// /*************************************************************************** // The Disc Image Chef // ---------------------------------------------------------------------------- // // Filename : QCOW.cs // Author(s) : Natalia Portillo // // Component : Disk image plugins. // // --[ Description ] ---------------------------------------------------------- // // Manages QEMU Copy-On-Write disk images. // // --[ License ] -------------------------------------------------------------- // // This library is free software; you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 2.1 of the // License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, see . // // ---------------------------------------------------------------------------- // Copyright © 2011-2018 Natalia Portillo // ****************************************************************************/ using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Runtime.InteropServices; using DiscImageChef.CommonTypes; using DiscImageChef.Console; using DiscImageChef.Filters; using Schemas; using SharpCompress.Compressors; using SharpCompress.Compressors.Deflate; namespace DiscImageChef.DiscImages { public class Qcow : IWritableImage { /// /// Magic number: 'Q', 'F', 'I', 0xFB /// const uint QCOW_MAGIC = 0x514649FB; const uint QCOW_VERSION = 1; const uint QCOW_ENCRYPTION_NONE = 0; const uint QCOW_ENCRYPTION_AES = 1; const ulong QCOW_COMPRESSED = 0x8000000000000000; const int MAX_CACHE_SIZE = 16777216; const int MAX_CACHED_SECTORS = MAX_CACHE_SIZE / 512; Dictionary clusterCache; int clusterSectors; int clusterSize; ImageInfo imageInfo; Stream imageStream; ulong l1Mask; int l1Shift; uint l1Size; ulong[] l1Table; ulong l2Mask; int l2Size; Dictionary l2TableCache; int maxClusterCache; int maxL2TableCache; QCowHeader qHdr; Dictionary sectorCache; ulong sectorMask; FileStream writingStream; public Qcow() { imageInfo = new ImageInfo { ReadableSectorTags = new List(), ReadableMediaTags = new List(), HasPartitions = false, HasSessions = false, Version = "1", Application = "QEMU", ApplicationVersion = null, Creator = null, Comments = null, MediaManufacturer = null, MediaModel = null, MediaSerialNumber = null, MediaBarcode = null, MediaPartNumber = null, MediaSequence = 0, LastMediaSequence = 0, DriveManufacturer = null, DriveModel = null, DriveSerialNumber = null, DriveFirmwareRevision = null }; } public ImageInfo Info => imageInfo; public string Name => "QEMU Copy-On-Write disk image"; public Guid Id => new Guid("A5C35765-9FE2-469D-BBBF-ACDEBDB7B954"); public string Format => "QEMU Copy-On-Write"; public List Partitions => throw new FeatureUnsupportedImageException("Feature not supported by image format"); public List Tracks => throw new FeatureUnsupportedImageException("Feature not supported by image format"); public List Sessions => throw new FeatureUnsupportedImageException("Feature not supported by image format"); public bool Identify(IFilter imageFilter) { Stream stream = imageFilter.GetDataForkStream(); stream.Seek(0, SeekOrigin.Begin); if(stream.Length < 512) return false; byte[] qHdrB = new byte[48]; stream.Read(qHdrB, 0, 48); qHdr = BigEndianMarshal.ByteArrayToStructureBigEndian(qHdrB); return qHdr.magic == QCOW_MAGIC && qHdr.version == QCOW_VERSION; } public bool Open(IFilter imageFilter) { Stream stream = imageFilter.GetDataForkStream(); stream.Seek(0, SeekOrigin.Begin); if(stream.Length < 512) return false; byte[] qHdrB = new byte[48]; stream.Read(qHdrB, 0, 48); qHdr = BigEndianMarshal.ByteArrayToStructureBigEndian(qHdrB); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.magic = 0x{0:X8}", qHdr.magic); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.version = {0}", qHdr.version); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.backing_file_offset = {0}", qHdr.backing_file_offset); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.backing_file_size = {0}", qHdr.backing_file_size); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.mtime = {0}", qHdr.mtime); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.size = {0}", qHdr.size); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.cluster_bits = {0}", qHdr.cluster_bits); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.l2_bits = {0}", qHdr.l2_bits); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.padding = {0}", qHdr.padding); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.crypt_method = {0}", qHdr.crypt_method); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.l1_table_offset = {0}", qHdr.l1_table_offset); if(qHdr.size <= 1) throw new ArgumentOutOfRangeException(nameof(qHdr.size), "Image size is too small"); if(qHdr.cluster_bits < 9 || qHdr.cluster_bits > 16) throw new ArgumentOutOfRangeException(nameof(qHdr.cluster_bits), "Cluster size must be between 512 bytes and 64 Kbytes"); if(qHdr.l2_bits < 9 - 3 || qHdr.l2_bits > 16 - 3) throw new ArgumentOutOfRangeException(nameof(qHdr.l2_bits), "L2 size must be between 512 bytes and 64 Kbytes"); if(qHdr.crypt_method > QCOW_ENCRYPTION_AES) throw new ArgumentOutOfRangeException(nameof(qHdr.crypt_method), "Invalid encryption method"); if(qHdr.crypt_method > QCOW_ENCRYPTION_NONE) throw new NotImplementedException("AES encrypted images not yet supported"); if(qHdr.backing_file_offset != 0) throw new NotImplementedException("Differencing images not yet supported"); int shift = qHdr.cluster_bits + qHdr.l2_bits; if(qHdr.size > ulong.MaxValue - (ulong)(1 << shift)) throw new ArgumentOutOfRangeException(nameof(qHdr.size), "Image is too large"); clusterSize = 1 << qHdr.cluster_bits; clusterSectors = 1 << (qHdr.cluster_bits - 9); l1Size = (uint)((qHdr.size + (ulong)(1 << shift) - 1) >> shift); l2Size = 1 << qHdr.l2_bits; DicConsole.DebugWriteLine("QCOW plugin", "qHdr.clusterSize = {0}", clusterSize); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.clusterSectors = {0}", clusterSectors); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.l1Size = {0}", l1Size); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.l2Size = {0}", l2Size); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.sectors = {0}", imageInfo.Sectors); BigEndianBitConverter.IsLittleEndian = BitConverter.IsLittleEndian; byte[] l1TableB = new byte[l1Size * 8]; stream.Seek((long)qHdr.l1_table_offset, SeekOrigin.Begin); stream.Read(l1TableB, 0, (int)l1Size * 8); l1Table = new ulong[l1Size]; DicConsole.DebugWriteLine("QCOW plugin", "Reading L1 table"); for(long i = 0; i < l1Table.LongLength; i++) l1Table[i] = BigEndianBitConverter.ToUInt64(l1TableB, (int)(i * 8)); l1Mask = 0; int c = 0; l1Shift = qHdr.l2_bits + qHdr.cluster_bits; for(int i = 0; i < 64; i++) { l1Mask <<= 1; if(c >= 64 - l1Shift) continue; l1Mask += 1; c++; } l2Mask = 0; for(int i = 0; i < qHdr.l2_bits; i++) l2Mask = (l2Mask << 1) + 1; l2Mask <<= qHdr.cluster_bits; sectorMask = 0; for(int i = 0; i < qHdr.cluster_bits; i++) sectorMask = (sectorMask << 1) + 1; DicConsole.DebugWriteLine("QCOW plugin", "qHdr.l1Mask = {0:X}", l1Mask); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.l1Shift = {0}", l1Shift); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.l2Mask = {0:X}", l2Mask); DicConsole.DebugWriteLine("QCOW plugin", "qHdr.sectorMask = {0:X}", sectorMask); maxL2TableCache = MAX_CACHE_SIZE / (l2Size * 8); maxClusterCache = MAX_CACHE_SIZE / clusterSize; imageStream = stream; sectorCache = new