// /***************************************************************************
// The Disc Image Chef
// ----------------------------------------------------------------------------
//
// Filename : Modes.cs
// Version : 1.0
// Author(s) : Natalia Portillo
//
// Component : Component
//
// Revision : $Revision$
// Last change by : $Author$
// Date : $Date$
//
// --[ Description ] ----------------------------------------------------------
//
// Description
//
// --[ License ] --------------------------------------------------------------
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
// ----------------------------------------------------------------------------
// Copyright (C) 2011-2015 Claunia.com
// ****************************************************************************/
// //$Id$
using System;
using System.Text;
using System.Collections.Generic;
namespace DiscImageChef.Decoders.SCSI
{
public static class Modes
{
public struct BlockDescriptor
{
public DensityType Density;
public ulong Blocks;
public uint BlockLength;
}
public struct ModeHeader
{
public MediumTypes MediumType;
public bool WriteProtected;
public BlockDescriptor[] BlockDescriptors;
public byte Speed;
public byte BufferedMode;
public bool EBC;
public bool DPOFUA;
}
public static ModeHeader? DecodeModeHeader6(byte[] modeResponse, PeripheralDeviceTypes deviceType)
{
if (modeResponse == null || modeResponse.Length < 4 || modeResponse.Length < modeResponse[0] + 1)
return null;
ModeHeader header = new ModeHeader();
header.MediumType = (MediumTypes)modeResponse[1];
if (modeResponse[3] > 0)
{
header.BlockDescriptors = new BlockDescriptor[modeResponse[3] / 8];
for (int i = 0; i < header.BlockDescriptors.Length; i++)
{
header.BlockDescriptors[i].Density = (DensityType)modeResponse[0 + i * 8 + 4];
header.BlockDescriptors[i].Blocks += (ulong)(modeResponse[1 + i * 8 + 4] << 16);
header.BlockDescriptors[i].Blocks += (ulong)(modeResponse[2 + i * 8 + 4] << 8);
header.BlockDescriptors[i].Blocks += modeResponse[3 + i * 8 + 4];
header.BlockDescriptors[i].BlockLength += (uint)(modeResponse[5 + i * 8 + 4] << 16);
header.BlockDescriptors[i].BlockLength += (uint)(modeResponse[6 + i * 8 + 4] << 8);
header.BlockDescriptors[i].BlockLength += modeResponse[7 + i * 8 + 4];
}
}
if (deviceType == PeripheralDeviceTypes.DirectAccess || deviceType == PeripheralDeviceTypes.MultiMediaDevice)
{
header.WriteProtected = ((modeResponse[2] & 0x80) == 0x80);
header.DPOFUA = ((modeResponse[2] & 0x10) == 0x10);
}
if (deviceType == PeripheralDeviceTypes.SequentialAccess)
{
header.WriteProtected = ((modeResponse[2] & 0x80) == 0x80);
header.Speed = (byte)(modeResponse[2] & 0x0F);
header.BufferedMode = (byte)((modeResponse[2] & 0x70) >> 4);
}
if (deviceType == PeripheralDeviceTypes.PrinterDevice)
header.BufferedMode = (byte)((modeResponse[2] & 0x70) >> 4);
if (deviceType == PeripheralDeviceTypes.OpticalDevice)
{
header.WriteProtected = ((modeResponse[2] & 0x80) == 0x80);
header.EBC = ((modeResponse[2] & 0x01) == 0x01);
header.DPOFUA = ((modeResponse[2] & 0x10) == 0x10);
}
return header;
}
public static string PrettifyModeHeader6(byte[] modeResponse, PeripheralDeviceTypes deviceType)
{
return PrettifyModeHeader(DecodeModeHeader6(modeResponse, deviceType), deviceType);
}
public static string PrettifyModeHeader(ModeHeader? header, PeripheralDeviceTypes deviceType)
{
if (!header.HasValue)
return null;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Mode Sense Header:");
switch (deviceType)
{
case PeripheralDeviceTypes.DirectAccess:
{
if (header.Value.MediumType != MediumTypes.Default)
{
sb.Append("\tMedium is ");
switch (header.Value.MediumType)
{
case MediumTypes.ECMA54:
sb.AppendLine("ECMA-54: 200 mm Flexible Disk Cartridge using Two-Frequency Recording at 13262 ftprad on One Side");
break;
case MediumTypes.ECMA59:
sb.AppendLine("ECMA-59 & ANSI X3.121-1984: 200 mm Flexible Disk Cartridge using Two-Frequency Recording at 13262 ftprad on Both Sides");
break;
case MediumTypes.ECMA69:
sb.AppendLine("ECMA-69: 200 mm Flexible Disk Cartridge using MFM Recording at 13262 ftprad on Both Sides");
break;
case MediumTypes.ECMA66:
sb.AppendLine("ECMA-66: 130 mm Flexible Disk Cartridge using Two-Frequency Recording at 7958 ftprad on One Side");
break;
case MediumTypes.ECMA70:
sb.AppendLine("ECMA-70 & ANSI X3.125-1985: 130 mm Flexible Disk Cartridge using MFM Recording at 7958 ftprad on Both Sides; 1,9 Tracks per mm");
break;
case MediumTypes.ECMA78:
sb.AppendLine("ECMA-78 & ANSI X3.126-1986: 130 mm Flexible Disk Cartridge using MFM Recording at 7958 ftprad on Both Sides; 3,8 Tracks per mm");
break;
case MediumTypes.ECMA99:
sb.AppendLine("ECMA-99 & ISO 8630-1985: 130 mm Flexible Disk Cartridge using MFM Recording at 13262 ftprad on Both Sides; 3,8 Tracks per mm");
break;
case MediumTypes.ECMA100:
sb.AppendLine("ECMA-100 & ANSI X3.137: 90 mm Flexible Disk Cartridge using MFM Recording at 7859 ftprad on Both Sides; 5,3 Tracks per mm");
break;
case MediumTypes.Unspecified_SS:
sb.AppendLine("Unspecified single sided flexible disk");
break;
case MediumTypes.Unspecified_DS:
sb.AppendLine("Unspecified double sided flexible disk");
break;
case MediumTypes.X3_73:
sb.AppendLine("ANSI X3.73-1980: 200 mm, 6631 ftprad, 1,9 Tracks per mm, 1 side");
break;
case MediumTypes.X3_73_DS:
sb.AppendLine("ANSI X3.73-1980: 200 mm, 6631 ftprad, 1,9 Tracks per mm, 2 sides");
break;
case MediumTypes.X3_82:
sb.AppendLine("ANSI X3.80-1980: 130 mm, 3979 ftprad, 1,9 Tracks per mm, 1 side");
break;
case MediumTypes.Tape12:
sb.AppendLine("6,3 mm tape with 12 tracks at 394 ftpmm");
break;
case MediumTypes.Tape24:
sb.AppendLine("6,3 mm tape with 24 tracks at 394 ftpmm");
break;
case MediumTypes.Type3Floppy:
sb.AppendLine("3.5-inch, 135 tpi, 12362 bits/radian, double-sided MFM (aka 1.25Mb)");
break;
case MediumTypes.HDFloppy:
sb.AppendLine("3.5-inch, 135 tpi, 15916 bits/radian, double-sided MFM (aka 1.44Mb)");
break;
default:
sb.AppendFormat("Unknown medium type 0x{0:X2}", (byte)header.Value.MediumType).AppendLine();
break;
}
}
if (header.Value.WriteProtected)
sb.AppendLine("\tMedium is write protected");
if (header.Value.DPOFUA)
sb.AppendLine("\tDrive supports DPO and FUA bits");
if (header.Value.BlockDescriptors != null)
{
foreach (BlockDescriptor descriptor in header.Value.BlockDescriptors)
{
string density = "";
switch (descriptor.Density)
{
case DensityType.Default:
break;
case DensityType.Flux7958:
density = "7958 flux transitions per radian";
break;
case DensityType.Flux13262:
density = "13262 flux transitions per radian";
break;
case DensityType.Flux15916:
density = "15916 flux transitions per radian";
break;
default:
density = String.Format("with unknown density code 0x{0:X2}", (byte)descriptor.Density);
break;
}
if (density != "")
{
if (descriptor.Blocks == 0)
sb.AppendFormat("\tAll remaining blocks have {0} and are {1} bytes each", density, descriptor.BlockLength).AppendLine();
else
sb.AppendFormat("\t{0} blocks have {1} and are {2} bytes each", descriptor.Blocks, density, descriptor.BlockLength).AppendLine();
}
else
{
if (descriptor.Blocks == 0)
sb.AppendFormat("\tAll remaining blocks are {0} bytes each", descriptor.BlockLength).AppendLine();
else
sb.AppendFormat("\t{0} blocks are {1} bytes each", descriptor.Blocks, descriptor.BlockLength).AppendLine();
}
}
}
break;
}
case PeripheralDeviceTypes.SequentialAccess:
{
switch (header.Value.BufferedMode)
{
case 0:
sb.AppendLine("\tDevice writes directly to media");
break;
case 1:
sb.AppendLine("\tDevice uses a write cache");
break;
case 2:
sb.AppendLine("\tDevice uses a write cache but doesn't return until cache is flushed");
break;
default:
sb.AppendFormat("\tUnknown buffered mode code 0x{0:X2}", (byte)header.Value.BufferedMode).AppendLine();
break;
}
if (header.Value.Speed == 0)
sb.AppendLine("\tDevice uses default speed");
else
sb.AppendFormat("\tDevice uses speed {0}", header.Value.Speed).AppendLine();
if (header.Value.WriteProtected)
sb.AppendLine("\tMedium is write protected");
if (header.Value.MediumType != MediumTypes.Default)
{
sb.Append("\tMedium is ");
switch (header.Value.MediumType)
{
case MediumTypes.Tape12:
sb.AppendLine("6,3 mm tape with 12 tracks at 394 ftpmm");
break;
case MediumTypes.Tape24:
sb.AppendLine("6,3 mm tape with 24 tracks at 394 ftpmm");
break;
default:
sb.AppendFormat("Unknown medium type 0x{0:X2}", (byte)header.Value.MediumType).AppendLine();
break;
}
}
if (header.Value.BlockDescriptors != null)
{
foreach (BlockDescriptor descriptor in header.Value.BlockDescriptors)
{
string density = "";
switch (descriptor.Density)
{
case DensityType.Default:
break;
case DensityType.ECMA62:
density = "ECMA-62 & ANSI X3.22-1983: 12,7 mm 9-Track Magnetic Tape, 32 ftpmm, NRZI, 32 cpmm";
break;
case DensityType.ECMA62_Phase:
density = "ECMA-62 & ANSI X3.39-1986: 12,7 mm 9-Track Magnetic Tape, 126 ftpmm, Phase Encoding, 63 cpmm";
break;
case DensityType.ECMA62_GCR:
density = "ECMA-62 & ANSI X3.54-1986: 12,7 mm 9-Track Magnetic Tape, 356 ftpmm, NRZI, 245 cpmm GCR";
break;
case DensityType.ECMA79:
density = "ECMA-79 & ANSI X3.116-1986: 6,30 mm Magnetic Tape Cartridge, 252 ftpmm, MFM";
break;
case DensityType.ECMADraft:
density = "Draft ECMA & ANSI X3B5/87-099: 12,7 mm 18-Track Magnetic Tape Cartridge, 1944 ftpmm, IFM, GCR";
break;
case DensityType.ECMA46:
density = "ECMA-46 & ANSI X3.56-1986: 6,30 mm Magnetic Tape Cartridge, Phase Encoding, 63 bpmm";
break;
case DensityType.ECMA98:
density = "ECMA-98: 6,30 mm Magnetic Tape Cartridge, NRZI, 394 ftpmm";
break;
case DensityType.X3_136:
density = "ANXI X3.136-1986: 6,3 mm 4 or 9-Track Magnetic Tape Cartridge, 315 bpmm, GCR";
break;
case DensityType.X3_157:
density = "ANXI X3.157-1987: 12,7 mm 9-Track Magnetic Tape, 126 bpmm, Phase Encoding";
break;
case DensityType.X3_158:
density = "ANXI X3.158-1987: 3,81 mm 4-Track Magnetic Tape Cassette, 315 bpmm, GCR";
break;
case DensityType.X3B5_86:
density = "ANXI X3B5/86-199: 12,7 mm 22-Track Magnetic Tape Cartridge, 262 bpmm, MFM";
break;
case DensityType.HiTC1:
density = "HI-TC1: 12,7 mm 24-Track Magnetic Tape Cartridge, 500 bpmm, GCR";
break;
case DensityType.HiTC2:
density = "HI-TC2: 12,7 mm 24-Track Magnetic Tape Cartridge, 999 bpmm, GCR";
break;
case DensityType.QIC120:
density = "QIC-120: 6,3 mm 15-Track Magnetic Tape Cartridge, 394 bpmm, GCR";
break;
case DensityType.QIC150:
density = "QIC-150: 6,3 mm 18-Track Magnetic Tape Cartridge, 394 bpmm, GCR";
break;
case DensityType.QIC320:
density = "QIC-320: 6,3 mm 26-Track Magnetic Tape Cartridge, 630 bpmm, GCR";
break;
case DensityType.QIC1350:
density = "QIC-1350: 6,3 mm 30-Track Magnetic Tape Cartridge, 2034 bpmm, RLL";
break;
case DensityType.X3B5_88:
density = "ANXI X3B5/88-185A: 3,81 mm Magnetic Tape Cassette, 2400 bpmm, DDS";
break;
case DensityType.X3_202:
density = "ANXI X3.202-1991: 8 mm Magnetic Tape Cassette, 1703 bpmm, RLL";
break;
case DensityType.ECMA_TC17:
density = "ECMA TC17: 8 mm Magnetic Tape Cassette, 1789 bpmm, RLL";
break;
case DensityType.X3_193:
density = "ANXI X3.193-1990: 12,7 mm 48-Track Magnetic Tape Cartridge, 394 bpmm, MFM";
break;
case DensityType.X3B5_91:
density = "ANXI X3B5/97-174: 12,7 mm 48-Track Magnetic Tape Cartridge, 1673 bpmm, MFM";
break;
default:
density = String.Format("Unknown density code 0x{0:X2}", descriptor.Density);
break;
}
if (density != "")
{
if (descriptor.Blocks == 0)
{
if (descriptor.BlockLength == 0)
sb.AppendFormat("\tAll remaining blocks conform to {0} and have a variable length", density).AppendLine();
else
sb.AppendFormat("\tAll remaining blocks conform to {0} and are {1} bytes each", density, descriptor.BlockLength).AppendLine();
}
else
{
if (descriptor.BlockLength == 0)
sb.AppendFormat("\t{0} blocks conform to {1} and have a variable length", descriptor.Blocks, density).AppendLine();
else
sb.AppendFormat("\t{0} blocks conform to {1} and are {2} bytes each", descriptor.Blocks, density, descriptor.BlockLength).AppendLine();
}
}
else
{
if (descriptor.Blocks == 0)
{
if (descriptor.BlockLength == 0)
sb.AppendFormat("\tAll remaining blocks have a variable length").AppendLine();
else
sb.AppendFormat("\tAll remaining blocks are {0} bytes each", descriptor.BlockLength).AppendLine();
}
else
{
if (descriptor.BlockLength == 0)
sb.AppendFormat("\t{0} blocks have a variable length", descriptor.Blocks).AppendLine();
else
sb.AppendFormat("\t{0} blocks are {1} bytes each", descriptor.Blocks, descriptor.BlockLength).AppendLine();
}
}
}
}
break;
}
case PeripheralDeviceTypes.PrinterDevice:
{
switch (header.Value.BufferedMode)
{
case 0:
sb.AppendLine("\tDevice prints directly");
break;
case 1:
sb.AppendLine("\tDevice uses a print cache");
break;
default:
sb.AppendFormat("\tUnknown buffered mode code 0x{0:X2}", header.Value.BufferedMode).AppendLine();
break;
}
break;
}
case PeripheralDeviceTypes.OpticalDevice:
{
if (header.Value.MediumType != MediumTypes.Default)
{
sb.Append("\tMedium is ");
switch (header.Value.MediumType)
{
case MediumTypes.ReadOnly:
sb.AppendLine("a Read-only optical");
break;
case MediumTypes.WORM:
sb.AppendLine("a Write-once Read-many optical");
break;
case MediumTypes.Erasable:
sb.AppendLine("a Erasable optical");
break;
case MediumTypes.RO_WORM:
sb.AppendLine("a combination of read-only and write-once optical");
break;
case MediumTypes.RO_RW:
sb.AppendLine("a combination of read-only and erasable optical");
break;
case MediumTypes.WORM_RW:
sb.AppendLine("a combination of write-once and erasable optical");
break;
default:
sb.AppendFormat("an unknown medium type 0x{0:X2}", header.Value.MediumType).AppendLine();
break;
}
}
if (header.Value.WriteProtected)
sb.AppendLine("\tMedium is write protected");
if (header.Value.EBC)
sb.AppendLine("\tBlank checking during write is enabled");
if (header.Value.DPOFUA)
sb.AppendLine("\tDrive supports DPO and FUA bits");
if (header.Value.BlockDescriptors != null)
{
foreach (BlockDescriptor descriptor in header.Value.BlockDescriptors)
{
string density = "";
switch (descriptor.Density)
{
case DensityType.Default:
break;
case DensityType.ISO10090:
density = "ISO/IEC 10090: 86 mm Read/Write single-sided optical disc with 12500 tracks";
break;
case DensityType.D581:
density = "89 mm Read/Write double-sided optical disc with 12500 tracks";
break;
case DensityType.X3_212:
density = "ANSI X3.212: 130 mm Read/Write double-sided optical disc with 18750 tracks";
break;
case DensityType.X3_191:
density = "ANSI X3.191: 130 mm Write-Once double-sided optical disc with 30000 tracks";
break;
case DensityType.X3_214:
density = "ANSI X3.214: 130 mm Write-Once double-sided optical disc with 20000 tracks";
break;
case DensityType.X3_211:
density = "ANSI X3.211: 130 mm Write-Once double-sided optical disc with 18750 tracks";
break;
case DensityType.D407:
density = "200 mm optical disc";
break;
case DensityType.ISO13614:
density = "ISO/IEC 13614: 300 mm double-sided optical disc";
break;
case DensityType.X3_200:
density = "ANSI X3.200: 356 mm double-sided optical disc with 56350 tracks";
break;
default:
density = String.Format("Unknown density code 0x{0:X2}", descriptor.Density);
break;
}
if (density != "")
{
if (descriptor.Blocks == 0)
{
if (descriptor.BlockLength == 0)
sb.AppendFormat("\tAll remaining blocks are {0} and have a variable length", density).AppendLine();
else
sb.AppendFormat("\tAll remaining blocks are {0} and are {1} bytes each", density, descriptor.BlockLength).AppendLine();
}
else
{
if (descriptor.BlockLength == 0)
sb.AppendFormat("\t{0} blocks are {1} and have a variable length", descriptor.Blocks, density).AppendLine();
else
sb.AppendFormat("\t{0} blocks are {1} and are {2} bytes each", descriptor.Blocks, density, descriptor.BlockLength).AppendLine();
}
}
else
{
if (descriptor.Blocks == 0)
