// /*************************************************************************** // The Disc Image Chef // ---------------------------------------------------------------------------- // // Filename : ReedSolomon.cs // Author(s) : Natalia Portillo // // Component : Checksums. // // --[ Description ] ---------------------------------------------------------- // // Calculates a Reed-Solomon. // // --[ License ] -------------------------------------------------------------- // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as // published by the Free Software Foundation, either version 3 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // ---------------------------------------------------------------------------- // Copyright © 2011-2016 Natalia Portillo // Copyright (C) 1996 Phil Karn // Copyright (C) 1995 Robert Morelos-Zaragoza // Copyright (C) 1995 Hari Thirumoorthy // ****************************************************************************/ /* * Reed-Solomon coding and decoding * Phil Karn (karn at ka9q.ampr.org) September 1996 * * This file is derived from the program "new_rs_erasures.c" by Robert * Morelos-Zaragoza (robert at spectra.eng.hawaii.edu) and Hari Thirumoorthy * (harit at spectra.eng.hawaii.edu), Aug 1995 * * I've made changes to improve performance, clean up the code and make it * easier to follow. Data is now passed to the encoding and decoding functions * through arguments rather than in global arrays. The decode function returns * the number of corrected symbols, or -1 if the word is uncorrectable. * * This code supports a symbol size from 2 bits up to 16 bits, * implying a block size of 3 2-bit symbols (6 bits) up to 65535 * 16-bit symbols (1,048,560 bits). The code parameters are set in rs.h. * * Note that if symbols larger than 8 bits are used, the type of each * data array element switches from unsigned char to unsigned int. The * caller must ensure that elements larger than the symbol range are * not passed to the encoder or decoder. * */ using System; using DiscImageChef.Console; namespace DiscImageChef.Checksums { public class ReedSolomon { /* Primitive polynomials - see Lin & Costello, Error Control Coding Appendix A, * and Lee & Messerschmitt, Digital Communication p. 453. */ int[] Pp; /* index->polynomial form conversion table */ int[] Alpha_to; /* Polynomial->index form conversion table */ int[] Index_of; /* Generator polynomial g(x) * Degree of g(x) = 2*TT * has roots @**B0, @**(B0+1), ... ,@^(B0+2*TT-1) */ int[] Gg; int MM, KK, NN; /* No legal value in index form represents zero, so * we need a special value for this purpose */ int A0; bool initialized; /* Alpha exponent for the first root of the generator polynomial */ const int B0 = 1; /// /// Initializes the Reed-Solomon with RS(n,k) with GF(2^m) /// public void InitRS(int n, int k, int m) { switch(m) { case 2: Pp = new[] { 1, 1, 1 }; break; case 3: Pp = new[] { 1, 1, 0, 1 }; break; case 4: Pp = new[] { 1, 1, 0, 0, 1 }; break; case 5: Pp = new[] { 1, 0, 1, 0, 0, 1 }; break; case 6: Pp = new[] { 1, 1, 0, 0, 0, 0, 1 }; break; case 7: Pp = new[] { 1, 0, 0, 1, 0, 0, 0, 1 }; break; case 8: Pp = new[] { 1, 0, 1, 1, 1, 0, 0, 0, 1 }; break; case 9: Pp = new[] { 1, 0, 0, 0, 1, 0, 0, 0, 0, 1 }; break; case 10: Pp = new[] { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; break; case 11: Pp = new[] { 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; break; case 12: Pp = new[] { 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1 }; break; case 13: Pp = new[] { 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; break; case 14: Pp = new[] { 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 }; break; case 15: Pp = new[] { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; break; case 16: Pp = new[] { 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1 }; break; default: throw new