Dictionary(); l2TableCache = new Dictionary(); clusterCache = new Dictionary(); imageInfo.CreationTime = imageFilter.GetCreationTime(); imageInfo.LastModificationTime = qHdr.mtime > 0 ? DateHandlers.UnixUnsignedToDateTime(qHdr.mtime) : imageFilter.GetLastWriteTime(); imageInfo.MediaTitle = Path.GetFileNameWithoutExtension(imageFilter.GetFilename()); imageInfo.Sectors = qHdr.size / 512; imageInfo.SectorSize = 512; imageInfo.XmlMediaType = XmlMediaType.BlockMedia; imageInfo.MediaType = MediaType.GENERIC_HDD; imageInfo.ImageSize = qHdr.size; imageInfo.Cylinders = (uint)(imageInfo.Sectors / 16 / 63); imageInfo.Heads = 16; imageInfo.SectorsPerTrack = 63; return true; } public byte[] ReadSector(ulong sectorAddress) { if(sectorAddress > imageInfo.Sectors - 1) throw new ArgumentOutOfRangeException(nameof(sectorAddress), $"Sector address {sectorAddress} not found"); // Check cache if(sectorCache.TryGetValue(sectorAddress, out byte[] sector)) return sector; ulong byteAddress = sectorAddress * 512; ulong l1Off = (byteAddress & l1Mask) >> l1Shift; if((long)l1Off >= l1Table.LongLength) throw new ArgumentOutOfRangeException(nameof(l1Off), $"Trying to read past L1 table, position {l1Off} of a max {l1Table.LongLength}"); // TODO: Implement differential images if(l1Table[l1Off] == 0) return new byte[512]; if(!l2TableCache.TryGetValue(l1Off, out ulong[] l2Table)) { l2Table = new ulong[l2Size]; imageStream.Seek((long)l1Table[l1Off], SeekOrigin.Begin); byte[] l2TableB = new byte[l2Size * 8]; imageStream.Read(l2TableB, 0, l2Size * 8); DicConsole.DebugWriteLine("QCOW plugin", "Reading L2 table #{0}", l1Off); for(long i = 0; i < l2Table.LongLength; i++) l2Table[i] = BigEndianBitConverter.ToUInt64(l2TableB, (int)(i * 8)); if(l2TableCache.Count >= maxL2TableCache) l2TableCache.Clear(); l2TableCache.Add(l1Off, l2Table); } ulong l2Off = (byteAddress & l2Mask) >> qHdr.cluster_bits; ulong offset = l2Table[l2Off]; sector = new byte[512]; if(offset != 0) { if(!clusterCache.TryGetValue(offset, out byte[] cluster)) { if((offset & QCOW_COMPRESSED) == QCOW_COMPRESSED) { ulong compSizeMask = (ulong)(1 << qHdr.cluster_bits) - 1; compSizeMask <<= 63 - qHdr.cluster_bits; ulong offMask = ~compSizeMask ^ QCOW_COMPRESSED; ulong realOff = offset & offMask; ulong compSize = (offset & compSizeMask) >> (63 - qHdr.cluster_bits); byte[] zCluster = new byte[compSize]; imageStream.Seek((long)realOff, SeekOrigin.Begin); imageStream.Read(zCluster, 0, (int)compSize); DeflateStream zStream = new DeflateStream(new MemoryStream(zCluster), CompressionMode.Decompress); cluster = new byte[clusterSize]; int read = zStream.Read(cluster, 0, clusterSize); if(read != clusterSize) throw new IOException($"Unable to decompress cluster, expected {clusterSize} bytes got {read}"); } else { cluster = new byte[clusterSize]; imageStream.Seek((long)offset, SeekOrigin.Begin); imageStream.Read(cluster, 0, clusterSize); } if(clusterCache.Count >= maxClusterCache) clusterCache.Clear(); clusterCache.Add(offset, cluster); } Array.Copy(cluster, (int)(byteAddress & sectorMask), sector, 0, 512); } if(sectorCache.Count >= MAX_CACHED_SECTORS) sectorCache.Clear(); sectorCache.Add(sectorAddress, sector); return sector; } public byte[] ReadSectors(ulong sectorAddress, uint length) { if(sectorAddress > imageInfo.Sectors - 1) throw new ArgumentOutOfRangeException(nameof(sectorAddress), $"Sector address {sectorAddress} not found"); if(sectorAddress + length > imageInfo.Sectors) throw new ArgumentOutOfRangeException(nameof(length), "Requested more sectors than available"); MemoryStream ms = new MemoryStream(); for(uint i = 0; i < length; i++) { byte[] sector = ReadSector(sectorAddress + i); ms.Write(sector, 