOffset, out string information) { information = ""; StringBuilder sb = new StringBuilder(); bool minix3 = false; int filenamesize; string minixVersion; UInt16 magic; byte[] minix_sb_sector = imagePlugin.ReadSector(2 + partitionOffset); magic = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x018); if (magic == MINIX3_MAGIC || magic == MINIX3_CIGAM) { filenamesize = 60; minixVersion = "Minix V3 filesystem"; BigEndianBitConverter.IsLittleEndian = magic != MINIX3_CIGAM; minix3 = true; } else { magic = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x010); switch (magic) { case MINIX_MAGIC: filenamesize = 14; minixVersion = "Minix V1 filesystem"; BigEndianBitConverter.IsLittleEndian = true; break; case MINIX_MAGIC2: filenamesize = 30; minixVersion = "Minix V1 filesystem"; BigEndianBitConverter.IsLittleEndian = true; break; case MINIX2_MAGIC: filenamesize = 14; minixVersion = "Minix V2 filesystem"; BigEndianBitConverter.IsLittleEndian = true; break; case MINIX2_MAGIC2: filenamesize = 30; minixVersion = "Minix V2 filesystem"; BigEndianBitConverter.IsLittleEndian = true; break; case MINIX_CIGAM: filenamesize = 14; minixVersion = "Minix V1 filesystem"; BigEndianBitConverter.IsLittleEndian = false; break; case MINIX_CIGAM2: filenamesize = 30; minixVersion = "Minix V1 filesystem"; BigEndianBitConverter.IsLittleEndian = false; break; case MINIX2_CIGAM: filenamesize = 14; minixVersion = "Minix V2 filesystem"; BigEndianBitConverter.IsLittleEndian = false; break; case MINIX2_CIGAM2: filenamesize = 30; minixVersion = "Minix V2 filesystem"; BigEndianBitConverter.IsLittleEndian = false; break; default: return; } } if (minix3) { Minix3SuperBlock mnx_sb = new Minix3SuperBlock(); mnx_sb.s_ninodes = BigEndianBitConverter.ToUInt32(minix_sb_sector, 0x00); mnx_sb.s_pad0 = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x04); mnx_sb.s_imap_blocks = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x06); mnx_sb.s_zmap_blocks = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x08); mnx_sb.s_firstdatazone = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x0A); mnx_sb.s_log_zone_size = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x0C); mnx_sb.s_pad1 = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x0E); mnx_sb.s_max_size = BigEndianBitConverter.ToUInt32(minix_sb_sector, 0x10); mnx_sb.s_zones = BigEndianBitConverter.ToUInt32(minix_sb_sector, 0x14); mnx_sb.s_magic = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x18); mnx_sb.s_pad2 = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x1A); mnx_sb.s_blocksize = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x1C); mnx_sb.s_disk_version = minix_sb_sector[0x1E]; sb.AppendLine(minixVersion); sb.AppendFormat("{0} chars in filename", filenamesize).AppendLine(); sb.AppendFormat("{0} zones on volume ({1} bytes)", mnx_sb.s_zones, mnx_sb.s_zones * mnx_sb.s_blocksize).AppendLine(); sb.AppendFormat("{0} bytes/block", mnx_sb.s_blocksize).AppendLine(); sb.AppendFormat("{0} inodes on volume", mnx_sb.s_ninodes).AppendLine(); sb.AppendFormat("{0} blocks on inode map ({1} bytes)", mnx_sb.s_imap_blocks, mnx_sb.s_imap_blocks * mnx_sb.s_blocksize).AppendLine(); sb.AppendFormat("{0} blocks on zone map ({1} bytes)", mnx_sb.s_zmap_blocks, mnx_sb.s_zmap_blocks * mnx_sb.s_blocksize).AppendLine(); sb.AppendFormat("First data zone: {0}", mnx_sb.s_firstdatazone).AppendLine(); //sb.AppendFormat("log2 