ArgumentOutOfRangeException("m", "m must be between 2 and 16 inclusive"); } MM = m; KK = k; NN = n; A0 = n; Alpha_to = new int[n + 1]; Index_of = new int[n + 1]; Gg = new int[NN - KK + 1]; generate_gf(); gen_poly(); initialized = true; } int modnn(int x) { while(x >= NN) { x -= NN; x = (x >> MM) + (x & NN); } return x; } static int min(int a, int b) { return ((a) < (b) ? (a) : (b)); } static void CLEAR(ref int[] a, int n) { int ci; for(ci = (n) - 1; ci >= 0; ci--) (a)[ci] = 0; } static void COPY(ref int[] a, ref int[] b, int n) { int ci; for(ci = (n) - 1; ci >= 0; ci--) (a)[ci] = (b)[ci]; } static void COPYDOWN(ref int[] a, ref int[] b, int n) { int ci; for(ci = (n) - 1; ci >= 0; ci--) (a)[ci] = (b)[ci]; } /* generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m] lookup tables: index->polynomial form alpha_to[] contains j=alpha**i; polynomial form -> index form index_of[j=alpha**i] = i alpha=2 is the primitive element of GF(2**m) HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: Let @ represent the primitive element commonly called "alpha" that is the root of the primitive polynomial p(x). Then in GF(2^m), for any 0 <= i <= 2^m-2, @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for example the polynomial representation of @^5 would be given by the binary representation of the integer "alpha_to[5]". Similarily, index_of[] can be used as follows: As above, let @ represent the primitive element of GF(2^m) that is the root of the primitive polynomial p(x). In order to find the power of @ (alpha) that has the polynomial representation a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) we consider the integer "i" whose binary representation with a(0) being LSB and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry "index_of[i]". Now, @^index_of[i] is that element whose polynomial representation is (a(0),a(1),a(2),...,a(m-1)). NOTE: The element alpha_to[2^m-1] = 0 always signifying that the representation of "@^infinity" = 0 is (0,0,0,...,0). Similarily, the element index_of[0] = A0 always signifying that the power of alpha which has the polynomial representation (0,0,...,0) is "infinity". */ void generate_gf() { int i, mask; mask = 1; Alpha_to[MM] = 0; for(i = 0; i < MM; i++) { Alpha_to[i] = mask; Index_of[Alpha_to[i]] = i; /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ if(Pp[i] != 0) Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */ mask <<= 1; /* single left-shift */ } Index_of[Alpha_to[MM]] = MM; /* * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by * poly-repr of @^i shifted left one-bit and accounting for any @^MM * term that may occur when poly-repr of @^i is shifted. */ mask >>= 1; for(i = MM + 1; i < NN; i++) { if(Alpha_to[i - 1] >= mask) Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); else Alpha_to[i] = Alpha_to[i - 1] << 1; Index_of[Alpha_to[i]] = i; } Index_of[0] = A0; Alpha_to[NN] = 0; } /* * Obtain the generator polynomial of the TT-error correcting, length * NN=(2**MM -1) Reed Solomon code from the product of (X+@**(B0+i)), i = 0, * ... ,(2*TT-1) * * Examples: * * If B0 = 1, TT = 1. deg(g(x)) = 2*TT = 2. * g(x) = (x+@) (x+@**2) * * If B0 = 0, TT = 2. deg(g(x)) = 2*TT = 4. * g(x) = (x+1) (x+@) (x+@**2) (x+@**3) */ void gen_poly() { int i, j; Gg[0] = Alpha_to[B0]; Gg[1] = 1; /* g(x) = (X+@**B0) initially */ for(i = 2; i <= NN - KK; i++) { Gg[i] = 1; /* * Below multiply (Gg[0]+Gg[1]*x + ... +Gg[i]x^i) by * (@**(B0+i-1) + x) */ for(j = i - 1; j > 0; j--) if(Gg[j] != 0) Gg[j] = Gg[j - 1] ^ Alpha_to[modnn((Index_of[Gg[j]]) + B0 + i - 1)]; else Gg[j] = Gg[j - 1]; /* Gg[0] can never be zero */ Gg[0] = Alpha_to[modnn((Index_of[Gg[0]]) + B0 + i - 1)]; } /* convert Gg[] to index form for quicker encoding */ for(i = 0; i <= NN - KK; i++) Gg[i] = Index_of[Gg[i]]; } /* * take the string of symbols in data[i], i=0..