0, sector.Length); } return ms.ToArray(); } public byte[] ReadSectorTag(ulong sectorAddress, SectorTagType tag) { throw new FeatureUnsupportedImageException("Feature not supported by image format"); } public byte[] ReadSectorsTag(ulong sectorAddress, uint length, SectorTagType tag) { throw new FeatureUnsupportedImageException("Feature not supported by image format"); } public byte[] ReadDiskTag(MediaTagType tag) { throw new FeatureUnsupportedImageException("Feature not supported by image format"); } public byte[] ReadSector(ulong sectorAddress, uint track) { throw new FeatureUnsupportedImageException("Feature not supported by image format"); } public byte[] ReadSectorTag(ulong sectorAddress, uint track, SectorTagType tag) { throw new FeatureUnsupportedImageException("Feature not supported by image format"); } public byte[] ReadSectors(ulong sectorAddress, uint length, uint track) { throw new FeatureUnsupportedImageException("Feature not supported by image format"); } public byte[] ReadSectorsTag(ulong sectorAddress, uint length, uint track, SectorTagType tag) { throw new FeatureUnsupportedImageException("Feature not supported by image format"); } public byte[] ReadSectorLong(ulong sectorAddress) { throw new FeatureUnsupportedImageException("Feature not supported by image format"); } public byte[] ReadSectorLong(ulong sectorAddress, uint track) { throw new FeatureUnsupportedImageException("Feature not supported by image format"); } public byte[] ReadSectorsLong(ulong sectorAddress, uint length) { throw new FeatureUnsupportedImageException("Feature not supported by image format"); } public byte[] ReadSectorsLong(ulong sectorAddress, uint length, uint track) { throw new FeatureUnsupportedImageException("Feature not supported by image format"); } public List GetSessionTracks(Session session) { throw new FeatureUnsupportedImageException("Feature not supported by image format"); } public List GetSessionTracks(ushort session) { throw new FeatureUnsupportedImageException("Feature not supported by image format"); } public bool? VerifySector(ulong sectorAddress) { return null; } public bool? VerifySector(ulong sectorAddress, uint track) { throw new FeatureUnsupportedImageException("Feature not supported by image format"); } public bool? VerifySectors(ulong sectorAddress, uint length, out List failingLbas, out List unknownLbas) { failingLbas = new List(); unknownLbas = new List(); for(ulong i = 0; i < imageInfo.Sectors; i++) unknownLbas.Add(i); return null; } public bool? VerifySectors(ulong sectorAddress, uint length, uint track, out List failingLbas, out List unknownLbas) { throw new FeatureUnsupportedImageException("Feature not supported by image format"); } public bool? VerifyMediaImage() { return null; } public List DumpHardware => null; public CICMMetadataType CicmMetadata => null; public IEnumerable SupportedMediaTags => new MediaTagType[] { }; public IEnumerable SupportedSectorTags => new SectorTagType[] { }; public IEnumerable SupportedMediaTypes => new[] { MediaType.Unknown, MediaType.GENERIC_HDD, MediaType.FlashDrive, MediaType.CompactFlash, MediaType.CompactFlashType2, MediaType.PCCardTypeI, MediaType.PCCardTypeII, MediaType.PCCardTypeIII, MediaType.PCCardTypeIV }; public IEnumerable<(string name, Type type, string description)> SupportedOptions => new (string name, Type type, string description)[] { }; public IEnumerable KnownExtensions => new[] {".qcow", ".qc"}; public bool IsWriting { get; private set; } public string ErrorMessage { get; private set; } public bool Create(string path, MediaType mediaType, Dictionary options, ulong sectors, uint sectorSize) { if(sectorSize != 512) { ErrorMessage = "Unsupported sector