{
if (descriptor.BlockLength == 0)
sb.AppendFormat("\tAll remaining blocks have a variable length").AppendLine();
else
sb.AppendFormat("\tAll remaining blocks are {0} bytes each", descriptor.BlockLength).AppendLine();
}
else
{
if (descriptor.BlockLength == 0)
sb.AppendFormat("\t{0} blocks have a variable length", descriptor.Blocks).AppendLine();
else
sb.AppendFormat("\t{0} blocks are {1} bytes each", descriptor.Blocks, descriptor.BlockLength).AppendLine();
}
}
}
}
break;
}
case PeripheralDeviceTypes.MultiMediaDevice:
{
sb.Append("\tMedium is ");
switch (header.Value.MediumType)
{
case MediumTypes.CDROM:
sb.AppendLine("120 mm CD-ROM");
break;
case MediumTypes.CDDA:
sb.AppendLine("120 mm Compact Disc Digital Audio");
break;
case MediumTypes.MixedCD:
sb.AppendLine("120 mm Compact Disc with data and audio");
break;
case MediumTypes.CDROM_80:
sb.AppendLine("80 mm CD-ROM");
break;
case MediumTypes.CDDA_80:
sb.AppendLine("80 mm Compact Disc Digital Audio");
break;
case MediumTypes.MixedCD_80:
sb.AppendLine("80 mm Compact Disc with data and audio");
break;
case MediumTypes.Unknown_CD:
sb.AppendLine("Unknown medium type");
break;
case MediumTypes.HybridCD:
sb.AppendLine("120 mm Hybrid disc (Photo CD)");
break;
case MediumTypes.Unknown_CDR:
sb.AppendLine("Unknown size CD-R");
break;
case MediumTypes.CDR:
sb.AppendLine("120 mm CD-R with data only");
break;
case MediumTypes.CDR_DA:
sb.AppendLine("120 mm CD-R with audio only");
break;
case MediumTypes.CDR_Mixed:
sb.AppendLine("120 mm CD-R with data and audio");
break;
case MediumTypes.HybridCDR:
sb.AppendLine("120 mm Hybrid CD-R (Photo CD)");
break;
case MediumTypes.CDR_80:
sb.AppendLine("80 mm CD-R with data only");
break;
case MediumTypes.CDR_DA_80:
sb.AppendLine("80 mm CD-R with audio only");
break;
case MediumTypes.CDR_Mixed_80:
sb.AppendLine("80 mm CD-R with data and audio");
break;
case MediumTypes.HybridCDR_80:
sb.AppendLine("80 mm Hybrid CD-R (Photo CD)");
break;
case MediumTypes.Unknown_CDRW:
sb.AppendLine("Unknown size CD-RW");
break;
case MediumTypes.CDRW:
sb.AppendLine("120 mm CD-RW with data only");
break;
case MediumTypes.CDRW_DA:
sb.AppendLine("120 mm CD-RW with audio only");
break;
case MediumTypes.CDRW_Mixed:
sb.AppendLine("120 mm CD-RW with data and audio");
break;
case MediumTypes.HybridCDRW:
sb.AppendLine("120 mm Hybrid CD-RW (Photo CD)");
break;
case MediumTypes.CDRW_80:
sb.AppendLine("80 mm CD-RW with data only");
break;
case MediumTypes.CDRW_DA_80:
sb.AppendLine("80 mm CD-RW with audio only");
break;
case MediumTypes.CDRW_Mixed_80:
sb.AppendLine("80 mm CD-RW with data and audio");
break;
case MediumTypes.HybridCDRW_80:
sb.AppendLine("80 mm Hybrid CD-RW (Photo CD)");
break;
case MediumTypes.Unknown_HD:
sb.AppendLine("Unknown size HD disc");
break;
case MediumTypes.HD:
sb.AppendLine("120 mm HD disc");
break;
case MediumTypes.HD_80:
sb.AppendLine("80 mm HD disc");
break;
case MediumTypes.NoDisc:
sb.AppendLine("No disc inserted, tray closed or caddy inserted");
break;
case MediumTypes.TrayOpen:
sb.AppendLine("Tray open or no caddy inserted");
break;
case MediumTypes.MediumError:
sb.AppendLine("Tray closed or caddy inserted but medium error");
break;
case MediumTypes.UnknownBlockDevice:
sb.AppendLine("Unknown block device");
break;
case MediumTypes.ReadOnlyBlockDevice:
sb.AppendLine("Read-only block device");
break;
case MediumTypes.ReadWriteBlockDevice:
sb.AppendLine("Read/Write block device");
break;
default:
sb.AppendFormat("Unknown medium type 0x{0:X2}", header.Value.MediumType).AppendLine();
break;
}
if (header.Value.WriteProtected)
sb.AppendLine("\tMedium is write protected");
if (header.Value.DPOFUA)
sb.AppendLine("\tDrive supports DPO and FUA bits");
if (header.Value.BlockDescriptors != null)
{
foreach (BlockDescriptor descriptor in header.Value.BlockDescriptors)
{
string density = "";
switch (descriptor.Density)
{
case DensityType.Default:
break;
case DensityType.User:
density = "user data only";
break;
case DensityType.UserAuxiliary:
density = "user data plus auxiliary data";
break;
case DensityType.UserAuxiliaryTag:
density = "4-byte tag, user data plus auxiliary data";
break;
case DensityType.Audio:
density = "audio information only";
break;
default:
density = String.Format("with unknown density code 0x{0:X2}", descriptor.Density);
break;
}
if (density != "")
{
if (descriptor.Blocks == 0)
sb.AppendFormat("\tAll remaining blocks have {0} and are {1} bytes each", density, descriptor.BlockLength).AppendLine();
else
sb.AppendFormat("\t{0} blocks have {1} and are {2} bytes each", descriptor.Blocks, density, descriptor.BlockLength).AppendLine();
}
else
{
if (descriptor.Blocks == 0)
sb.AppendFormat("\tAll remaining blocks are {0} bytes each", descriptor.BlockLength).AppendLine();
else
sb.AppendFormat("\t{0} blocks are {1} bytes each", descriptor.Blocks, descriptor.BlockLength).AppendLine();
}
}
}
break;
}
default:
break;
}
return sb.ToString();
}
public static ModeHeader? DecodeModeHeader10(byte[] modeResponse, PeripheralDeviceTypes deviceType)
{
if (modeResponse == null || modeResponse.Length < 8)
return null;
ushort modeLength;
ushort blockDescLength;
modeLength = (ushort)((modeResponse[0] << 8) + modeResponse[1]);
blockDescLength = (ushort)((modeResponse[6] << 8) + modeResponse[7]);
if (modeResponse.Length < modeLength)
return null;
ModeHeader header = new ModeHeader();
header.MediumType = (MediumTypes)modeResponse[2];
bool longLBA = (modeResponse[4] & 0x01) == 0x01;
if (blockDescLength > 0)
{
if (longLBA)
{
header.BlockDescriptors = new BlockDescriptor[blockDescLength / 16];
for (int i = 0; i < header.BlockDescriptors.Length; i++)
{
header.BlockDescriptors[i] = new BlockDescriptor();
header.BlockDescriptors[i].Density = DensityType.Default;
byte[] temp = new byte[8];
temp[0] = modeResponse[7 + i * 16 + 8];
temp[1] = modeResponse[6 + i * 16 + 8];
temp[2] = modeResponse[5 + i * 16 + 8];
temp[3] = modeResponse[4 + i * 16 + 8];
temp[4] = modeResponse[3 + i * 16 + 8];
temp[5] = modeResponse[2 + i * 16 + 8];
temp[6] = modeResponse[1 + i * 16 + 8];
temp[7] = modeResponse[0 + i * 16 + 8];
header.BlockDescriptors[i].Blocks = BitConverter.ToUInt64(temp, 0);
header.BlockDescriptors[i].BlockLength += (uint)(modeResponse[15 + i * 16 + 8] << 24);
header.BlockDescriptors[i].BlockLength += (uint)(modeResponse[14 + i * 16 + 8] << 16);
header.BlockDescriptors[i].BlockLength += (uint)(modeResponse[13 + i * 16 + 8] << 8);
header.BlockDescriptors[i].BlockLength += modeResponse[12 + i * 16 + 8];
}
}
else
{
header.BlockDescriptors = new BlockDescriptor[blockDescLength / 8];
for (int i = 0; i < header.BlockDescriptors.Length; i++)
{
header.BlockDescriptors[i] = new BlockDescriptor();
if (deviceType != PeripheralDeviceTypes.DirectAccess)
{
header.BlockDescriptors[i].Density = (DensityType)modeResponse[0 + i * 8 + 8];
}
else
{
header.BlockDescriptors[i].Density = DensityType.Default;
header.BlockDescriptors[i].Blocks += (ulong)(modeResponse[0 + i * 8 + 8] << 24);
}
header.BlockDescriptors[i].Blocks += (ulong)(modeResponse[1 + i * 8 + 8] << 16);
header.BlockDescriptors[i].Blocks += (ulong)(modeResponse[2 + i * 8 + 8] << 8);
header.BlockDescriptors[i].Blocks += modeResponse[3 + i * 8 + 8];
header.BlockDescriptors[i].BlockLength += (uint)(modeResponse[5 + i * 8 + 8] << 16);
header.BlockDescriptors[i].BlockLength += (uint)(modeResponse[6 + i * 8 + 8] << 8);
header.BlockDescriptors[i].BlockLength += modeResponse[7 + i * 8 + 8];
}
}
}
if (deviceType == PeripheralDeviceTypes.DirectAccess || deviceType == PeripheralDeviceTypes.MultiMediaDevice)
{
header.WriteProtected = ((modeResponse[3] & 0x80) == 0x80);
header.DPOFUA = ((modeResponse[3] & 0x10) == 0x10);
}
if (deviceType == PeripheralDeviceTypes.SequentialAccess)
{
header.WriteProtected = ((modeResponse[3] & 0x80) == 0x80);
header.Speed = (byte)(modeResponse[3] & 0x0F);
header.BufferedMode = (byte)((modeResponse[3] & 0x70) >> 4);
}
if (deviceType == PeripheralDeviceTypes.PrinterDevice)
header.BufferedMode = (byte)((modeResponse[3] & 0x70) >> 4);
if (deviceType == PeripheralDeviceTypes.OpticalDevice)
{
header.WriteProtected = ((modeResponse[3] & 0x80) == 0x80);
header.EBC = ((modeResponse[3] & 0x01) == 0x01);
header.DPOFUA = ((modeResponse[3] & 0x10) == 0x10);
}
return header;
}
public static string PrettifyModeHeader10(byte[] modeResponse, PeripheralDeviceTypes deviceType)
{
return PrettifyModeHeader(DecodeModeHeader10(modeResponse, deviceType), deviceType);
}
#region Mode Page 0x0A: Control mode page
///
/// Control mode page
/// Page code 0x0A
/// 8 bytes in SCSI-2
/// 12 bytes in SPC-1, SPC-2, SPC-3, SPC-4, SPC-5
///
public struct ModePage_0A
{
///
/// Parameters can be saved
///
public bool PS;
///
/// If set, target shall report log exception conditions
///
public bool RLEC;
///
/// Queue algorithm modifier
///
public byte QueueAlgorithm;
///
/// If set all remaining suspended I/O processes shall be aborted after the contingent allegiance condition or extended contingent allegiance condition
///
public byte QErr;
///
/// Tagged queuing is disabled
///
public bool DQue;
///
/// Extended Contingent Allegiance is enabled
///
public bool EECA;
///
/// Target may issue an asynchronous event notification upon completing its initialization
///
public bool RAENP;
///
/// Target may issue an asynchronous event notification instead of a unit attention condition
///
public bool UAAENP;
///
/// Target may issue an asynchronous event notification instead of a deferred error
///
public bool EAENP;
///
/// Minimum time in ms after initialization before attempting asynchronous event notifications
///
public ushort ReadyAENHoldOffPeriod;
///
/// Global logging target save disabled
///
public bool GLTSD;
///
/// CHECK CONDITION should be reported rather than a long busy condition
///
public bool RAC;
///
/// Software write protect is active
///
public bool SWP;
///
/// Maximum time in 100 ms units allowed to remain busy. 0xFFFF == unlimited.
///
public ushort BusyTimeoutPeriod;
///
/// Task set type
///
public byte TST;
///
/// Tasks aborted by other initiator's actions should be terminated with TASK ABORTED
///
public bool TAS;
///
/// Action to be taken when a medium is inserted
///
public byte AutoloadMode;
///
/// Time in seconds to complete an extended self-test
///
public byte ExtendedSelfTestCompletionTime;
///
/// All tasks received in nexus with ACA ACTIVE is set and an ACA condition is established shall terminate
///
public bool TMF_ONLY;
///
/// Device shall return descriptor format sense data when returning sense data in the same transactions as a CHECK CONDITION
///
public bool D_SENSE;
///
/// Unit attention interlocks control
///
public byte UA_INTLCK_CTRL;
///
/// LOGICAL BLOCK APPLICATION TAG should not be modified
///
public bool ATO;
///
/// Protector information checking is disabled
///
public bool DPICZ;
///
/// No unit attention on release
///
public bool NUAR;
///
/// Application Tag mode page is enabled
///
public bool ATMPE;
///
/// Abort any write command without protection information
///
public bool RWWP;
///
/// Supportes block lengths and protection information
///
public bool SBLP;
}
public static ModePage_0A? DecodeModePage_0A(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x0A)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 8)
return null;
ModePage_0A decoded = new ModePage_0A();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.RLEC |= (pageResponse[2] & 0x01) == 0x01;
decoded.QueueAlgorithm = (byte)((pageResponse[3] & 0xF0) >> 4);
decoded.QErr = (byte)((pageResponse[3] & 0x06) >> 1);
decoded.DQue |= (pageResponse[3] & 0x01) == 0x01;
decoded.EECA |= (pageResponse[4] & 0x80) == 0x80;
decoded.RAENP |= (pageResponse[4] & 0x04) == 0x04;
decoded.UAAENP |= (pageResponse[4] & 0x02) == 0x02;
decoded.EAENP |= (pageResponse[4] & 0x01) == 0x01;
decoded.ReadyAENHoldOffPeriod = (ushort)((pageResponse[6] << 8) + pageResponse[7]);
if (pageResponse.Length < 10)
return decoded;
// SPC-1
decoded.GLTSD |= (pageResponse[2] & 0x02) == 0x02;
decoded.RAC |= (pageResponse[4] & 0x40) == 0x40;
decoded.SWP |= (pageResponse[4] & 0x08) == 0x08;
decoded.BusyTimeoutPeriod = (ushort)((pageResponse[8] << 8) + pageResponse[9]);
// SPC-2
decoded.TST = (byte)((pageResponse[2] & 0xE0) >> 5);
decoded.TAS |= (pageResponse[4] & 0x80) == 0x80;
decoded.AutoloadMode = (byte)(pageResponse[5] & 0x07);
decoded.BusyTimeoutPeriod = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
// SPC-3
decoded.TMF_ONLY |= (pageResponse[2] & 0x10) == 0x10;
decoded.D_SENSE |= (pageResponse[2] & 0x04) == 0x04;
decoded.UA_INTLCK_CTRL = (byte)((pageResponse[4] & 0x30) >> 4);
decoded.TAS |= (pageResponse[5] & 0x40) == 0x40;
decoded.ATO |= (pageResponse[5] & 0x80) == 0x80;
// SPC-5
decoded.DPICZ |= (pageResponse[2] & 0x08) == 0x08;
decoded.NUAR |= (pageResponse[3] & 0x08) == 0x08;
decoded.ATMPE |= (pageResponse[5] & 0x20) == 0x20;
decoded.RWWP |= (pageResponse[5] & 0x10) == 0x10;
decoded.SBLP |= (pageResponse[5] & 0x08) == 0x08;
return decoded;
}
public static string PrettifyModePage_0A(byte[] pageResponse)
{
return PrettifyModePage_0A(DecodeModePage_0A(pageResponse));
}
public static string PrettifyModePage_0A(ModePage_0A? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_0A page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Control mode page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.RLEC)
sb.AppendLine("\tIf set, target shall report log exception conditions");
if (page.DQue)
sb.AppendLine("\tTagged queuing is disabled");
if (page.EECA)
sb.AppendLine("\tExtended Contingent Allegiance is enabled");
if (page.RAENP)
sb.AppendLine("\tTarget may issue an asynchronous event notification upon completing its initialization");
if (page.UAAENP)
sb.AppendLine("\tTarget may issue an asynchronous event notification instead of a unit attention condition");
if (page.EAENP)
sb.AppendLine("\tTarget may issue an asynchronous event notification instead of a deferred error");
if (page.GLTSD)
sb.AppendLine("\tGlobal logging target save disabled");
if (page.RAC)
sb.AppendLine("\tCHECK CONDITION should be reported rather than a long busy condition");
if (page.SWP)
sb.AppendLine("\tSoftware write protect is active");
if (page.TAS)
sb.AppendLine("\tTasks aborted by other initiator's actions should be terminated with TASK ABORTED");
if (page.TMF_ONLY)
sb.AppendLine("\tAll tasks received in nexus with ACA ACTIVE is set and an ACA condition is established shall terminate");
if (page.D_SENSE)
sb.AppendLine("\tDevice shall return descriptor format sense data when returning sense data in the same transactions as a CHECK CONDITION");
if (page.ATO)
sb.AppendLine("\tLOGICAL BLOCK APPLICATION TAG should not be modified");
if (page.DPICZ)
sb.AppendLine("\tProtector information checking is disabled");
if (page.NUAR)
sb.AppendLine("\tNo unit attention on release");
if (page.ATMPE)
sb.AppendLine("\tApplication Tag mode page is enabled");
if (page.RWWP)
sb.AppendLine("\tAbort any write command without protection information");
if (page.SBLP)
sb.AppendLine("\tSupportes block lengths and protection information");
switch (page.TST)
{
case 0:
sb.AppendLine("\tThe logical unit maintains one task set for all nexuses");
break;
case 1:
sb.AppendLine("\tThe logical unit maintains separate task sets for each nexus");
break;
default:
sb.AppendFormat("\tUnknown Task set type {0}", page.TST).AppendLine();
break;
}
switch (page.QueueAlgorithm)
{
case 0:
sb.AppendLine("\tCommands should be sent strictly ordered");
break;
case 1:
sb.AppendLine("\tCommands can be reordered in any manner");
break;
default:
sb.AppendFormat("\tUnknown Queue Algorithm Modifier {0}", page.QueueAlgorithm).AppendLine();
break;
}
switch (page.QErr)
{
case 0:
