Files
Aaru/FileSystemIDandChk/Plugins/FFS.cs
Natalia Portillo 1491a5ccca Change license from AGPLv3 to GPLv3 to make some good friends happier,
and be able to use code from Linux if ever *ever* needed.
2014-04-19 18:23:00 +01:00

1071 lines
65 KiB
C#

/***************************************************************************
FileSystem identifier and checker
----------------------------------------------------------------------------
Filename : FFS.cs
Version : 1.0
Author(s) : Natalia Portillo
Component : Filesystem plugins
Revision : $Revision$
Last change by : $Author$
Date : $Date$
--[ Description ] ----------------------------------------------------------
Identifies BSD/UNIX FFS/UFS/UFS2 filesystems and shows information.
--[ License ] --------------------------------------------------------------
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------------------------------------------
Copyright (C) 2011-2014 Claunia.com
****************************************************************************/
//$Id$
using System;
using System.Text;
using FileSystemIDandChk;
// Using information from Linux kernel headers
namespace FileSystemIDandChk.Plugins
{
public class FFSPlugin : Plugin
{
public FFSPlugin(PluginBase Core)
{
Name = "BSD Fast File System (aka UNIX File System, UFS)";
PluginUUID = new Guid("CC90D342-05DB-48A8-988C-C1FE000034A3");
}
public override bool Identify(ImagePlugins.ImagePlugin imagePlugin, ulong partitionOffset)
{
UInt32 magic;
uint sb_size_in_sectors;
byte[] ufs_sb_sectors;
if (imagePlugin.GetSectorSize() == 2336 || imagePlugin.GetSectorSize() == 2352 || imagePlugin.GetSectorSize() == 2448)
sb_size_in_sectors = block_size / 2048;
else
sb_size_in_sectors = block_size / imagePlugin.GetSectorSize();
if (imagePlugin.GetSectors() > (partitionOffset + sb_start_floppy * sb_size_in_sectors + sb_size_in_sectors))
{
ufs_sb_sectors = imagePlugin.ReadSectors(partitionOffset + sb_start_floppy * sb_size_in_sectors, sb_size_in_sectors);
magic = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x055C);
if (magic == UFS_MAGIC || magic == UFS_MAGIC_BW || magic == UFS2_MAGIC || magic == UFS_CIGAM || magic == UFS_BAD_MAGIC)
return true;
}
if (imagePlugin.GetSectors() > (partitionOffset + sb_start_ufs1 * sb_size_in_sectors + sb_size_in_sectors))
{
ufs_sb_sectors = imagePlugin.ReadSectors(partitionOffset + sb_start_ufs1 * sb_size_in_sectors, sb_size_in_sectors);
magic = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x055C);
if (magic == UFS_MAGIC || magic == UFS_MAGIC_BW || magic == UFS2_MAGIC || magic == UFS_CIGAM || magic == UFS_BAD_MAGIC)
return true;
}
if (imagePlugin.GetSectors() > (partitionOffset + sb_start_ufs2 * sb_size_in_sectors + sb_size_in_sectors))
{
ufs_sb_sectors = imagePlugin.ReadSectors(partitionOffset + sb_start_ufs2 * sb_size_in_sectors, sb_size_in_sectors);
magic = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x055C);
if (magic == UFS_MAGIC || magic == UFS_MAGIC_BW || magic == UFS2_MAGIC || magic == UFS_CIGAM || magic == UFS_BAD_MAGIC)
return true;
}
if (imagePlugin.GetSectors() > (partitionOffset + sb_start_piggy * sb_size_in_sectors + sb_size_in_sectors))
{
ufs_sb_sectors = imagePlugin.ReadSectors(partitionOffset + sb_start_piggy * sb_size_in_sectors, sb_size_in_sectors);
magic = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x055C);
if (magic == UFS_MAGIC || magic == UFS_MAGIC_BW || magic == UFS2_MAGIC || magic == UFS_CIGAM || magic == UFS_BAD_MAGIC)
return true;
}
return false;
}
public override void GetInformation(ImagePlugins.ImagePlugin imagePlugin, ulong partitionOffset, out string information)
{
information = "";
StringBuilder sbInformation = new StringBuilder();
UInt32 magic = 0;
uint sb_size_in_sectors;
byte[] ufs_sb_sectors;
ulong sb_offset = partitionOffset;
bool fs_type_42bsd = false;
bool fs_type_43bsd = false;
bool fs_type_44bsd = false;
bool fs_type_ufs = false;
bool fs_type_ufs2 = false;
bool fs_type_sun = false;
bool fs_type_sun86 = false;
if (imagePlugin.GetSectorSize() == 2336 || imagePlugin.GetSectorSize() == 2352 || imagePlugin.GetSectorSize() == 2448)
sb_size_in_sectors = block_size / 2048;
else
sb_size_in_sectors = block_size / imagePlugin.GetSectorSize();
if (imagePlugin.GetSectors() > (partitionOffset + sb_start_floppy * sb_size_in_sectors + sb_size_in_sectors) && magic == 0)
{
ufs_sb_sectors = imagePlugin.ReadSectors(partitionOffset + sb_start_floppy * sb_size_in_sectors, sb_size_in_sectors);
magic = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x055C);
if (magic == UFS_MAGIC || magic == UFS_MAGIC_BW || magic == UFS2_MAGIC || magic == UFS_CIGAM || magic == UFS_BAD_MAGIC)
sb_offset = partitionOffset + sb_start_floppy * sb_size_in_sectors;
else
magic = 0;
}
if (imagePlugin.GetSectors() > (partitionOffset + sb_start_ufs1 * sb_size_in_sectors + sb_size_in_sectors) && magic == 0)
{
ufs_sb_sectors = imagePlugin.ReadSectors(partitionOffset + sb_start_ufs1 * sb_size_in_sectors, sb_size_in_sectors);