size"; return false; } if(!SupportedMediaTypes.Contains(mediaType)) { ErrorMessage = $"Unsupport media format {mediaType}"; return false; } // TODO: Correct this calculation if(sectors * sectorSize / 65536 > uint.MaxValue) { ErrorMessage = "Too many sectors for selected cluster size"; return false; } imageInfo = new ImageInfo {MediaType = mediaType, SectorSize = sectorSize, Sectors = sectors}; try { writingStream = new FileStream(path, FileMode.OpenOrCreate, FileAccess.ReadWrite, FileShare.None); } catch(IOException e) { ErrorMessage = $"Could not create new image file, exception {e.Message}"; return false; } qHdr = new QCowHeader { magic = QCOW_MAGIC, version = QCOW_VERSION, size = sectors * sectorSize, cluster_bits = 12, l2_bits = 9, l1_table_offset = (ulong)Marshal.SizeOf(typeof(QCowHeader)) }; int shift = qHdr.cluster_bits + qHdr.l2_bits; clusterSize = 1 << qHdr.cluster_bits; clusterSectors = 1 << (qHdr.cluster_bits - 9); l1Size = (uint)((qHdr.size + (ulong)(1 << shift) - 1) >> shift); l2Size = 1 << qHdr.l2_bits; l1Table = new ulong[l1Size]; l1Mask = 0; int c = 0; l1Shift = qHdr.l2_bits + qHdr.cluster_bits; for(int i = 0; i < 64; i++) { l1Mask <<= 1; if(c >= 64 - l1Shift) continue; l1Mask += 1; c++; } l2Mask = 0; for(int i = 0; i < qHdr.l2_bits; i++) l2Mask = (l2Mask << 1) + 1; l2Mask <<= qHdr.cluster_bits; sectorMask = 0; for(int i = 0; i < qHdr.cluster_bits; i++) sectorMask = (sectorMask << 1) + 1; byte[] empty = new byte[qHdr.l1_table_offset + l1Size * 8]; writingStream.Write(empty, 0, empty.Length); IsWriting = true; ErrorMessage = null; return true; } public bool WriteMediaTag(byte[] data, MediaTagType tag) { ErrorMessage = "Writing media tags is not supported."; return false; } public bool WriteSector(byte[] data, ulong sectorAddress) { if(!IsWriting) { ErrorMessage = "Tried to write on a non-writable image"; return false; } if(data.Length != imageInfo.SectorSize) { ErrorMessage = "Incorrect data size"; return false; } if(sectorAddress >= imageInfo.Sectors) { ErrorMessage = "Tried to write past image size"; return false; } // Ignore empty sectors if(ArrayHelpers.ArrayIsNullOrEmpty(data)) return true; ulong byteAddress = sectorAddress * 512; ulong l1Off = (byteAddress & l1Mask) >> l1Shift; if((long)l1Off >= l1Table.LongLength) throw new ArgumentOutOfRangeException(nameof(l1Off), $"Trying to write past L1 table, position {l1Off} of a max {l1Table.LongLength}"); if(l1Table[l1Off] == 0) { writingStream.Seek(0, SeekOrigin.End); l1Table[l1Off] = (ulong)writingStream.Position; byte[] l2TableB = new byte[l2Size * 8]; writingStream.Seek(0, SeekOrigin.End); writingStream.Write(l2TableB, 0, l2TableB.Length); } writingStream.Position = (long)l1Table[l1Off]; ulong l2Off = (byteAddress & l2Mask) >> qHdr.cluster_bits; writingStream.Seek((long)(l1Table[l1Off] + l2Off * 8), SeekOrigin.Begin); BigEndianBitConverter.IsLittleEndian = BitConverter.IsLittleEndian; byte[] entry = new byte[8]; writingStream.Read(entry, 0, 8); ulong offset = BigEndianBitConverter.ToUInt64(entry, 0); if(offset == 0) { offset = (ulong)writingStream.Length; byte[] cluster = new byte[clusterSize]; entry = BigEndianBitConverter.GetBytes(offset); writingStream.Seek((long)(l1Table[l1Off] + l2Off * 8), SeekOrigin.Begin); writingStream.Write(entry, 0, 8); writingStream.Seek(0, SeekOrigin.End); writingStream.Write(cluster, 0, cluster.Length); } writingStream.Seek((long)(offset + (byteAddress & sectorMask)), SeekOrigin.Begin); writingStream.Write(data, 0, data.Length); ErrorMessage = ""; return true; } // TODO: This can be optimized public bool WriteSectors(byte[] data, ulong sectorAddress, uint length) { if(!IsWriting) { ErrorMessage = "Tried to write