sb.AppendLine("\tIf ACA is established, the task set commands shall resume after it is cleared, otherwise they shall terminate with CHECK CONDITION");
break;
case 1:
sb.AppendLine("\tAll the affected commands in the task set shall be aborted when CHECK CONDITION is returned");
break;
case 3:
sb.AppendLine("\tAffected commands in the task set belonging with the CHECK CONDITION nexus shall be aborted");
break;
default:
sb.AppendLine("\tReserved QErr value 2 is set");
break;
}
switch (page.UA_INTLCK_CTRL)
{
case 0:
sb.AppendLine("\tLUN shall clear unit attention condition reported in the same nexus");
break;
case 2:
sb.AppendLine("\tLUN shall not clear unit attention condition reported in the same nexus");
break;
case 3:
sb.AppendLine("\tLUN shall not clear unit attention condition reported in the same nexus and shall establish a unit attention condition for the initiator");
break;
default:
sb.AppendLine("\tReserved UA_INTLCK_CTRL value 1 is set");
break;
}
switch (page.AutoloadMode)
{
case 0:
sb.AppendLine("\tOn medium insertion, it shall be loaded for full access");
break;
case 1:
sb.AppendLine("\tOn medium insertion, it shall be loaded for auxiliary memory access only");
break;
case 2:
sb.AppendLine("\tOn medium insertion, it shall not be loaded");
break;
default:
sb.AppendFormat("\tReserved autoload mode {0} set", page.AutoloadMode).AppendLine();
break;
}
if (page.ReadyAENHoldOffPeriod > 0)
sb.AppendFormat("\t{0} ms before attempting asynchronous event notifications after initialization", page.ReadyAENHoldOffPeriod).AppendLine();
if (page.BusyTimeoutPeriod > 0)
{
if (page.BusyTimeoutPeriod == 0xFFFF)
sb.AppendLine("\tThere is no limit on the maximum time that is allowed to remain busy");
else
sb.AppendFormat("\tA maximum of {0} ms are allowed to remain busy", (int)page.BusyTimeoutPeriod * 100).AppendLine();
}
if (page.ExtendedSelfTestCompletionTime > 0)
sb.AppendFormat("\t{0} seconds to complete extended self-test", page.ExtendedSelfTestCompletionTime);
return sb.ToString();
}
#endregion Mode Page 0x0A: Control mode page
#region Mode Page 0x02: Disconnect-reconnect page
///
/// Disconnect-reconnect page
/// Page code 0x02
/// 16 bytes in SCSI-2, SPC-1, SPC-2, SPC-3, SPC-4, SPC-5
///
public struct ModePage_02
{
///
/// Parameters can be saved
///
public bool PS;
///
/// How full should be the buffer prior to attempting a reselection
///
public byte BufferFullRatio;
///
/// How empty should be the buffer prior to attempting a reselection
///
public byte BufferEmptyRatio;
///
/// Max. time in 100 µs increments that the target is permitted to assert BSY without a REQ/ACK
///
public ushort BusInactivityLimit;
///
/// Min. time in 100 µs increments to wait after releasing the bus before attempting reselection
///
public ushort DisconnectTimeLimit;
///
/// Max. time in 100 µs increments allowed to use the bus before disconnecting, if granted the privilege and not restricted by
///
public ushort ConnectTimeLimit;
///
/// Maximum amount of data before disconnecting in 512 bytes increments
///
public ushort MaxBurstSize;
///
/// Data transfer disconnect control
///
public byte DTDC;
///
/// Target shall not transfer data for a command during the same interconnect tenancy
///
public bool DIMM;
///
/// Wether to use fair or unfair arbitration when requesting an interconnect tenancy
///
public byte FairArbitration;
///
/// Max. ammount of data in 512 bytes increments that may be transferred for a command along with the command
///
public ushort FirstBurstSize;
///
/// Target is allowed to re-order the data transfer
///
public bool EMDP;
}
public static ModePage_02? DecodeModePage_02(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x02)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 16)
return null;
ModePage_02 decoded = new ModePage_02();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.BufferFullRatio = pageResponse[2];
decoded.BufferEmptyRatio = pageResponse[3];
decoded.BusInactivityLimit = (ushort)((pageResponse[4] << 8) + pageResponse[5]);
decoded.DisconnectTimeLimit = (ushort)((pageResponse[6] << 8) + pageResponse[7]);
decoded.ConnectTimeLimit = (ushort)((pageResponse[8] << 8) + pageResponse[9]);
decoded.MaxBurstSize = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
decoded.FirstBurstSize = (ushort)((pageResponse[14] << 8) + pageResponse[15]);
decoded.EMDP |= (pageResponse[12] & 0x80) == 0x80;
decoded.DIMM |= (pageResponse[12] & 0x08) == 0x08;
decoded.FairArbitration = (byte)((pageResponse[12] & 0x70) >> 4);
decoded.DTDC = (byte)(pageResponse[12] & 0x07);
return decoded;
}
public static string PrettifyModePage_02(byte[] pageResponse)
{
return PrettifyModePage_02(DecodeModePage_02(pageResponse));
}
public static string PrettifyModePage_02(ModePage_02? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_02 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Disconnect-Reconnect mode page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.BufferFullRatio > 0)
sb.AppendFormat("\t{0} ratio of buffer that shall be full prior to attempting a reselection", page.BufferFullRatio).AppendLine();
if (page.BufferEmptyRatio > 0)
sb.AppendFormat("\t{0} ratio of buffer that shall be empty prior to attempting a reselection", page.BufferEmptyRatio).AppendLine();
if (page.BusInactivityLimit > 0)
sb.AppendFormat("\t{0} µs maximum permitted to assert BSY without a REQ/ACK handshake", (int)page.BusInactivityLimit * 100).AppendLine();
if (page.DisconnectTimeLimit > 0)
sb.AppendFormat("\t{0} µs maximum permitted wait after releasing the bus before attempting reselection", (int)page.DisconnectTimeLimit * 100).AppendLine();
if (page.ConnectTimeLimit > 0)
sb.AppendFormat("\t{0} µs allowed to use the bus before disconnecting, if granted the privilege and not restricted", (int)page.ConnectTimeLimit * 100).AppendLine();
if (page.MaxBurstSize > 0)
sb.AppendFormat("\t{0} bytes maximum can be transferred before disconnecting", (int)page.MaxBurstSize * 512).AppendLine();
if (page.FirstBurstSize > 0)
sb.AppendFormat("\t{0} bytes maximum can be transferred for a command along with the disconnect command", (int)page.FirstBurstSize * 512).AppendLine();
if (page.DIMM)
sb.AppendLine("\tTarget shall not transfer data for a command during the same interconnect tenancy");
if (page.EMDP)
sb.AppendLine("\tTarget is allowed to re-order the data transfer");
switch (page.DTDC)
{
case 0:
sb.AppendLine("\tData transfer disconnect control is not used");
break;
case 1:
sb.AppendLine("\tAll data for a command shall be transferred within a single interconnect tenancy");
break;
case 3:
sb.AppendLine("\tAll data and the response for a command shall be transferred within a single interconnect tenancy");
break;
default:
sb.AppendFormat("\tReserved data transfer disconnect control value {0}", page.DTDC).AppendLine();
break;
}
return sb.ToString();
}
#endregion Mode Page 0x02: Disconnect-reconnect page
#region Mode Page 0x08: Caching page
///
/// Disconnect-reconnect page
/// Page code 0x08
/// 12 bytes in SCSI-2
/// 20 bytes in SBC-1, SBC-2, SBC-3
///
public struct ModePage_08
{
///
/// Parameters can be saved
///
public bool PS;
///
/// true if write cache is enabled
///
public bool WCE;
///
/// Multiplication factor
///
public bool MF;
///
/// true if read cache is enabled
///
public bool RCD;
///
/// Advices on reading-cache retention priority
///
public byte DemandReadRetentionPrio;
///
/// Advices on writing-cache retention priority
///
public byte WriteRetentionPriority;
///
/// If requested read blocks are more than this, no pre-fetch is done
///
public ushort DisablePreFetch;
///
/// Minimum pre-fetch
///
public ushort MinimumPreFetch;
///
/// Maximum pre-fetch
///
public ushort MaximumPreFetch;
///
/// Upper limit on maximum pre-fetch value
///
public ushort MaximumPreFetchCeiling;
///
/// Manual cache controlling
///
public bool IC;
///
/// Abort pre-fetch
///
public bool ABPF;
///
/// Caching analysis permitted
///
public bool CAP;
///
/// Pre-fetch over discontinuities
///
public bool Disc;
///
/// is to be used to control caching segmentation
///
public bool Size;
///
/// Force sequential write
///
public bool FSW;
///
/// Logical block cache segment size
///
public bool LBCSS;
///
/// Disable read-ahead
///
public bool DRA;
///
/// How many segments should the cache be divided upon
///
public byte CacheSegments;
///
/// How many bytes should the cache be divided upon
///
public ushort CacheSegmentSize;
///
/// How many bytes should be used as a buffer when all other cached data cannot be evicted
///
public uint NonCacheSegmentSize;
public bool NV_DIS;
}
public static ModePage_08? DecodeModePage_08(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x08)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 12)
return null;
ModePage_08 decoded = new ModePage_08();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.WCE |= (pageResponse[2] & 0x04) == 0x04;
decoded.MF |= (pageResponse[2] & 0x02) == 0x02;
decoded.RCD |= (pageResponse[2] & 0x01) == 0x01;
decoded.DemandReadRetentionPrio = (byte)((pageResponse[3] & 0xF0) >> 4);
decoded.WriteRetentionPriority = (byte)(pageResponse[3] & 0x0F);
decoded.DisablePreFetch = (ushort)((pageResponse[4] << 8) + pageResponse[5]);
decoded.MinimumPreFetch = (ushort)((pageResponse[6] << 8) + pageResponse[7]);
decoded.MaximumPreFetch = (ushort)((pageResponse[8] << 8) + pageResponse[9]);
decoded.MaximumPreFetchCeiling = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
if (pageResponse.Length < 20)
return decoded;
decoded.IC |= (pageResponse[2] & 0x80) == 0x80;
decoded.ABPF |= (pageResponse[2] & 0x40) == 0x40;
decoded.CAP |= (pageResponse[2] & 0x20) == 0x20;
decoded.Disc |= (pageResponse[2] & 0x10) == 0x10;
decoded.Size |= (pageResponse[2] & 0x08) == 0x08;
decoded.FSW |= (pageResponse[12] & 0x80) == 0x80;
decoded.LBCSS |= (pageResponse[12] & 0x40) == 0x40;
decoded.DRA |= (pageResponse[12] & 0x20) == 0x20;
decoded.CacheSegments = pageResponse[13];
decoded.CacheSegmentSize = (ushort)((pageResponse[14] << 8) + pageResponse[15]);
decoded.NonCacheSegmentSize = (uint)((pageResponse[17] << 16) + (pageResponse[18] << 8) + pageResponse[19]);
decoded.NV_DIS |= (pageResponse[12] & 0x01) == 0x01;
return decoded;
}
public static string PrettifyModePage_08(byte[] pageResponse)
{
return PrettifyModePage_08(DecodeModePage_08(pageResponse));
}
public static string PrettifyModePage_08(ModePage_08? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_08 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Caching mode page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.RCD)
sb.AppendLine("\tRead-cache is enabled");
if (page.WCE)
sb.AppendLine("\tWrite-cache is enabled");
switch (page.DemandReadRetentionPrio)
{
case 0:
sb.AppendLine("\tDrive does not distinguish between cached read data");
break;
case 1:
sb.AppendLine("\tData put by READ commands should be evicted from cache sooner than data put in read cache by other means");
break;
case 0xF:
sb.AppendLine("\tData put by READ commands should not be evicted if there is data cached by other means that can be evicted");
break;
default:
sb.AppendFormat("\tUnknown demand read retention priority value {0}", page.DemandReadRetentionPrio).AppendLine();
break;
}
switch (page.WriteRetentionPriority)
{
case 0:
sb.AppendLine("\tDrive does not distinguish between cached write data");
break;
case 1:
sb.AppendLine("\tData put by WRITE commands should be evicted from cache sooner than data put in write cache by other means");
break;
case 0xF:
sb.AppendLine("\tData put by WRITE commands should not be evicted if there is data cached by other means that can be evicted");
break;
default:
sb.AppendFormat("\tUnknown demand write retention priority value {0}", page.DemandReadRetentionPrio).AppendLine();
break;
}
if (page.DRA)
sb.AppendLine("\tRead-ahead is disabled");
else
{
if (page.MF)
sb.AppendLine("\tPre-fetch values indicate a block multiplier");
if (page.DisablePreFetch == 0)
sb.AppendLine("\tNo pre-fetch will be done");
else
{
sb.AppendFormat("\tPre-fetch will be done for READ commands of {0} blocks or less", page.DisablePreFetch).AppendLine();
if (page.MinimumPreFetch > 0)
sb.AppendFormat("At least {0} blocks will be always pre-fetched", page.MinimumPreFetch).AppendLine();
if (page.MaximumPreFetch > 0)
sb.AppendFormat("\tA maximum of {0} blocks will be pre-fetched", page.MaximumPreFetch).AppendLine();
if (page.MaximumPreFetchCeiling > 0)
sb.AppendFormat("\tA maximum of {0} blocks will be pre-fetched even if it is commanded to pre-fetch more", page.MaximumPreFetchCeiling).AppendLine();
if (page.IC)
sb.AppendLine("\tDevice should use number of cache segments or cache segment size for caching");
if (page.ABPF)
sb.AppendLine("\tPre-fetch should be aborted upong receiving a new command");
if (page.CAP)
sb.AppendLine("\tCaching analysis is permitted");
if (page.Disc)
sb.AppendLine("\tPre-fetch can continue across discontinuities (such as cylinders or tracks)");
}
}
if (page.FSW)
sb.AppendLine("\tDrive should not reorder the sequence of write commands to be faster");
if (page.Size)
{
if (page.CacheSegmentSize > 0)
{
if (page.LBCSS)
sb.AppendFormat("\tDrive cache segments should be {0} blocks long", page.CacheSegmentSize).AppendLine();
else
sb.AppendFormat("\tDrive cache segments should be {0} bytes long", page.CacheSegmentSize).AppendLine();
}
}
else
{
if (page.CacheSegments > 0)
sb.AppendFormat("\tDrive should have {0} cache segments", page.CacheSegments).AppendLine();
}
if (page.NonCacheSegmentSize > 0)
sb.AppendFormat("\tDrive shall allocate {0} bytes to buffer even when all cached data cannot be evicted", page.NonCacheSegmentSize).AppendLine();
if (page.NV_DIS)
sb.AppendLine("\tNon-Volatile cache is disabled");
return sb.ToString();
}
#endregion Mode Page 0x08: Caching page
#region Mode Page 0x05: Flexible disk page
///
/// Disconnect-reconnect page
/// Page code 0x05
/// 32 bytes in SCSI-2, SBC-1
///
public struct ModePage_05
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Data rate of peripheral device on kbit/s
///
public ushort TransferRate;
///
/// Heads for reading and/or writing
///
public byte Heads;
///
/// Sectors per revolution per head
///
public byte SectorsPerTrack;
///
/// Bytes of data per sector
///
public ushort BytesPerSector;
///
/// Cylinders used for data storage
///
public ushort Cylinders;
///
/// Cylinder where write precompensation starts
///
public ushort WritePrecompCylinder;
///
/// Cylinder where write current reduction starts
///
public ushort WriteReduceCylinder;
///
/// Step rate in 100 μs units
///
public ushort DriveStepRate;
///
/// Width of step pulse in μs
///
public byte DriveStepPulse;
///
/// Head settle time in 100 μs units
///
public ushort HeadSettleDelay;
///
/// If is true, specified in 1/10s of a
/// second the time waiting for read status before aborting medium
/// access. Otherwise, indicates time to way before medimum access
/// after motor on signal is asserted.
///
public byte MotorOnDelay;
///
/// Time in 1/10s of a second to wait before releasing the motor on
/// signal after an idle condition. 0xFF means to never release the
/// signal
///
public byte MotorOffDelay;
///
/// Specifies if a signal indicates that the medium is ready to be accessed
///
public bool TRDY;
///
/// If true sectors start with one. Otherwise, they start with zero.
///
public bool SSN;
///
/// If true specifies that motor on shall remain released.
///
public bool MO;
///
/// Number of additional step pulses per cylinder.
///
public byte SPC;
///
/// Write compensation value
///
public byte WriteCompensation;
///
/// Head loading time in ms.
///
public byte HeadLoadDelay;
///
/// Head unloading time in ms.