of blocks/zone: {0}", mnx_sb.s_log_zone_size).AppendLine(); // Apparently 0 sb.AppendFormat("{0} bytes maximum per file", mnx_sb.s_max_size).AppendLine(); sb.AppendFormat("On-disk filesystem version: {0}", mnx_sb.s_disk_version).AppendLine(); } else { MinixSuperBlock mnx_sb = new MinixSuperBlock(); mnx_sb.s_ninodes = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x00); mnx_sb.s_nzones = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x02); mnx_sb.s_imap_blocks = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x04); mnx_sb.s_zmap_blocks = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x06); mnx_sb.s_firstdatazone = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x08); mnx_sb.s_log_zone_size = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x0A); mnx_sb.s_max_size = BigEndianBitConverter.ToUInt32(minix_sb_sector, 0x0C); mnx_sb.s_magic = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x10); mnx_sb.s_state = BigEndianBitConverter.ToUInt16(minix_sb_sector, 0x12); mnx_sb.s_zones = BigEndianBitConverter.ToUInt32(minix_sb_sector, 0x14); sb.AppendLine(minixVersion); sb.AppendFormat("{0} chars in filename", filenamesize).AppendLine(); if (mnx_sb.s_zones > 0) // On V2 sb.AppendFormat("{0} zones on volume ({1} bytes)", mnx_sb.s_zones, mnx_sb.s_zones * 1024).AppendLine(); else sb.AppendFormat("{0} zones on volume ({1} bytes)", mnx_sb.s_nzones, mnx_sb.s_nzones * 1024).AppendLine(); sb.AppendFormat("{0} inodes on volume", mnx_sb.s_ninodes).AppendLine(); sb.AppendFormat("{0} blocks on inode map ({1} bytes)", mnx_sb.s_imap_blocks, mnx_sb.s_imap_blocks * 1024).AppendLine(); sb.AppendFormat("{0} blocks on zone map ({1} bytes)", mnx_sb.s_zmap_blocks, mnx_sb.s_zmap_blocks * 1024).AppendLine(); sb.AppendFormat("First data zone: {0}", mnx_sb.s_firstdatazone).AppendLine(); //sb.AppendFormat("log2 of blocks/zone: {0}", mnx_sb.s_log_zone_size).AppendLine(); // Apparently 0 sb.AppendFormat("{0} bytes maximum per file", mnx_sb.s_max_size).AppendLine(); sb.AppendFormat("Filesystem state: {0:X4}", mnx_sb.s_state).AppendLine(); } information = sb.ToString(); } public struct MinixSuperBlock { public UInt16 s_ninodes; // 0x00, inodes on volume public UInt16 s_nzones; // 0x02, zones on volume public UInt16 s_imap_blocks; // 0x04, blocks on inode map public UInt16 s_zmap_blocks; // 0x06, blocks on zone map public UInt16 s_firstdatazone; // 0x08, first data zone public UInt16 s_log_zone_size; // 0x0A, log2 of blocks/zone public UInt32 s_max_size; // 0x0C, max file size public UInt16 s_magic; // 0x10, magic public UInt16 s_state; // 0x12, filesystem state public UInt32 s_zones; // 0x14, number of zones } public struct Minix3SuperBlock { public UInt32 s_ninodes; // 0x00, inodes on volume public UInt16 s_pad0; // 0x04, padding public UInt16 s_imap_blocks; // 0x06, blocks on inode map public UInt16 s_zmap_blocks; // 0x08, blocks on zone map public UInt16 s_firstdatazone; // 0x0A, first data zone public UInt16 s_log_zone_size; // 0x0C, log2 of blocks/zone public UInt16 s_pad1; // 0x0E, padding public UInt32 s_max_size; // 0x10, max file size public UInt32 s_zones; // 0x14, number of zones public UInt16 s_magic; // 0x18, magic public UInt16 s_pad2; // 0x1A, padding public UInt16 s_blocksize; // 0x1C, bytes in a block public byte s_disk_version; // 0x1E, on-disk structures version } } }