(k-1) and encode * systematically to produce NN-KK parity symbols in bb[0]..bb[NN-KK-1] data[] * is input and bb[] is output in polynomial form. Encoding is done by using * a feedback shift register with appropriate connections specified by the * elements of Gg[], which was generated above. Codeword is c(X) = * data(X)*X**(NN-KK)+ b(X) */ /// /// Takes the symbols in data to output parity in bb. /// /// Returns -1 if an illegal symbol is found. /// Data symbols. /// Outs parity symbols. public int encode_rs(int[] data, out int[] bb) { if(initialized) { int i, j; int feedback; bb = new int[NN - KK]; CLEAR(ref bb, NN - KK); for(i = KK - 1; i >= 0; i--) { if(MM != 8) { if(data[i] > NN) return -1; /* Illegal symbol */ } feedback = Index_of[data[i] ^ bb[NN - KK - 1]]; if(feedback != A0) { /* feedback term is non-zero */ for(j = NN - KK - 1; j > 0; j--) if(Gg[j] != A0) bb[j] = bb[j - 1] ^ Alpha_to[modnn(Gg[j] + feedback)]; else bb[j] = bb[j - 1]; bb[0] = Alpha_to[modnn(Gg[0] + feedback)]; } else { /* feedback term is zero. encoder becomes a * single-byte shifter */ for(j = NN - KK - 1; j > 0; j--) bb[j] = bb[j - 1]; bb[0] = 0; } } return 0; } throw new UnauthorizedAccessException("Trying to calculate RS without initializing!"); } /* * Performs ERRORS+ERASURES decoding of RS codes. If decoding is successful, * writes the codeword into data[] itself. Otherwise data[] is unaltered. * * Return number of symbols corrected, or -1 if codeword is illegal * or uncorrectable. * * First "no_eras" erasures are declared by the calling program. Then, the * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). * If the number of channel errors is not greater than "t_after_eras" the * transmitted codeword will be recovered. Details of algorithm can be found * in R. Blahut's "Theory ... of Error-Correcting Codes". */ /// /// Decodes the RS. If decoding is successful outputs corrected data symbols. /// /// Returns corrected symbols, -1 if illegal or uncorrectable /// Data symbols. /// Position of erasures. /// Number of erasures. public int eras_dec_rs(ref int[] data, out int[] eras_pos, int no_eras) { if(initialized) { eras_pos = new int[NN - KK]; int deg_lambda, el, deg_omega; int i, j, r; int u, q, tmp, num1, num2, den, discr_r; int[] recd = new int[NN]; int[] lambda = new int[NN - KK + 1]; /* Err+Eras Locator poly */ int[] s = new int[NN - KK + 1]; /* syndrome poly */ int[] b = new int[NN - KK + 1]; int[] t = new int[NN - KK + 1]; int[] omega = new int[NN - KK + 1]; int[] root = new int[NN - KK]; int[] reg = new int[NN - KK + 1]; int[] loc = new int[NN - KK]; int syn_error, count; /* data[] is in polynomial form, copy and convert to index form */ for(i = NN - 1; i >= 0; i--) { if(MM != 8) { if(data[i] > NN) return -1; /* Illegal symbol */ } recd[i] = Index_of[data[i]]; } /* first form the syndromes; i.e., evaluate recd(x) at roots of g(x) * namely @**(B0+i), i = 0, ... ,(NN-KK-1) */ syn_error = 0; for(i = 1; i <= NN - KK; i++) { tmp = 0; for(j = 0; j < NN; j++) if(recd[j] != A0) /* recd[j] in index form */ tmp ^= Alpha_to[modnn(recd[j] + (B0 + i - 1) * j)]; syn_error |= tmp; /* set flag if non-zero syndrome => * error */ /* store syndrome in index form */ s[i] = Index_of[tmp]; } if(syn_error == 0) { /* * if syndrome is zero, data[] is a codeword and there are no * errors to correct. So return data[] unmodified */ return 0; } CLEAR(ref lambda, NN - KK); lambda[0] = 1; if(no_eras > 0) { /* Init lambda to be the erasure locator polynomial */ lambda[1] = Alpha_to[eras_pos[0]]; for(i = 1; i < no_eras; i++) { u = eras_pos[i]; for(j = i + 1; j > 0; j--) { tmp = Index_of[lambda[j - 1]]; if(tmp != A0) lambda[j] ^= Alpha_to[modnn(u + tmp)]; } } #if DEBUG /* find roots of the erasure location polynomial */ for(i = 1; i <= no_eras; i++) reg[i] = Index_of[lambda[i]]; count = 0; for(i = 1; i <= NN; i++) { q = 1; for(j = 1; j <= no_eras; j++) if(reg[j] != A0) { reg[j] = modnn(reg[j] + j); q ^= Alpha_to[reg[j]]; } if(q == 0) { /* store root and error location * number indices */ root[count] = i; loc[count] = NN - i; count++; } } if(count != no_eras) { DicConsole.DebugWriteLine("Reed Solomon", "\n lambda(x) is WRONG\n"); return -1; } DicConsole.DebugWriteLine("Reed Solomon", "\n Erasure positions as determined by roots of Eras Loc Poly:\n"); for(i = 0; i < count; i++) DicConsole.DebugWriteLine("Reed Solomon", "{0} ", loc[i]); DicConsole.DebugWriteLine("Reed Solomon", "\n"); #endif } for(i = 0; i < NN - KK + 1; i++) b[i] = Index_of[lambda[i]]; /* * Begin Berlekamp-Massey algorithm to determine error+erasure * locator polynomial */ r = no_eras; el = no_eras; while(++r <= NN - KK) { /* r is the step number */ /* Compute discrepancy at the r-th step in poly-form */ discr_r = 0; for(i = 0; i < r; i++) { if((lambda[i] != 0) && (s[r - i] != A0)) { discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])]; } } discr_r = Index_of[discr_r]; /* Index form */ if(discr_r == A0) { /* 2 lines below: B(x) <-- x*B(x) */ COPYDOWN(ref b, ref b, NN - KK); b[0] = A0; } else { /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ t[0] = lambda[0]; for(i = 0; i < NN - KK; i++) { if(b[i] != A0) t[i + 1] = lambda[i + 1] ^ Alpha_to[modnn(discr_r + b[i])]; else t[i + 1] = lambda[i + 1]; } if(2 * el <= r + no_eras - 1) { el = r + no_eras - el; /* * 2 lines below: B(x) <-- inv(discr_r) * * lambda(x) */ for(i = 0; i <= NN - KK; i++) b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN); } else { /* 2 lines below: B(x) <-- x*B(x) */ COPYDOWN(ref b, ref b, NN - KK); b[0] = A0; } COPY(ref lambda, ref t, NN - KK + 1); } } /* Convert lambda to index form and compute deg(lambda(x)) */ deg_lambda = 0; for(i = 0; i < NN - KK + 1; i++) { lambda[i] = Index_of[lambda[i]]; if(lambda[i] != A0) deg_lambda = i; } /* * Find roots of the error+erasure locator polynomial. By Chien * Search */ int temp = reg[0]; COPY(ref reg, ref lambda, NN - KK); reg[0] = temp; count = 0; /* Number of roots of lambda(x) */ for(i = 1; i <= NN; i++) { q = 1; for(j = deg_lambda; j > 0; j--) if(reg[j] != A0) { reg[j] = modnn(reg[j] + j); q ^= Alpha_to[reg[j]]; } if(q == 0) { /* store root (index-form) and error location number */ root[count] = i; loc[count] = NN - i; count++; } } #if DEBUG DicConsole.DebugWriteLine("Reed Solomon", "\n Final error positions:\t"); for(i = 0; i < count; i++) DicConsole.DebugWriteLine("Reed Solomon", "{0} ", loc[i]); DicConsole.DebugWriteLine("Reed Solomon", "\n"); #endif if(deg_lambda != count) { /* * deg(lambda) unequal to number of roots => uncorrectable * error detected */ return -1; } /* * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo * x**(NN-KK)). in index form. Also find deg(omega). */ deg_omega = 0; for(i = 0; i < NN - KK; i++) { tmp = 0; j = (deg_lambda < i) ? deg_lambda : i; for(; j >= 0; j--) { if((s[i + 1 - j] != A0) && (lambda[j] != A0)) tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; } if(tmp != 0) deg_omega = i; omega[i] = Index_of[tmp]; } omega[NN - KK] = A0; /* * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form */ for(j = count - 1; j >= 0; j--) { num1 = 0; for(i = deg_omega; i >= 0; i--) { if(omega[i] != A0) num1 ^= Alpha_to[modnn(omega[i] + i * root[j])]; } num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; den = 0; /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ for(i = min(deg_lambda, NN - KK - 1) & ~1; i >= 0; i -= 2) { if(lambda[i + 1] != A0) den ^= Alpha_to[modnn(lambda[i + 1] + i * root[j])]; } if(den == 0) { DicConsole.DebugWriteLine("Reed Solomon", "\n ERROR: denominator = 0\n"); return -1; } /* Apply error to data */ if(num1 != 0) { data[loc[j]] ^= Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; } } return count; } throw new UnauthorizedAccessException("Trying to calculate RS without initializing!"); } } }