///
public byte HeadUnloadDelay;
///
/// Description of shugart's bus pin 34 usage
///
public byte Pin34;
///
/// Description of shugart's bus pin 2 usage
///
public byte Pin2;
///
/// Description of shugart's bus pin 4 usage
///
public byte Pin4;
///
/// Description of shugart's bus pin 1 usage
///
public byte Pin1;
///
/// Medium speed in rpm
///
public ushort MediumRotationRate;
}
public static ModePage_05? DecodeModePage_05(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x05)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 32)
return null;
ModePage_05 decoded = new ModePage_05();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.TransferRate = (ushort)((pageResponse[2] << 8) + pageResponse[3]);
decoded.Heads = pageResponse[4];
decoded.SectorsPerTrack = pageResponse[5];
decoded.BytesPerSector = (ushort)((pageResponse[6] << 8) + pageResponse[7]);
decoded.Cylinders = (ushort)((pageResponse[8] << 8) + pageResponse[9]);
decoded.WritePrecompCylinder = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
decoded.WriteReduceCylinder = (ushort)((pageResponse[12] << 8) + pageResponse[13]);
decoded.DriveStepRate = (ushort)((pageResponse[14] << 8) + pageResponse[15]);
decoded.DriveStepPulse = pageResponse[16];
decoded.HeadSettleDelay = (ushort)((pageResponse[17] << 8) + pageResponse[18]);
decoded.MotorOnDelay = pageResponse[19];
decoded.MotorOffDelay = pageResponse[20];
decoded.TRDY |= (pageResponse[21] & 0x80) == 0x80;
decoded.SSN |= (pageResponse[21] & 0x40) == 0x40;
decoded.MO |= (pageResponse[21] & 0x20) == 0x20;
decoded.SPC = (byte)(pageResponse[22] & 0x0F);
decoded.WriteCompensation = pageResponse[23];
decoded.HeadLoadDelay = pageResponse[24];
decoded.HeadUnloadDelay = pageResponse[25];
decoded.Pin34 = (byte)((pageResponse[26] & 0xF0) >> 4);
decoded.Pin2 = (byte)(pageResponse[26] & 0x0F);
decoded.Pin4 = (byte)((pageResponse[27] & 0xF0) >> 4);
decoded.Pin1 = (byte)(pageResponse[27] & 0x0F);
decoded.MediumRotationRate = (ushort)((pageResponse[28] << 8) + pageResponse[29]);
return decoded;
}
public static string PrettifyModePage_05(byte[] pageResponse)
{
return PrettifyModePage_05(DecodeModePage_05(pageResponse));
}
public static string PrettifyModePage_05(ModePage_05? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_05 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Flexible disk page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
sb.AppendFormat("\tTransfer rate: {0} kbit/s", page.TransferRate).AppendLine();
sb.AppendFormat("\t{0} heads", page.Heads).AppendLine();
sb.AppendFormat("\t{0} cylinders", page.Cylinders).AppendLine();
sb.AppendFormat("\t{0} sectors per track", page.SectorsPerTrack).AppendLine();
sb.AppendFormat("\t{0} bytes per sector", page.BytesPerSector).AppendLine();
if (page.WritePrecompCylinder < page.Cylinders)
sb.AppendFormat("\tWrite pre-compensation starts at cylinder {0}", page.WritePrecompCylinder).AppendLine();
if (page.WriteReduceCylinder < page.Cylinders)
sb.AppendFormat("\tWrite current reduction starts at cylinder {0}", page.WriteReduceCylinder).AppendLine();
if (page.DriveStepRate > 0)
sb.AppendFormat("\tDrive steps in {0} μs", (uint)page.DriveStepRate * 100).AppendLine();
if (page.DriveStepPulse > 0)
sb.AppendFormat("\tEach step pulse is {0} ms", page.DriveStepPulse).AppendLine();
if (page.HeadSettleDelay > 0)
sb.AppendFormat("\tHeads settles in {0} μs", (uint)page.HeadSettleDelay * 100).AppendLine();
if (!page.TRDY)
sb.AppendFormat("\tTarget shall wait {0} seconds before attempting to access the medium after motor on is asserted",
(double)page.MotorOnDelay * 10).AppendLine();
else
sb.AppendFormat("\tTarget shall wait {0} seconds after drive is ready before aborting medium access attemps",
(double)page.MotorOnDelay * 10).AppendLine();
if (page.MotorOffDelay != 0xFF)
sb.AppendFormat("\tTarget shall wait {0} seconds before releasing the motor on signal after becoming idle",
(double)page.MotorOffDelay * 10).AppendLine();
else
sb.AppendLine("\tTarget shall never release the motor on signal");
if (page.TRDY)
sb.AppendLine("\tThere is a drive ready signal");
if (page.SSN)
sb.AppendLine("\tSectors start at 1");
if (page.MO)
sb.AppendLine("\tThe motor on signal shall remain released");
sb.AppendFormat("\tDrive needs to do {0} step pulses per cylinder", page.SPC + 1).AppendLine();
if (page.WriteCompensation > 0)
sb.AppendFormat("\tWrite pre-compensation is {0}", page.WriteCompensation).AppendLine();
if (page.HeadLoadDelay > 0)
sb.AppendFormat("\tHead takes {0} ms to load", page.HeadLoadDelay).AppendLine();
if (page.HeadUnloadDelay > 0)
sb.AppendFormat("\tHead takes {0} ms to unload", page.HeadUnloadDelay).AppendLine();
if (page.MediumRotationRate > 0)
sb.AppendFormat("\tMedium rotates at {0} rpm", page.MediumRotationRate).AppendLine();
switch (page.Pin34 & 0x07)
{
case 0:
sb.AppendLine("\tPin 34 is unconnected");
break;
case 1:
sb.Append("\tPin 34 indicates drive is ready when active ");
if ((page.Pin34 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
case 2:
sb.Append("\tPin 34 indicates disk has changed when active ");
if ((page.Pin34 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
default:
sb.AppendFormat("\tPin 34 indicates unknown function {0} when active ", page.Pin34 & 0x07);
if ((page.Pin34 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
}
switch (page.Pin4 & 0x07)
{
case 0:
sb.AppendLine("\tPin 4 is unconnected");
break;
case 1:
sb.Append("\tPin 4 indicates drive is in use when active ");
if ((page.Pin4 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
case 2:
sb.Append("\tPin 4 indicates eject when active ");
if ((page.Pin4 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
case 3:
sb.Append("\tPin 4 indicates head load when active ");
if ((page.Pin4 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
default:
sb.AppendFormat("\tPin 4 indicates unknown function {0} when active ", page.Pin4 & 0x07);
if ((page.Pin4 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
}
switch (page.Pin2 & 0x07)
{
case 0:
sb.AppendLine("\tPin 2 is unconnected");
break;
default:
sb.AppendFormat("\tPin 2 indicates unknown function {0} when active ", page.Pin2 & 0x07);
if ((page.Pin2 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
}
switch (page.Pin1 & 0x07)
{
case 0:
sb.AppendLine("\tPin 1 is unconnected");
break;
case 1:
sb.Append("\tPin 1 indicates disk change reset when active ");
if ((page.Pin1 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
default:
sb.AppendFormat("\tPin 1 indicates unknown function {0} when active ", page.Pin1 & 0x07);
if ((page.Pin1 & 0x08) == 0x08)
sb.Append("high");
else
sb.Append("low");
break;
}
return sb.ToString();
}
#endregion Mode Page 0x05: Flexible disk page
#region Mode Page 0x03: Format device page
///
/// Disconnect-reconnect page
/// Page code 0x03
/// 24 bytes in SCSI-2, SBC-1
///
public struct ModePage_03
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Tracks per zone to use in dividing the capacity for the purpose of allocating alternate sectors
///
public ushort TracksPerZone;
///
/// Number of sectors per zone that shall be reserved for defect handling
///
public ushort AltSectorsPerZone;
///
/// Number of tracks per zone that shall be reserved for defect handling
///
public ushort AltTracksPerZone;
///
/// Number of tracks per LUN that shall be reserved for defect handling
///
public ushort AltTracksPerLun;
///
/// Number of physical sectors per track
///
public ushort SectorsPerTrack;
///
/// Bytes per physical sector
///
public ushort BytesPerSector;
///
/// Interleave value, target dependent
///
public ushort Interleave;
///
/// Sectors between last block of one track and first block of the next
///
public ushort TrackSkew;
///
/// Sectors between last block of a cylinder and first block of the next one
///
public ushort CylinderSkew;
///
/// Soft-sectored
///
public bool SSEC;
///
/// Hard-sectored
///
public bool HSEC;
///
/// Removable
///
public bool RMB;
///
/// If set, address are allocated progressively in a surface before going to the next.
/// Otherwise, it goes by cylinders
///
public bool SURF;
}
public static ModePage_03? DecodeModePage_03(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x03)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 24)
return null;
ModePage_03 decoded = new ModePage_03();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.TracksPerZone = (ushort)((pageResponse[2] << 8) + pageResponse[3]);
decoded.AltSectorsPerZone = (ushort)((pageResponse[4] << 8) + pageResponse[5]);
decoded.AltTracksPerZone = (ushort)((pageResponse[6] << 8) + pageResponse[7]);
decoded.AltTracksPerLun = (ushort)((pageResponse[8] << 8) + pageResponse[9]);
decoded.SectorsPerTrack = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
decoded.BytesPerSector = (ushort)((pageResponse[12] << 8) + pageResponse[13]);
decoded.Interleave = (ushort)((pageResponse[14] << 8) + pageResponse[15]);
decoded.TrackSkew = (ushort)((pageResponse[16] << 8) + pageResponse[17]);
decoded.CylinderSkew = (ushort)((pageResponse[18] << 8) + pageResponse[19]);
decoded.SSEC |= (pageResponse[20] & 0x80) == 0x80;
decoded.HSEC |= (pageResponse[20] & 0x40) == 0x40;
decoded.RMB |= (pageResponse[20] & 0x20) == 0x20;
decoded.SURF |= (pageResponse[20] & 0x10) == 0x10;
return decoded;
}
public static string PrettifyModePage_03(byte[] pageResponse)
{
return PrettifyModePage_03(DecodeModePage_03(pageResponse));
}
public static string PrettifyModePage_03(ModePage_03? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_03 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Format device page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
sb.AppendFormat("\t{0} tracks per zone to use in dividing the capacity for the purpose of allocating alternate sectors", page.TracksPerZone).AppendLine();
sb.AppendFormat("\t{0} sectors per zone that shall be reserved for defect handling", page.AltSectorsPerZone).AppendLine();
sb.AppendFormat("\t{0} tracks per zone that shall be reserved for defect handling", page.AltTracksPerZone).AppendLine();
sb.AppendFormat("\t{0} tracks per LUN that shall be reserved for defect handling", page.AltTracksPerLun).AppendLine();
sb.AppendFormat("\t{0} physical sectors per track", page.SectorsPerTrack).AppendLine();
sb.AppendFormat("\t{0} Bytes per physical sector", page.BytesPerSector).AppendLine();
sb.AppendFormat("\tTarget-dependent interleave value is {0}", page.Interleave).AppendLine();
sb.AppendFormat("\t{0} sectors between last block of one track and first block of the next", page.TrackSkew).AppendLine();
sb.AppendFormat("\t{0} sectors between last block of a cylinder and first block of the next one", page.CylinderSkew).AppendLine();
if (page.SSEC)
sb.AppendLine("\tDrive supports soft-sectoring format");
if (page.HSEC)
sb.AppendLine("\tDrive supports hard-sectoring format");
if (page.RMB)
sb.AppendLine("\tDrive media is removable");
if (page.SURF)
sb.AppendLine("\tSector addressing is progressively incremented in one surface before going to the next");
else
sb.AppendLine("\tSector addressing is progressively incremented in one cylinder before going to the next");
return sb.ToString();
}
#endregion Mode Page 0x03: Format device page
#region Mode Page 0x0B: Medium types supported page
///
/// Disconnect-reconnect page
/// Page code 0x0B
/// 8 bytes in SCSI-2
///
public struct ModePage_0B
{
///
/// Parameters can be saved
///
public bool PS;
public byte MediumType1;
public byte MediumType2;
public byte MediumType3;
public byte MediumType4;
}
public static ModePage_0B? DecodeModePage_0B(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x0B)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 8)
return null;
ModePage_0B decoded = new ModePage_0B();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.MediumType1 = pageResponse[4];
decoded.MediumType2 = pageResponse[5];
decoded.MediumType3 = pageResponse[6];
decoded.MediumType4 = pageResponse[7];
return decoded;
}
public static string PrettifyModePage_0B(byte[] pageResponse)
{
return PrettifyModePage_0B(DecodeModePage_0B(pageResponse));
}
public static string PrettifyModePage_0B(ModePage_0B? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_0B page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Medium types supported page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
// TODO: Implement it when all known medium types are supported
sb.AppendLine("Not yet implemented");
return sb.ToString();
}
#endregion Mode Page 0x0B: Medium types supported page
#region Mode Page 0x0C: Notch page
// TODO: Implement this page
#endregion Mode Page 0x0C: Notch page
#region Mode Page 0x01: Read-write error recovery page
///
/// Disconnect-reconnect page
/// Page code 0x01
/// 12 bytes in SCSI-2, SBC-1, SBC-2
///
public struct ModePage_01
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Automatic Write Reallocation Enabled
///
public bool AWRE;
///
/// Automatic Read Reallocation Enabled
///
public bool ARRE;
///
/// Transfer block
///
public bool TB;
///
/// Read continuous
///
public bool RC;
///
/// Enable early recovery
///
public bool EER;
///
/// Post error reporting
///
public bool PER;
///
/// Disable transfer on error
///
public bool DTE;
///
/// Disable correction
///
public bool DCR;
///
/// How many times to retry a read operation
///
public byte ReadRetryCount;
///
/// How many bits of largest data burst error is maximum to apply error correction on it
///
public byte CorrectionSpan;
///
/// Offset to move the heads
///
public sbyte HeadOffsetCount;
///
/// Incremental position to which the recovered data strobe shall be adjusted
///
public sbyte DataStrobeOffsetCount;
///
/// How many times to retry a write operation
///
public byte WriteRetryCount;
///
/// Maximum time in ms to use in data error recovery procedures
///
public ushort RecoveryTimeLimit;
///
/// Logical block provisioning error reporting is enabled
///
public bool LBPERE;
}
public static ModePage_01? DecodeModePage_01(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x01)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 8)
return null;
ModePage_01 decoded = new ModePage_01();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.AWRE |= (pageResponse[2] & 0x80) == 0x80;
decoded.ARRE |= (pageResponse[2] & 0x40) == 0x40;
decoded.TB |= (pageResponse[2] & 0x20) == 0x20;
decoded.RC |= (pageResponse[2] & 0x10) == 0x10;
decoded.EER |= (pageResponse[2] & 0x08) == 0x08;
decoded.PER |= (pageResponse[2] & 0x04) == 0x04;
decoded.DTE |= (pageResponse[2] & 0x02) == 0x02;
decoded.DCR |= (pageResponse[2] & 0x01) == 0x01;
decoded.ReadRetryCount = pageResponse[3];
decoded.CorrectionSpan = pageResponse[4];
decoded.HeadOffsetCount = (sbyte)pageResponse[5];
decoded.DataStrobeOffsetCount = (sbyte)pageResponse[6];
if (pageResponse.Length < 12)
return decoded;
decoded.WriteRetryCount = pageResponse[8];
decoded.RecoveryTimeLimit = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
decoded.LBPERE |= (pageResponse[7] & 0x80) == 0x80;
return decoded;
}
public static string PrettifyModePage_01(byte[] pageResponse)
{
return PrettifyModePage_01(DecodeModePage_01(pageResponse));
}
public static string PrettifyModePage_01(ModePage_01? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_01 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Read-write error recovery page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.AWRE)
sb.AppendLine("\tAutomatic write reallocation is enabled");
if (page.ARRE)
sb.AppendLine("\tAutomatic read reallocation is enabled");
if (page.TB)
sb.AppendLine("\tData not recovered within limits shall be transferred back before a CHECK CONDITION");
if (page.RC)
sb.AppendLine("\tDrive will transfer the entire requested length without delaying to perform error recovery");
if (page.EER)
sb.AppendLine("\tDrive will use the most expedient form of error recovery first");
if (page.PER)
sb.AppendLine("\tDrive shall report recovered errors");
if (page.DTE)
sb.AppendLine("\tTransfer will be terminated upon error detection");
if (page.DCR)
sb.AppendLine("\tError correction is disabled");
if (page.ReadRetryCount > 0)
sb.AppendFormat("\tDrive will repeat read operations {0} times", page.ReadRetryCount).AppendLine();
if (page.WriteRetryCount > 0)
sb.AppendFormat("\tDrive will repeat write operations {0} times", page.WriteRetryCount).AppendLine();
if (page.RecoveryTimeLimit > 0)
sb.AppendFormat("\tDrive will employ a maximum of {0} ms to recover data", page.RecoveryTimeLimit).AppendLine();
if (page.LBPERE)
sb.AppendLine("Logical block provisioning error reporting is enabled");
return sb.ToString();
}
#endregion Mode Page 0x01: Read-write error recovery page
#region Mode Page 0x04: Rigid disk drive geometry page
///
/// Disconnect-reconnect page
/// Page code 0x04
/// 24 bytes in SCSI-2, SBC-1
///
public struct ModePage_04
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Cylinders used for data storage
///
public uint Cylinders;
///
/// Heads for reading and/or writing
///
public byte Heads;
///
/// Cylinder where write precompensation starts
///
public uint WritePrecompCylinder;
///
/// Cylinder where write current reduction starts
///
public uint WriteReduceCylinder;
///
/// Step rate in 100 ns units
///
public ushort DriveStepRate;
///
/// Cylinder where the heads park
///
public int LandingCylinder;
///
/// Rotational position locking
///
public byte RPL;
///
/// Rotational skew to apply when synchronized
///
public byte RotationalOffset;
///
/// Medium speed in rpm
///
public ushort MediumRotationRate;
}
public static ModePage_04? DecodeModePage_04(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x04)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 24)
return null;
ModePage_04 decoded = new ModePage_04();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.Cylinders = (uint)((pageResponse[2] << 16) + (pageResponse[3] << 8) + pageResponse[4]);
decoded.Heads = pageResponse[5];
decoded.WritePrecompCylinder = (uint)((pageResponse[6] << 16) + (pageResponse[7] << 8) + pageResponse[8]);
decoded.WriteReduceCylinder = (uint)((pageResponse[9] << 16) + (pageResponse[10] << 8) + pageResponse[11]);
decoded.DriveStepRate = (ushort)((pageResponse[12] << 8) + pageResponse[13]);
decoded.LandingCylinder = ((pageResponse[14] << 16) + (pageResponse[15] << 8) + pageResponse[16]);
decoded.RPL = (byte)(pageResponse[17] & 0x03);
decoded.RotationalOffset = pageResponse[18];
decoded.MediumRotationRate = (ushort)((pageResponse[20] << 8) + pageResponse[21]);
return decoded;
}
public static string PrettifyModePage_04(byte[] pageResponse)
{
return PrettifyModePage_04(DecodeModePage_04(pageResponse));
}