on a non-writable image"; return false; } if(data.Length % imageInfo.SectorSize != 0) { ErrorMessage = "Incorrect data size"; return false; } if(sectorAddress + length > imageInfo.Sectors) { ErrorMessage = "Tried to write past image size"; return false; } // Ignore empty sectors if(ArrayHelpers.ArrayIsNullOrEmpty(data)) return true; for(uint i = 0; i < length; i++) { byte[] tmp = new byte[imageInfo.SectorSize]; Array.Copy(data, i * imageInfo.SectorSize, tmp, 0, imageInfo.SectorSize); if(!WriteSector(tmp, sectorAddress + i)) return false; } ErrorMessage = ""; return true; } public bool WriteSectorLong(byte[] data, ulong sectorAddress) { ErrorMessage = "Writing sectors with tags is not supported."; return false; } public bool WriteSectorsLong(byte[] data, ulong sectorAddress, uint length) { ErrorMessage = "Writing sectors with tags is not supported."; return false; } public bool SetTracks(List tracks) { ErrorMessage = "Unsupported feature"; return false; } public bool Close() { if(!IsWriting) { ErrorMessage = "Image is not opened for writing"; return false; } qHdr.mtime = (uint)(DateTime.Now - new DateTime(1970, 1, 1, 0, 0, 0)).TotalSeconds; BigEndianBitConverter.IsLittleEndian = BitConverter.IsLittleEndian; writingStream.Seek(0, SeekOrigin.Begin); writingStream.Write(BigEndianBitConverter.GetBytes(qHdr.magic), 0, 4); writingStream.Write(BigEndianBitConverter.GetBytes(qHdr.version), 0, 4); writingStream.Write(BigEndianBitConverter.GetBytes(qHdr.backing_file_offset), 0, 8); writingStream.Write(BigEndianBitConverter.GetBytes(qHdr.backing_file_size), 0, 4); writingStream.Write(BigEndianBitConverter.GetBytes(qHdr.mtime), 0, 4); writingStream.Write(BigEndianBitConverter.GetBytes(qHdr.size), 0, 8); writingStream.WriteByte(qHdr.cluster_bits); writingStream.WriteByte(qHdr.l2_bits); writingStream.Write(BigEndianBitConverter.GetBytes(qHdr.padding), 0, 2); writingStream.Write(BigEndianBitConverter.GetBytes(qHdr.crypt_method), 0, 4); writingStream.Write(BigEndianBitConverter.GetBytes(qHdr.l1_table_offset), 0, 8); writingStream.Seek((long)qHdr.l1_table_offset, SeekOrigin.Begin); for(long i = 0; i < l1Table.LongLength; i++) writingStream.Write(BigEndianBitConverter.GetBytes(l1Table[i]), 0, 8); writingStream.Flush(); writingStream.Close(); IsWriting = false; ErrorMessage = ""; return true; } public bool SetMetadata(ImageInfo metadata) { return true; } public bool SetGeometry(uint cylinders, uint heads, uint sectorsPerTrack) { // Not stored in image return true; } public bool WriteSectorTag(byte[] data, ulong sectorAddress, SectorTagType tag) { ErrorMessage = "Writing sectors with tags is not supported."; return false; } public bool WriteSectorsTag(byte[] data, ulong sectorAddress, uint length, SectorTagType tag) { ErrorMessage = "Writing sectors with tags is not supported."; return false; } public bool SetDumpHardware(List dumpHardware) { // Not supported return false; } public bool SetCicmMetadata(CICMMetadataType metadata) { // Not supported return false; } /// /// QCOW header, big-endian /// [StructLayout(LayoutKind.Sequential, Pack = 1)] struct QCowHeader { /// /// /// public uint magic; /// /// Must be 1 /// public uint version; /// /// Offset inside file to string containing backing file /// public ulong backing_file_offset; /// /// Size of /// public uint backing_file_size; /// /// Modification time /// public uint mtime; /// /// Size in bytes /// public ulong size; /// /// Cluster bits /// public byte cluster_bits; /// /// L2 table bits /// public byte l2_bits; /// /// Padding /// public ushort padding; /// /// Encryption method /// public uint crypt_method; /// /// Offset to L1 table /// public ulong l1_table_offset; } } }