public static string PrettifyModePage_04(ModePage_04? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_04 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Rigid disk drive geometry page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
sb.AppendFormat("\t{0} heads", page.Heads).AppendLine();
sb.AppendFormat("\t{0} cylinders", page.Cylinders).AppendLine();
if (page.WritePrecompCylinder < page.Cylinders)
sb.AppendFormat("\tWrite pre-compensation starts at cylinder {0}", page.WritePrecompCylinder).AppendLine();
if (page.WriteReduceCylinder < page.Cylinders)
sb.AppendFormat("\tWrite current reduction starts at cylinder {0}", page.WriteReduceCylinder).AppendLine();
if (page.DriveStepRate > 0)
sb.AppendFormat("\tDrive steps in {0} ns", (uint)page.DriveStepRate * 100).AppendLine();
sb.AppendFormat("\tHeads park in cylinder {0}", page.LandingCylinder).AppendLine();
if (page.MediumRotationRate > 0)
sb.AppendFormat("\tMedium rotates at {0} rpm", page.MediumRotationRate).AppendLine();
switch (page.RPL)
{
case 0:
sb.AppendLine("\tSpindle synchronization is disable or unsupported");
break;
case 1:
sb.AppendLine("\tTarget operates as a synchronized-spindle slave");
break;
case 2:
sb.AppendLine("\tTarget operates as a synchronized-spindle master");
break;
case 3:
sb.AppendLine("\tTarget operates as a synchronized-spindle master control");
break;
}
return sb.ToString();
}
#endregion Mode Page 0x04: Rigid disk drive geometry page
#region Mode Page 0x07: Verify error recovery page
///
/// Disconnect-reconnect page
/// Page code 0x07
/// 12 bytes in SCSI-2, SBC-1, SBC-2
///
public struct ModePage_07
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Enable early recovery
///
public bool EER;
///
/// Post error reporting
///
public bool PER;
///
/// Disable transfer on error
///
public bool DTE;
///
/// Disable correction
///
public bool DCR;
///
/// How many times to retry a verify operation
///
public byte VerifyRetryCount;
///
/// How many bits of largest data burst error is maximum to apply error correction on it
///
public byte CorrectionSpan;
///
/// Maximum time in ms to use in data error recovery procedures
///
public ushort RecoveryTimeLimit;
}
public static ModePage_07? DecodeModePage_07(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x07)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 12)
return null;
ModePage_07 decoded = new ModePage_07();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.EER |= (pageResponse[2] & 0x08) == 0x08;
decoded.PER |= (pageResponse[2] & 0x04) == 0x04;
decoded.DTE |= (pageResponse[2] & 0x02) == 0x02;
decoded.DCR |= (pageResponse[2] & 0x01) == 0x01;
decoded.VerifyRetryCount = pageResponse[3];
decoded.CorrectionSpan = pageResponse[4];
decoded.RecoveryTimeLimit = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
return decoded;
}
public static string PrettifyModePage_07(byte[] pageResponse)
{
return PrettifyModePage_07(DecodeModePage_07(pageResponse));
}
public static string PrettifyModePage_07(ModePage_07? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_07 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Verify error recovery page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.EER)
sb.AppendLine("\tDrive will use the most expedient form of error recovery first");
if (page.PER)
sb.AppendLine("\tDrive shall report recovered errors");
if (page.DTE)
sb.AppendLine("\tTransfer will be terminated upon error detection");
if (page.DCR)
sb.AppendLine("\tError correction is disabled");
if (page.VerifyRetryCount > 0)
sb.AppendFormat("\tDrive will repeat verify operations {0} times", page.VerifyRetryCount).AppendLine();
if (page.RecoveryTimeLimit > 0)
sb.AppendFormat("\tDrive will employ a maximum of {0} ms to recover data", page.RecoveryTimeLimit).AppendLine();
return sb.ToString();
}
#endregion Mode Page 0x07: Verify error recovery page
#region Mode Page 0x10: Device configuration page
///
/// Device configuration page
/// Page code 0x10
/// 16 bytes in SCSI-2, SSC-1, SSC-2, SSC-3
///
public struct ModePage_10_SSC
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Used in mode select to change partition to one specified in
///
public bool CAP;
///
/// Used in mode select to change format to one specified in
///
public bool CAF;
///
/// Active format, vendor-specific
///
public byte ActiveFormat;
///
/// Current logical partition
///
public byte ActivePartition;
///
/// How full the buffer shall be before writing to medium
///
public byte WriteBufferFullRatio;
///
/// How empty the buffer shall be before reading more data from the medium
///
public byte ReadBufferEmptyRatio;
///
/// Delay in 100 ms before buffered data is forcefully written to the medium even before buffer is full
///
public ushort WriteDelayTime;
///
/// Drive supports recovering data from buffer
///
public bool DBR;
///
/// Medium has block IDs
///
public bool BIS;
///
/// Drive recognizes and reports setmarks
///
public bool RSmk;
///
/// Drive selects best speed
///
public bool AVC;
///
/// If drive should stop pre-reading on filemarks
///
public byte SOCF;
///
/// If set, recovered buffer data is LIFO, otherwise, FIFO
///
public bool RBO;
///
/// Report early warnings
///
public bool REW;
///
/// Inter-block gap
///
public byte GapSize;
///
/// End-of-Data format
///
public byte EODDefined;
///
/// EOD generation enabled
///
public bool EEG;
///
/// Synchronize data to medium on early warning
///
public bool SEW;
///
/// Bytes to reduce buffer size on early warning
///
public uint BufferSizeEarlyWarning;
///
/// Selected data compression algorithm
///
public byte SelectedCompression;
///
/// Soft write protect
///
public bool SWP;
///
/// Associated write protect
///
public bool ASOCWP;
///
/// Persistent write protect
///
public bool PERSWP;
///
/// Permanent write protect
///
public bool PRMWP;
public bool BAML;
public bool BAM;
public byte RewindOnReset;
///
/// How drive shall respond to detection of compromised WORM medium integrity
///
public byte WTRE;
///
/// Respond to commands only if a reservation exists
///
public bool OIR;
}
public static ModePage_10_SSC? DecodeModePage_10_SSC(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x10)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 16)
return null;
ModePage_10_SSC decoded = new ModePage_10_SSC();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.CAP |= (pageResponse[2] & 0x40) == 0x40;
decoded.CAF |= (pageResponse[2] & 0x20) == 0x20;
decoded.ActiveFormat = (byte)(pageResponse[2] & 0x1F);
decoded.ActivePartition = pageResponse[3];
decoded.WriteBufferFullRatio = pageResponse[4];
decoded.ReadBufferEmptyRatio = pageResponse[5];
decoded.WriteDelayTime = (ushort)((pageResponse[6] << 8) + pageResponse[7]);
decoded.DBR |= (pageResponse[8] & 0x80) == 0x80;
decoded.BIS |= (pageResponse[8] & 0x40) == 0x40;
decoded.RSmk |= (pageResponse[8] & 0x20) == 0x20;
decoded.AVC |= (pageResponse[8] & 0x10) == 0x10;
decoded.RBO |= (pageResponse[8] & 0x02) == 0x02;
decoded.REW |= (pageResponse[8] & 0x01) == 0x01;
decoded.EEG |= (pageResponse[10] & 0x10) == 0x10;
decoded.SEW |= (pageResponse[10] & 0x08) == 0x08;
decoded.SOCF = (byte)((pageResponse[8] & 0x0C) >> 2);
decoded.BufferSizeEarlyWarning = (uint)((pageResponse[11] << 16) + (pageResponse[12] << 8) + pageResponse[13]);
decoded.SelectedCompression = pageResponse[14];
decoded.SWP |= (pageResponse[10] & 0x04) == 0x04;
decoded.ASOCWP |= (pageResponse[15] & 0x04) == 0x04;
decoded.PERSWP |= (pageResponse[15] & 0x02) == 0x02;
decoded.PRMWP |= (pageResponse[15] & 0x01) == 0x01;
decoded.BAML |= (pageResponse[10] & 0x02) == 0x02;
decoded.BAM |= (pageResponse[10] & 0x01) == 0x01;
decoded.RewindOnReset = (byte)((pageResponse[15] & 0x18) >> 3);
decoded.OIR |= (pageResponse[15] & 0x20) == 0x20;
decoded.WTRE = (byte)((pageResponse[15] & 0xC0) >> 6);
return decoded;
}
public static string PrettifyModePage_10_SSC(byte[] pageResponse)
{
return PrettifyModePage_10_SSC(DecodeModePage_10_SSC(pageResponse));
}
public static string PrettifyModePage_10_SSC(ModePage_10_SSC? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_10_SSC page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Device configuration page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
sb.AppendFormat("\tActive format: {0}", page.ActiveFormat).AppendLine();
sb.AppendFormat("\tActive partition: {0}", page.ActivePartition).AppendLine();
sb.AppendFormat("\tWrite buffer shall have a full ratio of {0} before being flushed to medium", page.WriteBufferFullRatio).AppendLine();
sb.AppendFormat("\tRead buffer shall have an empty ratio of {0} before more data is read from medium", page.ReadBufferEmptyRatio).AppendLine();
sb.AppendFormat("\tDrive will delay {0} ms before buffered data is forcefully written to the medium even before buffer is full", (int)page.WriteDelayTime * 100).AppendLine();
if (page.DBR)
{
sb.AppendLine("\tDrive supports recovering data from buffer");
if (page.RBO)
sb.AppendLine("\tRecovered buffer data comes in LIFO order");
else
sb.AppendLine("\tRecovered buffer data comes in FIFO order");
}
if (page.BIS)
sb.AppendLine("\tMedium supports block IDs");
if (page.RSmk)
sb.AppendLine("\tDrive reports setmarks");
switch (page.SOCF)
{
case 0:
sb.AppendLine("\tDrive will pre-read until buffer is full");
break;
case 1:
sb.AppendLine("\tDrive will pre-read until one filemark is detected");
break;
case 2:
sb.AppendLine("\tDrive will pre-read until two filemark is detected");
break;
case 3:
sb.AppendLine("\tDrive will pre-read until three filemark is detected");
break;
}
if (page.REW)
{
sb.AppendLine("\tDrive reports early warnings");
if (page.SEW)
sb.AppendLine("\tDrive will synchronize buffer to medium on early warnings");
}
switch (page.GapSize)
{
case 0:
break;
case 1:
sb.AppendLine("\tInter-block gap is long enough to support update in place");
break;
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:
case 10:
case 11:
case 12:
case 13:
case 14:
case 15:
sb.AppendFormat("\tInter-block gap is {0} times the device's defined gap size", page.GapSize).AppendLine();
break;
default:
sb.AppendFormat("\tInter-block gap is unknown value {0}", page.GapSize).AppendLine();
break;
}
if (page.EEG)
sb.AppendLine("\tDrive generates end-of-data");
switch (page.SelectedCompression)
{
case 0:
sb.AppendLine("\tDrive does not use compression");
break;
case 1:
sb.AppendLine("\tDrive uses default compression");
break;
default:
sb.AppendFormat("\tDrive uses unknown compression {0}", page.SelectedCompression).AppendLine();
break;
}
if (page.SWP)
sb.AppendLine("\tSoftware write protect is enabled");
if (page.ASOCWP)
sb.AppendLine("\tAssociated write protect is enabled");
if (page.PERSWP)
sb.AppendLine("\tPersistent write protect is enabled");
if (page.PRMWP)
sb.AppendLine("\tPermanent write protect is enabled");
if (page.BAML)
{
if (page.BAM)
sb.AppendLine("\tDrive operates using explicit address mode");
else
sb.AppendLine("\tDrive operates using implicit address mode");
}
switch (page.RewindOnReset)
{
case 1:
sb.AppendLine("\tDrive shall position to beginning of default data partition on reset");
break;
case 2:
sb.AppendLine("\tDrive shall maintain its position on reset");
break;
}
switch (page.WTRE)
{
case 1:
sb.AppendLine("\tDrive will do nothing on WORM tampered medium");
break;
case 2:
sb.AppendLine("\tDrive will return CHECK CONDITION on WORM tampered medium");
break;
}
if (page.OIR)
sb.AppendLine("\tDrive will only respond to commands if it has received a reservation");
return sb.ToString();
}
#endregion Mode Page 0x10: Device configuration page
#region Mode Page 0x0E: CD-ROM audio control parameters page
///
/// CD-ROM audio control parameters
/// Page code 0x0E
/// 16 bytes in SCSI-2, MMC-1, MMC-2, MMC-3
///
public struct ModePage_0E
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Return status as soon as playback operation starts
///
public bool Immed;
///
/// Stop on track crossing
///
public bool SOTC;
///
/// Indicates is valid
///
public bool APRVal;
///
/// Multiplier for
///
public byte LBAFormat;
///
/// LBAs per second of audio
///
public ushort BlocksPerSecondOfAudio;
///
/// Channels output on this port
///
public byte OutputPort0ChannelSelection;
///
/// Volume level for this port
///
public byte OutputPort0Volume;
///
/// Channels output on this port
///
public byte OutputPort1ChannelSelection;
///
/// Volume level for this port
///
public byte OutputPort1Volume;
///
/// Channels output on this port
///
public byte OutputPort2ChannelSelection;
///
/// Volume level for this port
///
public byte OutputPort2Volume;
///
/// Channels output on this port
///
public byte OutputPort3ChannelSelection;
///
/// Volume level for this port
///
public byte OutputPort3Volume;
}
public static ModePage_0E? DecodeModePage_0E(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x0E)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 16)
return null;
ModePage_0E decoded = new ModePage_0E();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.Immed |= (pageResponse[2] & 0x04) == 0x04;
decoded.SOTC |= (pageResponse[2] & 0x02) == 0x02;
decoded.APRVal |= (pageResponse[5] & 0x80) == 0x80;
decoded.LBAFormat = (byte)(pageResponse[5] & 0x0F);
decoded.BlocksPerSecondOfAudio = (ushort)((pageResponse[6] << 8) + pageResponse[7]);
decoded.OutputPort0ChannelSelection = (byte)(pageResponse[8] & 0x0F);
decoded.OutputPort0Volume = pageResponse[9];
decoded.OutputPort1ChannelSelection = (byte)(pageResponse[10] & 0x0F);
decoded.OutputPort1Volume = pageResponse[11];
decoded.OutputPort2ChannelSelection = (byte)(pageResponse[12] & 0x0F);
decoded.OutputPort2Volume = pageResponse[13];
decoded.OutputPort3ChannelSelection = (byte)(pageResponse[14] & 0x0F);
decoded.OutputPort3Volume = pageResponse[15];
return decoded;
}
public static string PrettifyModePage_0E(byte[] pageResponse)
{
return PrettifyModePage_0E(DecodeModePage_0E(pageResponse));
}
public static string PrettifyModePage_0E(ModePage_0E? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_0E page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI CD-ROM audio control parameters page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.Immed)
sb.AppendLine("\tDrive will return from playback command immediately");
else
sb.AppendLine("\tDrive will return from playback command when playback ends");
if (page.SOTC)
sb.AppendLine("\tDrive will stop playback on track end");
if (page.APRVal)
{
double blocks;
if (page.LBAFormat == 8)
blocks = page.BlocksPerSecondOfAudio * (1 / 256);
else
blocks = page.BlocksPerSecondOfAudio;
sb.AppendFormat("\tThere are {0} blocks per each second of audio", blocks).AppendLine();
}
if (page.OutputPort0ChannelSelection > 0)
{
sb.Append("\tOutput port 0 has channels ");
if ((page.OutputPort0ChannelSelection & 0x01) == 0x01)
sb.Append("0 ");
if ((page.OutputPort0ChannelSelection & 0x02) == 0x02)
sb.Append("1 ");
if ((page.OutputPort0ChannelSelection & 0x04) == 0x04)
sb.Append("2 ");
if ((page.OutputPort0ChannelSelection & 0x08) == 0x08)
sb.Append("3 ");
switch (page.OutputPort0Volume)
{
case 0:
sb.AppendLine("muted");
break;
case 0xFF:
sb.AppendLine("at maximum volume");
break;
default:
sb.AppendFormat("at volume {0}", page.OutputPort0Volume).AppendLine();
break;
}
}
if (page.OutputPort1ChannelSelection > 0)
{
sb.Append("\tOutput port 1 has channels ");
if ((page.OutputPort1ChannelSelection & 0x01) == 0x01)
sb.Append("0 ");
if ((page.OutputPort1ChannelSelection & 0x02) == 0x02)
sb.Append("1 ");
if ((page.OutputPort1ChannelSelection & 0x04) == 0x04)
sb.Append("2 ");
if ((page.OutputPort1ChannelSelection & 0x08) == 0x08)
sb.Append("3 ");
switch (page.OutputPort1Volume)
{
case 0:
sb.AppendLine("muted");
break;
case 0xFF:
sb.AppendLine("at maximum volume");
break;
default:
sb.AppendFormat("at volume {0}", page.OutputPort1Volume).AppendLine();
break;
}
}
if (page.OutputPort2ChannelSelection > 0)
{
sb.Append("\tOutput port 2 has channels ");
if ((page.OutputPort2ChannelSelection & 0x01) == 0x01)
sb.Append("0 ");
if ((page.OutputPort2ChannelSelection & 0x02) == 0x02)
sb.Append("1 ");
if ((page.OutputPort2ChannelSelection & 0x04) == 0x04)
sb.Append("2 ");
if ((page.OutputPort2ChannelSelection & 0x08) == 0x08)
sb.Append("3 ");
switch (page.OutputPort2Volume)
{
case 0:
sb.AppendLine("muted");
break;
case 0xFF:
sb.AppendLine("at maximum volume");
break;
default:
sb.AppendFormat("at volume {0}", page.OutputPort2Volume).AppendLine();
break;
}
}
if (page.OutputPort3ChannelSelection > 0)
{
sb.Append("\tOutput port 3 has channels ");
if ((page.OutputPort3ChannelSelection & 0x01) == 0x01)
sb.Append("0 ");
if ((page.OutputPort3ChannelSelection & 0x02) == 0x02)
sb.Append("1 ");
if ((page.OutputPort3ChannelSelection & 0x04) == 0x04)
sb.Append("2 ");
if ((page.OutputPort3ChannelSelection & 0x08) == 0x08)
sb.Append("3 ");
switch (page.OutputPort3Volume)
{
case 0:
sb.AppendLine("muted");
break;
case 0xFF:
sb.AppendLine("at maximum volume");
break;
default:
sb.AppendFormat("at volume {0}", page.OutputPort3Volume).AppendLine();
break;
}
}
return sb.ToString();
}
#endregion Mode Page 0x0E: CD-ROM audio control parameters page
#region Mode Page 0x0D: CD-ROM parameteres page
///
/// CD-ROM parameteres page
/// Page code 0x0D
/// 8 bytes in SCSI-2, MMC-1, MMC-2, MMC-3
///
public struct ModePage_0D
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Time the drive shall remain in hold track state after seek or read
///
public byte InactivityTimerMultiplier;
///
/// Seconds per Minute
///
public ushort SecondsPerMinute;
///
/// Frames per Second
///
public ushort FramesPerSecond;
}
public static ModePage_0D? DecodeModePage_0D(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x0D)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 8)
return null;
ModePage_0D decoded = new ModePage_0D();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.InactivityTimerMultiplier = (byte)(pageResponse[3] & 0xF);
decoded.SecondsPerMinute = (ushort)((pageResponse[4] << 8) + pageResponse[5]);
decoded.FramesPerSecond = (ushort)((pageResponse[6] << 8) + pageResponse[7]);
return decoded;
}
public static string PrettifyModePage_0D(byte[] pageResponse)
{
return PrettifyModePage_0D(DecodeModePage_0D(pageResponse));
}
public static string PrettifyModePage_0D(ModePage_0D? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_0D page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI CD-ROM parameters page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
switch (page.InactivityTimerMultiplier)
{
case 0:
sb.AppendLine("\tDrive will remain in track hold state a vendor-specified time after a seek or read");
break;
case 1:
sb.AppendLine("\tDrive will remain in track hold state 125 ms after a seek or read");
break;
case 2:
sb.AppendLine("\tDrive will remain in track hold state 250 ms after a seek or read");
break;
case 3:
sb.AppendLine("\tDrive will remain in track hold state 500 ms after a seek or read");
break;
case 4:
sb.AppendLine("\tDrive will remain in track hold state 1 second after a seek or read");
break;
case 5:
sb.AppendLine("\tDrive will remain in track hold state 2 seconds after a seek or read");
break;
case 6:
sb.AppendLine("\tDrive will remain in track hold state 4 seconds after a seek or read");
break;
case 7:
sb.AppendLine("\tDrive will remain in track hold state 8 seconds after a seek or read");
break;
case 8:
sb.AppendLine("\tDrive will remain in track hold state 16 seconds after a seek or read");
break;
case 9:
sb.AppendLine("\tDrive will remain in track hold state 32 seconds after a seek or read");
break;
case 10:
sb.AppendLine("\tDrive will remain in track hold state 1 minute after a seek or read");
break;
case 11:
sb.AppendLine("\tDrive will remain in track hold state 2 minutes after a seek or read");
break;
case 12:
sb.AppendLine("\tDrive will remain in track hold state 4 minutes after a seek or read");
break;
case 13:
sb.AppendLine("\tDrive will remain in track hold state 8 minutes after a seek or read");
break;
case 14:
sb.AppendLine("\tDrive will remain in track hold state 16 minutes after a seek or read");
break;
case 15:
sb.AppendLine("\tDrive will remain in track hold state 32 minutes after a seek or read");
break;
}
if (page.SecondsPerMinute > 0)
sb.AppendFormat("\tEach minute has {0} seconds", page.SecondsPerMinute).AppendLine();
if (page.FramesPerSecond > 0)
sb.AppendFormat("\tEach second has {0} frames", page.FramesPerSecond).AppendLine();
return sb.ToString();
}
#endregion Mode Page 0x0D: CD-ROM parameteres page
#region Mode Page 0x01: Read error recovery page for MultiMedia Devices
///
/// Read error recovery page for MultiMedia Devices
/// Page code 0x01
/// 8 bytes in SCSI-2, MMC-1
/// 12 bytes in MMC-2, MMC-3
///
public struct ModePage_01_MMC
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Error recovery parameter
///
public byte Parameter;
///
/// How many times to retry a read operation
///
public byte ReadRetryCount;
///
/// How many times to retry a write operation
///
public byte WriteRetryCount;
///
/// Maximum time in ms to use in data error recovery procedures
///
public ushort RecoveryTimeLimit;
}
public static ModePage_01_MMC? DecodeModePage_01_MMC(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x01)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 8)
return null;
ModePage_01_MMC decoded = new ModePage_01_MMC();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.Parameter = pageResponse[2];
decoded.ReadRetryCount = pageResponse[3];
if (pageResponse.Length < 12)
return decoded;
decoded.WriteRetryCount = pageResponse[8];
decoded.RecoveryTimeLimit = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
return decoded;
}
public static string PrettifyModePage_01_MMC(byte[] pageResponse)
{
return PrettifyModePage_01_MMC(DecodeModePage_01_MMC(pageResponse));
}
public static string PrettifyModePage_01_MMC(ModePage_01_MMC? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_01_MMC page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Read error recovery page for MultiMedia Devices:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.ReadRetryCount > 0)
sb.AppendFormat("\tDrive will repeat read operations {0} times", page.ReadRetryCount).AppendLine();
string AllUsed = "\tAll available recovery procedures will be used.\n";
string CIRCRetriesUsed = "\tOnly retries and CIRC are used.\n";
string RetriesUsed = "\tOnly retries are used.\n";
string RecoveredNotReported = "\tRecovered errors will not be reported.\n";
string RecoveredReported = "\tRecovered errors will be reported.\n";
string RecoveredAbort = "\tRecovered errors will be reported and aborted with CHECK CONDITION.\n";
string UnrecECCAbort = "\tUnrecovered ECC errors will return CHECK CONDITION.";
string UnrecCIRCAbort = "\tUnrecovered CIRC errors will return CHECK CONDITION.";
string UnrecECCNotAbort = "\tUnrecovered ECC errors will not abort the transfer.";
string UnrecCIRCNotAbort = "\tUnrecovered CIRC errors will not abort the transfer.";
string UnrecECCAbortData = "\tUnrecovered ECC errors will return CHECK CONDITION and the uncorrected data.";
string UnrecCIRCAbortData = "\tUnrecovered CIRC errors will return CHECK CONDITION and the uncorrected data.";
switch (page.Parameter)
{
case 0x00:
sb.AppendLine(AllUsed + RecoveredNotReported + UnrecECCAbort);
break;
case 0x01:
sb.AppendLine(CIRCRetriesUsed + RecoveredNotReported + UnrecCIRCAbort);
break;
case 0x04:
sb.AppendLine(AllUsed + RecoveredReported + UnrecECCAbort);
break;
case 0x05:
sb.AppendLine(CIRCRetriesUsed + RecoveredReported + UnrecCIRCAbort);
break;
case 0x06:
sb.AppendLine(AllUsed + RecoveredAbort + UnrecECCAbort);
break;
case 0x07:
sb.AppendLine(RetriesUsed + RecoveredAbort + UnrecCIRCAbort);
break;
case 0x10:
sb.AppendLine(AllUsed + RecoveredNotReported + UnrecECCNotAbort);
break;
case 0x11:
sb.AppendLine(CIRCRetriesUsed + RecoveredNotReported + UnrecCIRCNotAbort);
break;
case 0x14:
sb.AppendLine(AllUsed + RecoveredReported + UnrecECCNotAbort);
break;
case 0x15:
sb.AppendLine(CIRCRetriesUsed + RecoveredReported + UnrecCIRCNotAbort);
break;
case 0x20:
sb.AppendLine(AllUsed + RecoveredNotReported + UnrecECCAbortData);
break;
case 0x21:
sb.AppendLine(CIRCRetriesUsed + RecoveredNotReported + UnrecCIRCAbortData);
break;
case 0x24:
sb.AppendLine(AllUsed + RecoveredReported + UnrecECCAbortData);
break;
case 0x25:
sb.AppendLine(CIRCRetriesUsed + RecoveredReported + UnrecCIRCAbortData);
break;
case 0x26:
sb.AppendLine(AllUsed + RecoveredAbort + UnrecECCAbortData);
break;
case 0x27:
sb.AppendLine(RetriesUsed + RecoveredAbort + UnrecCIRCAbortData);
break;
case 0x30:
goto case 0x10;
case 0x31:
goto case 0x11;
case 0x34:
goto case 0x14;
case 0x35:
goto case 0x15;
default:
sb.AppendFormat("Unknown recovery parameter 0x{0:X2}", page.Parameter).AppendLine();
break;
}
if (page.WriteRetryCount > 0)
sb.AppendFormat("\tDrive will repeat write operations {0} times", page.WriteRetryCount).AppendLine();
if (page.RecoveryTimeLimit > 0)
sb.AppendFormat("\tDrive will employ a maximum of {0} ms to recover data", page.RecoveryTimeLimit).AppendLine();
return sb.ToString();
}
#endregion Mode Page 0x01: Read error recovery page for MultiMedia Devices
#region Mode Page 0x07: Verify error recovery page for MultiMedia Devices
///
/// Verify error recovery page for MultiMedia Devices
/// Page code 0x07
/// 8 bytes in SCSI-2, MMC-1
///
public struct ModePage_07_MMC
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Error recovery parameter
///
public byte Parameter;
///
/// How many times to retry a verify operation
///
public byte VerifyRetryCount;
}
public static ModePage_07_MMC? DecodeModePage_07_MMC(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x07)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 8)
return null;
ModePage_07_MMC decoded = new ModePage_07_MMC();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.Parameter = pageResponse[2];
decoded.VerifyRetryCount = pageResponse[3];
return decoded;
}
public static string PrettifyModePage_07_MMC(byte[] pageResponse)
{
return PrettifyModePage_07_MMC(DecodeModePage_07_MMC(pageResponse));
}
public static string PrettifyModePage_07_MMC(ModePage_07_MMC? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_07_MMC page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Verify error recovery page for MultiMedia Devices:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.VerifyRetryCount > 0)
sb.AppendFormat("\tDrive will repeat verify operations {0} times", page.VerifyRetryCount).AppendLine();
string AllUsed = "\tAll available recovery procedures will be used.\n";
string CIRCRetriesUsed = "\tOnly retries and CIRC are used.\n";
string RetriesUsed = "\tOnly retries are used.\n";
string RecoveredNotReported = "\tRecovered errors will not be reported.\n";
string RecoveredReported = "\tRecovered errors will be reported.\n";
string RecoveredAbort = "\tRecovered errors will be reported and aborted with CHECK CONDITION.\n";
string UnrecECCAbort = "\tUnrecovered ECC errors will return CHECK CONDITION.";
string UnrecCIRCAbort = "\tUnrecovered CIRC errors will return CHECK CONDITION.";
string UnrecECCNotAbort = "\tUnrecovered ECC errors will not abort the transfer.";
string UnrecCIRCNotAbort = "\tUnrecovered CIRC errors will not abort the transfer.";
string UnrecECCAbortData = "\tUnrecovered ECC errors will return CHECK CONDITION and the uncorrected data.";
string UnrecCIRCAbortData = "\tUnrecovered CIRC errors will return CHECK CONDITION and the uncorrected data.";
switch (page.Parameter)
{
case 0x00:
sb.AppendLine(AllUsed + RecoveredNotReported + UnrecECCAbort);
break;
case 0x01:
sb.AppendLine(CIRCRetriesUsed + RecoveredNotReported + UnrecCIRCAbort);
break;
case 0x04:
sb.AppendLine(AllUsed + RecoveredReported + UnrecECCAbort);
break;
case 0x05:
sb.AppendLine(CIRCRetriesUsed + RecoveredReported + UnrecCIRCAbort);
break;
case 0x06:
sb.AppendLine(AllUsed + RecoveredAbort + UnrecECCAbort);
break;
case 0x07:
sb.AppendLine(RetriesUsed + RecoveredAbort + UnrecCIRCAbort);
break;
case 0x10:
sb.AppendLine(AllUsed + RecoveredNotReported + UnrecECCNotAbort);
break;
case 0x11:
sb.AppendLine(CIRCRetriesUsed + RecoveredNotReported + UnrecCIRCNotAbort);
break;
case 0x14:
sb.AppendLine(AllUsed + RecoveredReported + UnrecECCNotAbort);
break;
case 0x15:
sb.AppendLine(CIRCRetriesUsed + RecoveredReported + UnrecCIRCNotAbort);
break;
case 0x20:
sb.AppendLine(AllUsed + RecoveredNotReported + UnrecECCAbortData);
break;
case 0x21:
sb.AppendLine(CIRCRetriesUsed + RecoveredNotReported + UnrecCIRCAbortData);
break;
case 0x24:
sb.AppendLine(AllUsed + RecoveredReported + UnrecECCAbortData);
break;
case 0x25:
sb.AppendLine(CIRCRetriesUsed + RecoveredReported + UnrecCIRCAbortData);
break;
case 0x26:
sb.AppendLine(AllUsed + RecoveredAbort + UnrecECCAbortData);
break;
case 0x27:
sb.AppendLine(RetriesUsed + RecoveredAbort + UnrecCIRCAbortData);
break;
case 0x30:
goto case 0x10;
case 0x31:
goto case 0x11;
case 0x34:
goto case 0x14;
case 0x35:
goto case 0x15;
default:
sb.AppendFormat("Unknown recovery parameter 0x{0:X2}", page.Parameter).AppendLine();
break;
}
return sb.ToString();
}
#endregion Mode Page 0x07: Verify error recovery page for MultiMedia Devices
#region Mode Page 0x06: Optical memory page
///
/// Optical memory page
/// Page code 0x06
/// 4 bytes in SCSI-2
///
public struct ModePage_06
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Report updated block read
///
public bool RUBR;
}
public static ModePage_06? DecodeModePage_06(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x06)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 4)
return null;
ModePage_06 decoded = new ModePage_06();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.RUBR |= (pageResponse[2] & 0x01) == 0x01;
return decoded;
}
public static string PrettifyModePage_06(byte[] pageResponse)
{
return PrettifyModePage_06(DecodeModePage_06(pageResponse));
}
public static string PrettifyModePage_06(ModePage_06? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_06 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI optical memory:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.RUBR)
sb.AppendLine("\tOn reading an updated block drive will return RECOVERED ERROR");
return sb.ToString();
}
#endregion Mode Page 0x06: Optical memory page
#region Mode Page 0x2A: CD-ROM capabilities page
///
/// CD-ROM capabilities page
/// Page code 0x2A
/// 16 bytes in OB-U0077C
/// 20 bytes in SFF-8020i
/// 22 bytes in MMC-1
/// 26 bytes in MMC-2
/// Variable bytes in MMC-3
///
public struct ModePage_2A
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Drive supports multi-session and/or Photo-CD
///
public bool MultiSession;
///
/// Drive is capable of reading sectors in Mode 2 Form 2 format
///
public bool Mode2Form2;
///
/// Drive is capable of reading sectors in Mode 2 Form 1 format
///
public bool Mode2Form1;
///
/// Drive is capable of playing audio
///
public bool AudioPlay;
///
/// Drive can return the ISRC
///
public bool ISRC;
///
/// Drive can return the media catalogue number
///
public bool UPC;
///
/// Drive can return C2 pointers
///
public bool C2Pointer;
///
/// Drive can read, deinterlave and correct R-W subchannels
///
public bool DeinterlaveSubchannel;
///
/// Drive can read interleaved and uncorrected R-W subchannels
///
public bool Subchannel;
///
/// Drive can continue from a loss of streaming on audio reading
///
public bool AccurateCDDA;
///
/// Audio can be read as digital data
///
public bool CDDACommand;
///
/// Loading Mechanism Type
///
public byte LoadingMechanism;
///
/// Drive can eject discs
///
public bool Eject;
///
/// Drive's optional prevent jumper status
///
public bool PreventJumper;
///
/// Current lock status
///
public bool LockState;
///
/// Drive can lock media
///
public bool Lock;
///
/// Each channel can be muted independently
///
public bool SeparateChannelMute;
///
/// Each channel's volume can be controlled independently
///
public bool SeparateChannelVolume;
///
/// Maximum drive speed in Kbytes/second
///
public ushort MaximumSpeed;
///
/// Supported volume levels
///
public ushort SupportedVolumeLevels;
///
/// Buffer size in Kbytes
///
public ushort BufferSize;
///
/// Current drive speed in Kbytes/second
///
public ushort CurrentSpeed;
public bool Method2;
public bool ReadCDRW;
public bool ReadCDR;
public bool WriteCDRW;
public bool WriteCDR;
public bool DigitalPort2;
public bool DigitalPort1;
public bool Composite;
public bool SSS;
public bool SDP;
public byte Length;
public bool LSBF;
public bool RCK;
public bool BCK;
public bool TestWrite;
public ushort MaxWriteSpeed;
public ushort CurrentWriteSpeed;
public bool ReadBarcode;
public bool ReadDVDRAM;
public bool ReadDVDR;
public bool ReadDVDROM;
public bool WriteDVDRAM;
public bool WriteDVDR;
public bool LeadInPW;
public bool SCC;
public ushort CMRSupported;
public bool BUF;
public byte RotationControlSelected;
public ushort CurrentWriteSpeedSelected;
public ModePage_2A_WriteDescriptor[] WriteSpeedPerformanceDescriptors;
}
public struct ModePage_2A_WriteDescriptor
{
public byte RotationControl;
public ushort WriteSpeed;
}
public static ModePage_2A? DecodeModePage_2A(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x2A)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 16)
return null;
ModePage_2A decoded = new ModePage_2A();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.AudioPlay |= (pageResponse[4] & 0x01) == 0x01;
decoded.Mode2Form1 |= (pageResponse[4] & 0x10) == 0x10;
decoded.Mode2Form2 |= (pageResponse[4] & 0x20) == 0x20;
decoded.MultiSession |= (pageResponse[4] & 0x40) == 0x40;
decoded.CDDACommand |= (pageResponse[5] & 0x01) == 0x01;
decoded.AccurateCDDA |= (pageResponse[5] & 0x02) == 0x02;
decoded.Subchannel |= (pageResponse[5] & 0x04) == 0x04;
decoded.DeinterlaveSubchannel |= (pageResponse[5] & 0x08) == 0x08;
decoded.C2Pointer |= (pageResponse[5] & 0x10) == 0x10;
decoded.UPC |= (pageResponse[5] & 0x20) == 0x20;
decoded.ISRC |= (pageResponse[5] & 0x40) == 0x40;
decoded.LoadingMechanism = (byte)((pageResponse[6] & 0xE0) >> 5);
decoded.Lock |= (pageResponse[6] & 0x01) == 0x01;
decoded.LockState |= (pageResponse[6] & 0x02) == 0x02;
decoded.PreventJumper |= (pageResponse[6] & 0x04) == 0x04;
decoded.Eject |= (pageResponse[6] & 0x08) == 0x08;
decoded.SeparateChannelVolume |= (pageResponse[7] & 0x01) == 0x01;
decoded.SeparateChannelMute |= (pageResponse[7] & 0x02) == 0x02;
decoded.MaximumSpeed = (ushort)((pageResponse[8] << 8) + pageResponse[9]);
decoded.SupportedVolumeLevels = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
decoded.BufferSize = (ushort)((pageResponse[12] << 8) + pageResponse[13]);
decoded.CurrentSpeed = (ushort)((pageResponse[14] << 8) + pageResponse[15]);
if (pageResponse.Length < 20)
return decoded;
decoded.Method2 |= (pageResponse[2] & 0x04) == 0x04;
decoded.ReadCDRW |= (pageResponse[2] & 0x02) == 0x02;
decoded.ReadCDR |= (pageResponse[2] & 0x01) == 0x01;
decoded.WriteCDRW |= (pageResponse[3] & 0x02) == 0x02;
decoded.WriteCDR |= (pageResponse[3] & 0x01) == 0x01;
decoded.Composite |= (pageResponse[4] & 0x02) == 0x02;
decoded.DigitalPort1 |= (pageResponse[4] & 0x04) == 0x04;
decoded.DigitalPort2 |= (pageResponse[4] & 0x08) == 0x08;
decoded.SDP |= (pageResponse[7] & 0x04) == 0x04;
decoded.SSS |= (pageResponse[7] & 0x08) == 0x08;
decoded.Length = (byte)((pageResponse[17] & 0x30) >> 4);
decoded.LSBF |= (pageResponse[17] & 0x08) == 0x08;
decoded.RCK |= (pageResponse[17] & 0x04) == 0x04;
decoded.BCK |= (pageResponse[17] & 0x02) == 0x02;
if (pageResponse.Length < 22)
return decoded;
decoded.TestWrite |= (pageResponse[3] & 0x04) == 0x04;
decoded.MaxWriteSpeed = (ushort)((pageResponse[18] << 8) + pageResponse[19]);
decoded.CurrentWriteSpeed = (ushort)((pageResponse[20] << 8) + pageResponse[21]);
decoded.ReadBarcode |= (pageResponse[5] & 0x80) == 0x80;
if (pageResponse.Length < 26)
return decoded;
decoded.ReadDVDRAM |= (pageResponse[2] & 0x20) == 0x20;
decoded.ReadDVDR |= (pageResponse[2] & 0x10) == 0x10;
decoded.ReadDVDROM |= (pageResponse[2] & 0x08) == 0x08;
decoded.WriteDVDRAM |= (pageResponse[3] & 0x20) == 0x20;
decoded.WriteDVDR |= (pageResponse[3] & 0x10) == 0x10;
decoded.LeadInPW |= (pageResponse[3] & 0x20) == 0x20;
decoded.SCC |= (pageResponse[3] & 0x10) == 0x10;
decoded.CMRSupported = (ushort)((pageResponse[22] << 8) + pageResponse[23]);
if (pageResponse.Length < 32)
return decoded;
decoded.BUF |= (pageResponse[4] & 0x80) == 0x80;
decoded.RotationControlSelected = (byte)(pageResponse[27] & 0x03);
decoded.CurrentWriteSpeedSelected = (ushort)((pageResponse[28] << 8) + pageResponse[29]);
ushort descriptors = (ushort)((pageResponse[30] << 8) + pageResponse[31]);
decoded.WriteSpeedPerformanceDescriptors = new ModePage_2A_WriteDescriptor[descriptors];
for (int i = 0; i < descriptors; i++)
{
decoded.WriteSpeedPerformanceDescriptors[i] = new ModePage_2A_WriteDescriptor();
decoded.WriteSpeedPerformanceDescriptors[i].RotationControl = (byte)(pageResponse[1 + 32 + i * 4] & 0x07);
decoded.WriteSpeedPerformanceDescriptors[i].WriteSpeed = (ushort)((pageResponse[2 + 32 + i * 4] << 8) + pageResponse[3 + 32 + i * 4]);
}
return decoded;
}
public static string PrettifyModePage_2A(byte[] pageResponse)
{
return PrettifyModePage_2A(DecodeModePage_2A(pageResponse));
}
public static string PrettifyModePage_2A(ModePage_2A? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_2A page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI CD-ROM capabilities page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.AudioPlay)
sb.AppendLine("\tDrive can play audio");
if (page.Mode2Form1)
sb.AppendLine("\tDrive can read sectors in Mode 2 Form 1 format");
if (page.Mode2Form2)
sb.AppendLine("\tDrive can read sectors in Mode 2 Form 2 format");
if (page.MultiSession)
sb.AppendLine("\tDrive supports multi-session discs and/or Photo-CD");
if (page.CDDACommand)
sb.AppendLine("\tDrive can read digital audio");
if (page.AccurateCDDA)
sb.AppendLine("\tDrive can continue from streaming loss");
if (page.Subchannel)
sb.AppendLine("\tDrive can read uncorrected and interleaved R-W subchannels");
if (page.DeinterlaveSubchannel)
sb.AppendLine("\tDrive can read, deinterleave and correct R-W subchannels");
if (page.C2Pointer)
sb.AppendLine("\tDrive supports C2 pointers");
if (page.UPC)
sb.AppendLine("\tDrive can read Media Catalogue Number");
if (page.ISRC)
sb.AppendLine("\tDrive can read ISRC");
switch (page.LoadingMechanism)
{
case 0:
sb.AppendLine("\tDrive uses media caddy");
break;
case 1:
sb.AppendLine("\tDrive uses a tray");
break;
case 2:
sb.AppendLine("\tDrive is pop-up");
break;
case 4:
sb.AppendLine("\tDrive is a changer with individually changeable discs");
break;
case 5:
sb.AppendLine("\tDrive is a changer using cartridges");
break;
default:
sb.AppendFormat("\tDrive uses unknown loading mechanism type {0}", page.LoadingMechanism).AppendLine();
break;
}
if (page.Lock)
sb.AppendLine("\tDrive can lock media");
if (page.PreventJumper)
{
sb.AppendLine("\tDrive power ups locked");
if (page.LockState)
sb.AppendLine("\tDrive is locked, media cannot be ejected or inserted");
else
sb.AppendLine("\tDrive is not locked, media can be ejected and inserted");
}
else
{
if (page.LockState)
sb.AppendLine("\tDrive is locked, media cannot be ejected, but if empty, can be inserted");
else
sb.AppendLine("\tDrive is not locked, media can be ejected and inserted");
}
if (page.Eject)
sb.AppendLine("\tDrive can eject media");
if (page.SeparateChannelMute)
sb.AppendLine("\tEach channel can be muted independently");
if (page.SeparateChannelVolume)
sb.AppendLine("\tEach channel's volume can be controlled independently");
if (page.SupportedVolumeLevels > 0)
sb.AppendFormat("\tDrive supports {0} volume levels", page.SupportedVolumeLevels).AppendLine();
if (page.BufferSize > 0)
sb.AppendFormat("\tDrive has {0} Kbyte of buffer", page.BufferSize).AppendLine();
if (page.MaximumSpeed > 0)
sb.AppendFormat("\tDrive's maximum reading speed is {0} Kbyte/sec.", page.MaximumSpeed).AppendLine();
if (page.CurrentSpeed > 0)
sb.AppendFormat("\tDrive's current reading speed is {0} Kbyte/sec.", page.CurrentSpeed).AppendLine();
if (page.ReadCDR)
{
if (page.WriteCDR)
sb.AppendLine("\tDrive can read and write CD-R");
else
sb.AppendLine("\tDrive can read CD-R");
if (page.Method2)
sb.AppendLine("\tDrive supports reading CD-R packet media");
}
if (page.ReadCDRW)
{
if (page.WriteCDRW)
sb.AppendLine("\tDrive can read and write CD-RW");
else
sb.AppendLine("\tDrive can read CD-RW");
}
if (page.ReadDVDROM)
sb.AppendLine("\tDrive can read DVD-ROM");
if (page.ReadDVDR)
{
if (page.WriteDVDR)
sb.AppendLine("\tDrive can read and write DVD-R");
else
sb.AppendLine("\tDrive can read DVD-R");
}
if (page.ReadDVDRAM)
{
if (page.WriteDVDRAM)
sb.AppendLine("\tDrive can read and write DVD-RAM");
else
sb.AppendLine("\tDrive can read DVD-RAM");
}
if (page.Composite)
sb.AppendLine("\tDrive can deliver a compositve audio and video data stream");
if (page.DigitalPort1)
sb.AppendLine("\tDrive supports IEC-958 digital output on port 1");
if (page.DigitalPort2)
sb.AppendLine("\tDrive supports IEC-958 digital output on port 2");
if (page.SDP)
sb.AppendLine("\tDrive contains a changer that can report the exact contents of the slots");
if (page.CurrentWriteSpeedSelected > 0)
{
if (page.RotationControlSelected == 0)
sb.AppendFormat("\tDrive's current writing speed is {0} Kbyte/sec. in CLV mode", page.CurrentWriteSpeedSelected).AppendLine();
else if (page.RotationControlSelected == 1)
sb.AppendFormat("\tDrive's current writing speed is {0} Kbyte/sec. in pure CAV mode", page.CurrentWriteSpeedSelected).AppendLine();
}
else
{
if (page.MaxWriteSpeed > 0)
sb.AppendFormat("\tDrive's maximum writing speed is {0} Kbyte/sec.", page.MaxWriteSpeed).AppendLine();
if (page.CurrentWriteSpeed > 0)
sb.AppendFormat("\tDrive's current writing speed is {0} Kbyte/sec.", page.CurrentWriteSpeed).AppendLine();
}
foreach (ModePage_2A_WriteDescriptor descriptor in page.WriteSpeedPerformanceDescriptors)
{
if (descriptor.WriteSpeed > 0)
{
if (descriptor.RotationControl == 0)
sb.AppendFormat("\tDrive supports writing at {0} Kbyte/sec. in CLV mode", descriptor.WriteSpeed).AppendLine();
else if (descriptor.RotationControl == 1)
sb.AppendFormat("\tDrive supports writing at is {0} Kbyte/sec. in pure CAV mode", descriptor.WriteSpeed).AppendLine();
}
}
if (page.TestWrite)
sb.AppendLine("\tDrive supports test writing");
if (page.ReadBarcode)
sb.AppendLine("\tDrive can read barcode");
if (page.SCC)
sb.AppendLine("\tDrive can read both sides of a disc");
if (page.LeadInPW)
sb.AppendLine("\tDrive an read raw R-W subchannel from the Lead-In");
if (page.CMRSupported == 1)
sb.AppendLine("\tDrive supports DVD CSS and/or DVD CPPM");
if (page.BUF)
sb.AppendLine("\tDrive supports buffer under-run free recording");
return sb.ToString();
}
#endregion Mode Page 0x2A: CD-ROM capabilities page
#region Mode Page 0x1C: Informational exceptions control page
///
/// Informational exceptions control page
/// Page code 0x1C
/// 12 bytes in SPC-1, SPC-2, SPC-3, SPC-4
///
public struct ModePage_1C
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Informational exception operations should not affect performance
///
public bool Perf;
///
/// Disable informational exception operations
///
public bool DExcpt;
///
/// Create a test device failure at next interval time
///
public bool Test;
///
/// Log informational exception conditions
///
public bool LogErr;
///
/// Method of reporting informational exceptions
///
public byte MRIE;
///
/// 100 ms period to report an informational exception condition
///
public uint IntervalTimer;
///
/// How many times to report informational exceptions
///
public uint ReportCount;
///
/// Enable background functions
///
public bool EBF;
///
/// Warning reporting enabled
///
public bool EWasc;
///
/// Enable reporting of background self-test errors
///
public bool EBACKERR;
}
public static ModePage_1C? DecodeModePage_1C(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x1C)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 12)
return null;
ModePage_1C decoded = new ModePage_1C();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.Perf |= (pageResponse[2] & 0x80) == 0x80;
decoded.DExcpt |= (pageResponse[2] & 0x08) == 0x08;
decoded.Test |= (pageResponse[2] & 0x04) == 0x04;
decoded.LogErr |= (pageResponse[2] & 0x01) == 0x01;
decoded.MRIE = (byte)(pageResponse[3] & 0x0F);
decoded.IntervalTimer = (uint)((pageResponse[4] << 24) + (pageResponse[5] << 16) + (pageResponse[6] << 8) + pageResponse[7]);
decoded.ReportCount = (uint)((pageResponse[8] << 24) + (pageResponse[9] << 16) + (pageResponse[10] << 8) + pageResponse[11]);
decoded.EBF |= (pageResponse[2] & 0x20) == 0x20;
decoded.EWasc |= (pageResponse[2] & 0x10) == 0x10;
decoded.EBACKERR |= (pageResponse[2] & 0x02) == 0x02;
return decoded;
}
public static string PrettifyModePage_1C(byte[] pageResponse)
{
return PrettifyModePage_1C(DecodeModePage_1C(pageResponse));
}
public static string PrettifyModePage_1C(ModePage_1C? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_1C page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Informational exceptions control page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.DExcpt)
sb.AppendLine("\tInformational exceptions are disabled");
else
{
sb.AppendLine("\tInformational exceptions are enabled");
switch (page.MRIE)
{
case 0:
sb.AppendLine("\tNo reporting of informational exception condition");
break;
case 1:
sb.AppendLine("\tAsynchronous event reporting of informational exceptions");
break;
case 2:
sb.AppendLine("\tGenerate unit attention on informational exceptions");
break;
case 3:
sb.AppendLine("\tConditionally generate recovered error on informational exceptions");
break;
case 4:
sb.AppendLine("\tUnconditionally generate recovered error on informational exceptions");
break;
case 5:
sb.AppendLine("\tGenerate no sense on informational exceptions");
break;
case 6:
sb.AppendLine("\tOnly report informational exception condition on request");
break;
default:
sb.AppendFormat("\tUnknown method of reporting {0}", page.MRIE).AppendLine();
break;
}
if (page.Perf)
sb.AppendLine("\tInformational exceptions reporting should not affect drive performance");
if (page.Test)
sb.AppendLine("\tA test informational exception will raise on next timer");
if (page.LogErr)
sb.AppendLine("\tDrive shall log informational exception conditions");
if (page.IntervalTimer > 0)
{
if (page.IntervalTimer == 0xFFFFFFFF)
sb.AppendLine("\tTimer interval is vendor-specific");
else
sb.AppendFormat("\tTimer interval is {0} ms", page.IntervalTimer * 100).AppendLine();
}
if (page.ReportCount > 0)
sb.AppendFormat("\tInformational exception conditions will be reported a maximum of {0} times", page.ReportCount);
}
if (page.EWasc)
sb.AppendLine("\tWarning reporting is enabled");
if (page.EBF)
sb.AppendLine("\tBackground functions are enabled");
if (page.EBACKERR)
sb.AppendLine("\tDrive will report background self-test errors");
return sb.ToString();
}
#endregion Mode Page 0x1C: Informational exceptions control page
#region Mode Page 0x1A: Power condition page
///
/// Power condition page
/// Page code 0x1A
/// 12 bytes in SPC-1, SPC-2, SPC-3, SPC-4
/// 40 bytes in SPC-5
///
public struct ModePage_1A
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Idle timer activated
///
public bool Idle;
///
/// Standby timer activated
///
public bool Standby;
///
/// Idle timer
///
public uint IdleTimer;
///
/// Standby timer
///
public uint StandbyTimer;
///
/// Interactions between background functions and power management
///
public byte PM_BG_Precedence;
///
/// Standby timer Y activated
///
public bool Standby_Y;
///
/// Idle timer B activated
///
public bool Idle_B;
///
/// Idle timer C activated
///
public bool Idle_C;
///
/// Idle timer B
///
public uint IdleTimer_B;
///
/// Idle timer C
///
public uint IdleTimer_C;
///
/// Standby timer Y
///
public uint StandbyTimer_Y;
public byte CCF_Idle;
public byte CCF_Standby;
public byte CCF_Stopped;
}
public static ModePage_1A? DecodeModePage_1A(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x1A)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 12)
return null;
ModePage_1A decoded = new ModePage_1A();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.Standby |= (pageResponse[3] & 0x01) == 0x01;
decoded.Idle |= (pageResponse[3] & 0x02) == 0x02;
decoded.IdleTimer = (uint)((pageResponse[4] << 24) + (pageResponse[5] << 16) + (pageResponse[6] << 8) + pageResponse[7]);
decoded.StandbyTimer = (uint)((pageResponse[8] << 24) + (pageResponse[9] << 16) + (pageResponse[10] << 8) + pageResponse[11]);
if (pageResponse.Length < 40)
return decoded;
decoded.PM_BG_Precedence = (byte)((pageResponse[2] & 0xC0) >> 6);
decoded.Standby_Y |= (pageResponse[2] & 0x01) == 0x01;
decoded.Idle_B |= (pageResponse[3] & 0x04) == 0x04;
decoded.Idle_C |= (pageResponse[3] & 0x08) == 0x08;
decoded.IdleTimer_B = (uint)((pageResponse[12] << 24) + (pageResponse[13] << 16) + (pageResponse[14] << 8) + pageResponse[15]);
decoded.IdleTimer_C = (uint)((pageResponse[16] << 24) + (pageResponse[17] << 16) + (pageResponse[18] << 8) + pageResponse[19]);
decoded.StandbyTimer_Y = (uint)((pageResponse[20] << 24) + (pageResponse[21] << 16) + (pageResponse[22] << 8) + pageResponse[23]);
decoded.CCF_Idle = (byte)((pageResponse[39] & 0xC0) >> 6);
decoded.CCF_Standby = (byte)((pageResponse[39] & 0x30) >> 4);
decoded.CCF_Stopped = (byte)((pageResponse[39] & 0x0C) >> 2);
return decoded;
}
public static string PrettifyModePage_1A(byte[] pageResponse)
{
return PrettifyModePage_1A(DecodeModePage_1A(pageResponse));
}
public static string PrettifyModePage_1A(ModePage_1A? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_1A page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Power condition page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if ((page.Standby && page.StandbyTimer > 0) ||
(page.Standby_Y && page.StandbyTimer_Y > 0))
{
if (page.Standby && page.StandbyTimer > 0)
sb.AppendFormat("\tStandby timer Z is set to {0} ms", page.StandbyTimer * 100).AppendLine();
if (page.Standby_Y && page.StandbyTimer_Y > 0)
sb.AppendFormat("\tStandby timer Y is set to {0} ms", page.StandbyTimer_Y * 100).AppendLine();
}
else
sb.AppendLine("\tDrive will not enter standy mode");
if ((page.Idle && page.IdleTimer > 0) ||
(page.Idle_B && page.IdleTimer_B > 0) ||
(page.Idle_C && page.IdleTimer_C > 0))
{
if (page.Idle && page.IdleTimer > 0)
sb.AppendFormat("\tIdle timer A is set to {0} ms", page.IdleTimer * 100).AppendLine();
if (page.Idle_B && page.IdleTimer_B > 0)
sb.AppendFormat("\tIdle timer B is set to {0} ms", page.IdleTimer_B * 100).AppendLine();
if (page.Idle_C && page.IdleTimer_C > 0)
sb.AppendFormat("\tIdle timer C is set to {0} ms", page.IdleTimer_C * 100).AppendLine();
}
else
sb.AppendLine("\tDrive will not enter idle mode");
switch (page.PM_BG_Precedence)
{
case 0:
break;
case 1:
sb.AppendLine("\tPerforming background functions take precedence over maintaining low power conditions");
break;
case 2:
sb.AppendLine("\tMaintaining low power conditions take precedence over performing background functions");
break;
}
return sb.ToString();
}
#endregion Mode Page 0x1A: Power condition page
#region Mode Page 0x0A subpage 0x01: Control Extension mode page
///
/// Control Extension mode page
/// Page code 0x0A
/// Subpage code 0x01
/// 32 bytes in SPC-3, SPC-4, SPC-5
///
public struct ModePage_0A_S01
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Timestamp outside this standard
///
public bool TCMOS;
///
/// SCSI precedence
///
public bool SCSIP;
///
/// Implicit Asymmetric Logical Unit Access Enabled
///
public bool IALUAE;
///
/// Initial task priority
///
public byte InitialPriority;
///
/// Device life control disabled
///
public bool DLC;
///
/// Maximum size of SENSE data in bytes
///
public byte MaximumSenseLength;
}
public static ModePage_0A_S01? DecodeModePage_0A_S01(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) != 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x0A)
return null;
if (pageResponse[1] != 0x01)
return null;
if (((pageResponse[2] << 8) + pageResponse[3] + 4) != pageResponse.Length)
return null;
if (pageResponse.Length < 32)
return null;
ModePage_0A_S01 decoded = new ModePage_0A_S01();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.IALUAE |= (pageResponse[4] & 0x01) == 0x01;
decoded.SCSIP |= (pageResponse[4] & 0x02) == 0x02;
decoded.TCMOS |= (pageResponse[4] & 0x04) == 0x04;
decoded.InitialPriority = (byte)(pageResponse[5] & 0x0F);
return decoded;
}
public static string PrettifyModePage_0A_S01(byte[] pageResponse)
{
return PrettifyModePage_0A_S01(DecodeModePage_0A_S01(pageResponse));
}
public static string PrettifyModePage_0A_S01(ModePage_0A_S01? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_0A_S01 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Control extension page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.TCMOS)
{
sb.Append("\tTimestamp can be initialized by methods outside of the SCSI standards");
if (page.SCSIP)
sb.Append(", but SCSI's SET TIMESTAMP shall take precedence over them");
sb.AppendLine();
}
if (page.IALUAE)
sb.AppendLine("\tImplicit Asymmetric Logical Unit Access is enabled");
sb.AppendFormat("\tInitial priority is {0}", page.InitialPriority).AppendLine();
if (page.DLC)
sb.AppendLine("\tDevice will not degrade performance to extend its life");
if (page.MaximumSenseLength > 0)
sb.AppendFormat("\tMaximum sense data would be {0} bytes", page.MaximumSenseLength).AppendLine();
return sb.ToString();
}
#endregion Mode Page 0x0A subpage 0x01: Control Extension mode page
#region Mode Page 0x1A subpage 0x01: Power Consumption mode page
///
/// Power Consumption mode page
/// Page code 0x1A
/// Subpage code 0x01
/// 16 bytes in SPC-5
///
public struct ModePage_1A_S01
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Active power level
///
public byte ActiveLevel;
///
/// Power Consumption VPD identifier in use
///
public byte PowerConsumptionIdentifier;
}
public static ModePage_1A_S01? DecodeModePage_1A_S01(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) != 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x1A)
return null;
if (pageResponse[1] != 0x01)
return null;
if (((pageResponse[2] << 8) + pageResponse[3] + 4) != pageResponse.Length)
return null;
if (pageResponse.Length < 16)
return null;
ModePage_1A_S01 decoded = new ModePage_1A_S01();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.ActiveLevel = (byte)(pageResponse[6] & 0x03);
decoded.PowerConsumptionIdentifier = pageResponse[7];
return decoded;
}
public static string PrettifyModePage_1A_S01(byte[] pageResponse)
{
return PrettifyModePage_1A_S01(DecodeModePage_1A_S01(pageResponse));
}
public static string PrettifyModePage_1A_S01(ModePage_1A_S01? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_1A_S01 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Power Consumption page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
switch (page.ActiveLevel)
{
case 0:
sb.AppendFormat("\tDevice power consumption is dictated by identifier {0} of Power Consumption VPD", page.PowerConsumptionIdentifier).AppendLine();
break;
case 1:
sb.AppendLine("\tDevice is in highest relative power consumption level");
break;
case 2:
sb.AppendLine("\tDevice is in intermediate relative power consumption level");
break;
case 3:
sb.AppendLine("\tDevice is in lowest relative power consumption level");
break;
}
return sb.ToString();
}
#endregion Mode Page 0x1A subpage 0x01: Power Consumption mode page
#region Mode Page 0x10: XOR control mode page
///
/// XOR control mode page
/// Page code 0x10
/// 24 bytes in SBC-1, SBC-2
///
public struct ModePage_10
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Disables XOR operations
///
public bool XORDIS;
///
/// Maximum transfer length in blocks for a XOR command
///
public uint MaxXorWrite;
///
/// Maximum regenerate length in blocks
///
public uint MaxRegenSize;
///
/// Maximum transfer length in blocks for READ during a rebuild
///
public uint MaxRebuildRead;
///
/// Minimum time in ms between READs during a rebuild
///
public ushort RebuildDelay;
}
public static ModePage_10? DecodeModePage_10(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x10)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 24)
return null;
ModePage_10 decoded = new ModePage_10();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.XORDIS |= (pageResponse[2] & 0x02) == 0x02;
decoded.MaxXorWrite = (uint)((pageResponse[4] << 24) + (pageResponse[5] << 16) + (pageResponse[6] << 8) + pageResponse[7]);
decoded.MaxRegenSize = (uint)((pageResponse[12] << 24) + (pageResponse[13] << 16) + (pageResponse[14] << 8) + pageResponse[15]);
decoded.MaxRebuildRead = (uint)((pageResponse[16] << 24) + (pageResponse[17] << 16) + (pageResponse[18] << 8) + pageResponse[19]);
decoded.RebuildDelay = (ushort)((pageResponse[22] << 8) + pageResponse[23]);
return decoded;
}
public static string PrettifyModePage_10(byte[] pageResponse)
{
return PrettifyModePage_10(DecodeModePage_10(pageResponse));
}
public static string PrettifyModePage_10(ModePage_10? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_10 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI XOR control mode page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.XORDIS)
sb.AppendLine("\tXOR operations are disabled");
else
{
if (page.MaxXorWrite > 0)
sb.AppendFormat("\tDrive accepts a maximum of {0} blocks in a single XOR WRITE command", page.MaxXorWrite).AppendLine();
if (page.MaxRegenSize > 0)
sb.AppendFormat("\tDrive accepts a maximum of {0} blocks in a REGENERATE command", page.MaxRegenSize).AppendLine();
if (page.MaxRebuildRead > 0)
sb.AppendFormat("\tDrive accepts a maximum of {0} blocks in a READ command during rebuild", page.MaxRebuildRead).AppendLine();
if (page.RebuildDelay > 0)
sb.AppendFormat("\tDrive needs a minimum of {0} ms between READ commands during rebuild", page.RebuildDelay).AppendLine();
}
return sb.ToString();
}
#endregion Mode Page 0x10: XOR control mode page
#region Mode Page 0x1C subpage 0x01: Background Control mode page
///
/// Background Control mode page
/// Page code 0x1A
/// Subpage code 0x01
/// 16 bytes in SPC-5
///
public struct ModePage_1C_S01
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Suspend on log full
///
public bool S_L_Full;
///
/// Log only when intervention required
///
public bool LOWIR;
///
/// Enable background medium scan
///
public bool En_Bms;
///
/// Enable background pre-scan
///
public bool En_Ps;
///
/// Time in hours between background medium scans
///
public ushort BackgroundScanInterval;
///
/// Maximum time in hours for a background pre-scan to complete
///
public ushort BackgroundPrescanTimeLimit;
///
/// Minimum time in ms being idle before resuming a background scan
///
public ushort MinIdleBeforeBgScan;
///
/// Maximum time in ms to start processing commands while performing a background scan
///
public ushort MaxTimeSuspendBgScan;
}
public static ModePage_1C_S01? DecodeModePage_1C_S01(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) != 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x1C)
return null;
if (pageResponse[1] != 0x01)
return null;
if (((pageResponse[2] << 8) + pageResponse[3] + 4) != pageResponse.Length)
return null;
if (pageResponse.Length < 16)
return null;
ModePage_1C_S01 decoded = new ModePage_1C_S01();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.S_L_Full |= (pageResponse[4] & 0x04) == 0x04;
decoded.LOWIR |= (pageResponse[4] & 0x02) == 0x02;
decoded.En_Bms |= (pageResponse[4] & 0x01) == 0x01;
decoded.En_Ps |= (pageResponse[5] & 0x01) == 0x01;
decoded.BackgroundScanInterval = (ushort)((pageResponse[6] << 8) + pageResponse[7]);
decoded.BackgroundPrescanTimeLimit = (ushort)((pageResponse[8] << 8) + pageResponse[9]);
decoded.MinIdleBeforeBgScan = (ushort)((pageResponse[10] << 8) + pageResponse[11]);
decoded.MaxTimeSuspendBgScan = (ushort)((pageResponse[12] << 8) + pageResponse[13]);
return decoded;
}
public static string PrettifyModePage_1C_S01(byte[] pageResponse)
{
return PrettifyModePage_1C_S01(DecodeModePage_1C_S01(pageResponse));
}
public static string PrettifyModePage_1C_S01(ModePage_1C_S01? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_1C_S01 page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Background Control page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.S_L_Full)
sb.AppendLine("\tBackground scans will be halted if log is full");
if (page.LOWIR)
sb.AppendLine("\tBackground scans will only be logged if they require intervention");
if (page.En_Bms)
sb.AppendLine("\tBackground medium scans are enabled");
if (page.En_Ps)
sb.AppendLine("\tBackground pre-scans are enabled");
if (page.BackgroundScanInterval > 0)
sb.AppendFormat("\t{0} hours shall be between the start of a background scan operation and the next", page.BackgroundScanInterval).AppendLine();
if (page.BackgroundPrescanTimeLimit > 0)
sb.AppendFormat("\tBackgroun pre-scan operations can take a maximum of {0} hours", page.BackgroundPrescanTimeLimit).AppendLine();
if (page.MinIdleBeforeBgScan > 0)
sb.AppendFormat("\tAt least {0} ms must be idle before resuming a suspended background scan operation", page.MinIdleBeforeBgScan).AppendLine();
if (page.MaxTimeSuspendBgScan > 0)
sb.AppendFormat("\tAt most {0} ms must be before suspending a background scan operation and processing received commands", page.MaxTimeSuspendBgScan).AppendLine();
return sb.ToString();
}
#endregion Mode Page 0x1C subpage 0x01: Background Control mode page
#region Mode Page 0x0F: Data compression page
///
/// Data compression page
/// Page code 0x0F
/// 16 bytes in SSC-1, SSC-2, SSC-3
///
public struct ModePage_0F
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Data compression enabled
///
public bool DCE;
///
/// Data compression capable
///
public bool DCC;
///
/// Data decompression enabled
///
public bool DDE;
///
/// Report exception on decompression
///
public byte RED;
///
/// Compression algorithm
///
public uint CompressionAlgo;
///
/// Decompression algorithm
///
public uint DecompressionAlgo;
}
public static ModePage_0F? DecodeModePage_0F(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x0F)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 16)
return null;
ModePage_0F decoded = new ModePage_0F();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.DCE |= (pageResponse[2] & 0x80) == 0x80;
decoded.DCC |= (pageResponse[2] & 0x40) == 0x40;
decoded.DDE |= (pageResponse[3] & 0x80) == 0x80;
decoded.RED = (byte)((pageResponse[3] & 0x60) >> 5);
decoded.CompressionAlgo = (uint)((pageResponse[4] << 24) + (pageResponse[5] << 16) + (pageResponse[6] << 8) + pageResponse[7]);
decoded.DecompressionAlgo = (uint)((pageResponse[8] << 24) + (pageResponse[9] << 16) + (pageResponse[10] << 8) + pageResponse[11]);
return decoded;
}
public static string PrettifyModePage_0F(byte[] pageResponse)
{
return PrettifyModePage_0F(DecodeModePage_0F(pageResponse));
}
public static string PrettifyModePage_0F(ModePage_0F? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_0F page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Data compression page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.DCC)
{
sb.AppendLine("\tDrive supports data compression");
if (page.DCE)
{
sb.Append("\tData compression is enabled with ");
switch (page.CompressionAlgo)
{
case 3:
sb.AppendLine("IBM ALDC with 512 byte buffer");
break;
case 4:
sb.AppendLine("IBM ALDC with 1024 byte buffer");
break;
case 5:
sb.AppendLine("IBM ALDC with 2048 byte buffer");
break;
case 0x10:
sb.AppendLine("IBM IDRC");
break;
case 0x20:
sb.AppendLine("DCLZ");
break;
case 0xFF:
sb.AppendLine("an unregistered compression algorithm");
break;
default:
sb.AppendFormat("an unknown algorithm coded {0}", page.CompressionAlgo).AppendLine();
break;
}
}
if (page.DDE)
{
sb.AppendLine("\tData decompression is enabled");
if (page.DecompressionAlgo == 0)
sb.AppendLine("\tLast data read was uncompressed");
else
{
sb.Append("\tLast data read was compressed with ");
switch (page.CompressionAlgo)
{
case 3:
sb.AppendLine("IBM ALDC with 512 byte buffer");
break;
case 4:
sb.AppendLine("IBM ALDC with 1024 byte buffer");
break;
case 5:
sb.AppendLine("IBM ALDC with 2048 byte buffer");
break;
case 0x10:
sb.AppendLine("IBM IDRC");
break;
case 0x20:
sb.AppendLine("DCLZ");
break;
case 0xFF:
sb.AppendLine("an unregistered compression algorithm");
break;
default:
sb.AppendFormat("an unknown algorithm coded {0}", page.CompressionAlgo).AppendLine();
break;
}
}
}
sb.AppendFormat("\tReport exception on compression is set to {0}", page.RED).AppendLine();
}
else
sb.AppendLine("\tDrive does not support data compression");
return sb.ToString();
}
#endregion Mode Page 0x0F: Data compression page
#region Mode Page 0x1B: Removable Block Access Capabilities page
///
/// Removable Block Access Capabilities page
/// Page code 0x1B
/// 12 bytes in INF-8070
///
public struct ModePage_1B
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Supports reporting progress of format
///
public bool SRFP;
///
/// Non-CD Optical Device
///
public bool NCD;
///
/// Phase change dual device supporting a CD and a Non-CD Optical devices
///
public bool SML;
///
/// Total number of LUNs
///
public byte TLUN;
///
/// System Floppy Type device
///
public bool SFLP;
}
public static ModePage_1B? DecodeModePage_1B(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x1B)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 12)
return null;
ModePage_1B decoded = new ModePage_1B();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.SFLP |= (pageResponse[2] & 0x80) == 0x80;
decoded.SRFP |= (pageResponse[2] & 0x40) == 0x40;
decoded.NCD |= (pageResponse[3] & 0x80) == 0x80;
decoded.SML |= (pageResponse[3] & 0x40) == 0x40;
decoded.TLUN = (byte)(pageResponse[3] & 0x07);
return decoded;
}
public static string PrettifyModePage_1B(byte[] pageResponse)
{
return PrettifyModePage_1B(DecodeModePage_1B(pageResponse));
}
public static string PrettifyModePage_1B(ModePage_1B? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_1B page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Removable Block Access Capabilities page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.SFLP)
sb.AppendLine("\tDrive can be used as a system floppy device");
if (page.SRFP)
sb.AppendLine("\tDrive supports reporting progress of format");
if (page.NCD)
sb.AppendLine("\tDrive is a Non-CD Optical Device");
if (page.SML)
sb.AppendLine("\tDevice is a dual device supporting CD and Non-CD Optical");
if (page.TLUN > 0)
sb.AppendFormat("\tDrive supports {0} LUNs", page.TLUN).AppendLine();
return sb.ToString();
}
#endregion Mode Page 0x1B: Removable Block Access Capabilities page
#region Mode Page 0x1C: Timer & Protect page
///
/// Timer & Protect page
/// Page code 0x1C
/// 8 bytes in INF-8070
///
public struct ModePage_1C_SFF
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Time the device shall remain in the current state after seek, read or write operation
///
public byte InactivityTimeMultiplier;
///
/// Disabled until power cycle
///
public bool DISP;
///
/// Software Write Protect until Power-down
///
public bool SWPP;
}
public static ModePage_1C_SFF? DecodeModePage_1C_SFF(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x1C)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 8)
return null;
ModePage_1C_SFF decoded = new ModePage_1C_SFF();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.DISP |= (pageResponse[2] & 0x02) == 0x02;
decoded.SWPP |= (pageResponse[3] & 0x01) == 0x01;
decoded.InactivityTimeMultiplier = (byte)(pageResponse[3] & 0x0F);
return decoded;
}
public static string PrettifyModePage_1C_SFF(byte[] pageResponse)
{
return PrettifyModePage_1C_SFF(DecodeModePage_1C_SFF(pageResponse));
}
public static string PrettifyModePage_1C_SFF(ModePage_1C_SFF? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_1C_SFF page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Timer & Protect page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.DISP)
sb.AppendLine("\tDrive is disabled until power is cycled");
if (page.SWPP)
sb.AppendLine("\tDrive is software write-protected until powered down");
switch (page.InactivityTimeMultiplier)
{
case 0:
sb.AppendLine("\tDrive will remain in same status a vendor-specified time after a seek, read or write operation");
break;
case 1:
sb.AppendLine("\tDrive will remain in same status 125 ms after a seek, read or write operation");
break;
case 2:
sb.AppendLine("\tDrive will remain in same status 250 ms after a seek, read or write operation");
break;
case 3:
sb.AppendLine("\tDrive will remain in same status 500 ms after a seek, read or write operation");
break;
case 4:
sb.AppendLine("\tDrive will remain in same status 1 second after a seek, read or write operation");
break;
case 5:
sb.AppendLine("\tDrive will remain in same status 2 seconds after a seek, read or write operation");
break;
case 6:
sb.AppendLine("\tDrive will remain in same status 4 seconds after a seek, read or write operation");
break;
case 7:
sb.AppendLine("\tDrive will remain in same status 8 seconds after a seek, read or write operation");
break;
case 8:
sb.AppendLine("\tDrive will remain in same status 16 seconds after a seek, read or write operation");
break;
case 9:
sb.AppendLine("\tDrive will remain in same status 32 seconds after a seek, read or write operation");
break;
case 10:
sb.AppendLine("\tDrive will remain in same status 1 minute after a seek, read or write operation");
break;
case 11:
sb.AppendLine("\tDrive will remain in same status 2 minutes after a seek, read or write operation");
break;
case 12:
sb.AppendLine("\tDrive will remain in same status 4 minutes after a seek, read or write operation");
break;
case 13:
sb.AppendLine("\tDrive will remain in same status 8 minutes after a seek, read or write operation");
break;
case 14:
sb.AppendLine("\tDrive will remain in same status 16 minutes after a seek, read or write operation");
break;
case 15:
sb.AppendLine("\tDrive will remain in same status 32 minutes after a seek, read or write operation");
break;
}
return sb.ToString();
}
#endregion Mode Page 0x1C: Timer & Protect page
#region Mode Page 0x00: Drive Operation Mode page
///
/// Drive Operation Mode page
/// Page code 0x00
/// 4 bytes in INF-8070
///
public struct ModePage_00_SFF
{
///
/// Parameters can be saved
///
public bool PS;
///
/// Select LUN Mode
///
public bool SLM;
///
/// Select LUN for rewritable
///
public bool SLR;
///
/// Disable verify for WRITE
///
public bool DVW;
///
/// Disable deferred error
///
public bool DDE;
}
public static ModePage_00_SFF? DecodeModePage_00_SFF(byte[] pageResponse)
{
if (pageResponse == null)
return null;
if ((pageResponse[0] & 0x40) == 0x40)
return null;
if ((pageResponse[0] & 0x3F) != 0x00)
return null;
if (pageResponse[1] + 2 != pageResponse.Length)
return null;
if (pageResponse.Length < 4)
return null;
ModePage_00_SFF decoded = new ModePage_00_SFF();
decoded.PS |= (pageResponse[0] & 0x80) == 0x80;
decoded.SLM |= (pageResponse[2] & 0x80) == 0x80;
decoded.SLR |= (pageResponse[2] & 0x40) == 0x40;
decoded.DVW |= (pageResponse[2] & 0x20) == 0x20;
decoded.DDE |= (pageResponse[3] & 0x10) == 0x10;
return decoded;
}
public static string PrettifyModePage_00_SFF(byte[] pageResponse)
{
return PrettifyModePage_00_SFF(DecodeModePage_00_SFF(pageResponse));
}
public static string PrettifyModePage_00_SFF(ModePage_00_SFF? modePage)
{
if (!modePage.HasValue)
return null;
ModePage_00_SFF page = modePage.Value;
StringBuilder sb = new StringBuilder();
sb.AppendLine("SCSI Drive Operation Mode page:");
if (page.PS)
sb.AppendLine("\tParameters can be saved");
if (page.DVW)
sb.AppendLine("\tVerifying after writing is disabled");
if (page.DDE)
sb.AppendLine("\tDrive will abort when a writing error is detected");
if (page.SLM)
{
sb.Append("\tDrive has two LUNs with rewritable being ");
if (page.SLM)
sb.AppendLine("LUN 1");
else
sb.AppendLine("LUN 0");
}
return sb.ToString();
}
#endregion Mode Page 0x00: Drive Operation Mode page
public struct ModePage
{
public byte Page;
public byte Subpage;
public byte[] PageResponse;
}
public struct DecodedMode
{
public ModeHeader Header;
public ModePage[] Pages;
}
public static DecodedMode? DecodeMode6(byte[] modeResponse, PeripheralDeviceTypes deviceType)
{
ModeHeader? hdr = DecodeModeHeader6(modeResponse, deviceType);
if (!hdr.HasValue)
return null;
DecodedMode decoded = new DecodedMode();
decoded.Header = hdr.Value;
int blkDrLength = 0;
if (decoded.Header.BlockDescriptors != null)
blkDrLength = decoded.Header.BlockDescriptors.Length;
int offset = 4 + blkDrLength * 8;
int length = modeResponse[0] + 1;
if (length != modeResponse.Length)
return decoded;
List listpages = new List();
while (offset < modeResponse.Length)
{
bool isSubpage = (modeResponse[offset] & 0x40) == 0x40;
ModePage pg = new ModePage();
if (isSubpage)
{
pg.PageResponse = new byte[(modeResponse[offset + 2] << 8) + modeResponse[offset + 3] + 4];
Array.Copy(modeResponse, offset, pg.PageResponse, 0, pg.PageResponse.Length);
pg.Page = (byte)(modeResponse[offset] & 0x3F);
pg.Subpage = modeResponse[offset + 1];
offset += pg.PageResponse.Length;
}
else
{
pg.PageResponse = new byte[modeResponse[offset + 1] + 2];
Array.Copy(modeResponse, offset, pg.PageResponse, 0, pg.PageResponse.Length);
pg.Page = (byte)(modeResponse[offset] & 0x3F);
pg.Subpage = 0;
offset += pg.PageResponse.Length;
}
listpages.Add(pg);
}
decoded.Pages = listpages.ToArray();
return decoded;
}
public static DecodedMode? DecodeMode10(byte[] modeResponse, PeripheralDeviceTypes deviceType)
{
ModeHeader? hdr = DecodeModeHeader10(modeResponse, deviceType);
if (!hdr.HasValue)
return null;
DecodedMode decoded = new DecodedMode();
decoded.Header = hdr.Value;
bool longlba = (modeResponse[4] & 0x01) == 0x01;
int offset;
int blkDrLength = 0;
if (decoded.Header.BlockDescriptors != null)
blkDrLength = decoded.Header.BlockDescriptors.Length;
if (longlba)
offset = 8 + blkDrLength * 16;
else
offset = 8 + blkDrLength * 8;
int length = (modeResponse[0] << 8);
length += modeResponse[1];
length += 2;
if (length != modeResponse.Length)
return decoded;
List listpages = new List();
while (offset < modeResponse.Length)
{
bool isSubpage = (modeResponse[offset] & 0x40) == 0x40;
ModePage pg = new ModePage();
if (isSubpage)
{
pg.PageResponse = new byte[(modeResponse[offset + 2] << 8) + modeResponse[offset + 3] + 4];
if((pg.PageResponse.Length + offset) > modeResponse.Length)
return decoded;
Array.Copy(modeResponse, offset, pg.PageResponse, 0, pg.PageResponse.Length);
pg.Page = (byte)(modeResponse[offset] & 0x3F);
pg.Subpage = modeResponse[offset + 1];
offset += pg.PageResponse.Length;
}
else
{
pg.PageResponse = new byte[modeResponse[offset + 1] + 2];
if((pg.PageResponse.Length + offset) > modeResponse.Length)
return decoded;
Array.Copy(modeResponse, offset, pg.PageResponse, 0, pg.PageResponse.Length);
pg.Page = (byte)(modeResponse[offset] & 0x3F);
pg.Subpage = 0;
offset += pg.PageResponse.Length;
}
listpages.Add(pg);
}
decoded.Pages = listpages.ToArray();
return decoded;
}
}
}