magic = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x055C);
if (magic == UFS_MAGIC || magic == UFS_MAGIC_BW || magic == UFS2_MAGIC || magic == UFS_CIGAM || magic == UFS_BAD_MAGIC)
sb_offset = partitionOffset + sb_start_ufs1 * sb_size_in_sectors;
else
magic = 0;
}
if (imagePlugin.GetSectors() > (partitionOffset + sb_start_ufs2 * sb_size_in_sectors + sb_size_in_sectors) && magic == 0)
{
ufs_sb_sectors = imagePlugin.ReadSectors(partitionOffset + sb_start_ufs2 * sb_size_in_sectors, sb_size_in_sectors);
magic = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x055C);
if (magic == UFS_MAGIC || magic == UFS_MAGIC_BW || magic == UFS2_MAGIC || magic == UFS_CIGAM || magic == UFS_BAD_MAGIC)
sb_offset = partitionOffset + sb_start_ufs2 * sb_size_in_sectors;
else
magic = 0;
}
if (imagePlugin.GetSectors() > (partitionOffset + sb_start_piggy * sb_size_in_sectors + sb_size_in_sectors) && magic == 0)
{
ufs_sb_sectors = imagePlugin.ReadSectors(partitionOffset + sb_start_piggy * sb_size_in_sectors, sb_size_in_sectors);
magic = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x055C);
if (magic == UFS_MAGIC || magic == UFS_MAGIC_BW || magic == UFS2_MAGIC || magic == UFS_CIGAM || magic == UFS_BAD_MAGIC)
sb_offset = partitionOffset + sb_start_piggy * sb_size_in_sectors;
else
magic = 0;
}
if (magic == 0)
{
information = "Not a UFS filesystem, I shouldn't have arrived here!";
return;
}
switch (magic)
{
case UFS_MAGIC:
sbInformation.AppendLine("UFS filesystem");
break;
case UFS_MAGIC_BW:
sbInformation.AppendLine("BorderWare UFS filesystem");
break;
case UFS2_MAGIC:
sbInformation.AppendLine("UFS2 filesystem");
break;
case UFS_CIGAM:
sbInformation.AppendLine("Big-endian UFS filesystem");
break;
case UFS_BAD_MAGIC:
sbInformation.AppendLine("Incompletely initialized UFS filesystem");
sbInformation.AppendLine("BEWARE!!! Following information may be completely wrong!");
break;
}
BigEndianBitConverter.IsLittleEndian = magic != UFS_CIGAM; // Little-endian UFS
// Are there any other cases to detect big-endian UFS?
// Fun with seeking follows on superblock reading!
UFSSuperBlock ufs_sb = new UFSSuperBlock();
byte[] strings_b;
ufs_sb_sectors = imagePlugin.ReadSectors(sb_offset, sb_size_in_sectors);
ufs_sb.fs_link_42bsd = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0000); // 0x0000
ufs_sb.fs_state_sun = ufs_sb.fs_link_42bsd;
ufs_sb.fs_rlink = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0004); // 0x0004 UNUSED
ufs_sb.fs_sblkno = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0008); // 0x0008 addr of super-block in filesys
ufs_sb.fs_cblkno = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x000C); // 0x000C offset of cyl-block in filesys
ufs_sb.fs_iblkno = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0010); // 0x0010 offset of inode-blocks in filesys
ufs_sb.fs_dblkno = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0014); // 0x0014 offset of first data after cg
ufs_sb.fs_cgoffset = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0018); // 0x0018 cylinder group offset in cylinder
ufs_sb.fs_cgmask = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x001C); // 0x001C used to calc mod fs_ntrak
ufs_sb.fs_time_t = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0020); // 0x0020 last time written -- time_t
ufs_sb.fs_size = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0024); // 0x0024 number of blocks in fs
ufs_sb.fs_dsize = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0028); // 0x0028 number of data blocks in fs
ufs_sb.fs_ncg = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x002C); // 0x002C number of cylinder groups
ufs_sb.fs_bsize = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0030); // 0x0030 size of basic blocks in fs
ufs_sb.fs_fsize = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0034); // 0x0034 size of frag blocks in fs
ufs_sb.fs_frag = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0038); // 0x0038 number of frags in a block in fs
// these are configuration parameters
ufs_sb.fs_minfree = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x003C); // 0x003C minimum percentage of free blocks
ufs_sb.fs_rotdelay = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0040); // 0x0040 num of ms for optimal next block
ufs_sb.fs_rps = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0044); // 0x0044 disk revolutions per second
// these fields can be computed from the others
ufs_sb.fs_bmask = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0048); // 0x0048 ``blkoff'' calc of blk offsets
ufs_sb.fs_fmask = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x004C); // 0x004C ``fragoff'' calc of frag offsets
ufs_sb.fs_bshift = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0050); // 0x0050 ``lblkno'' calc of logical blkno
ufs_sb.fs_fshift = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0054); // 0x0054 ``numfrags'' calc number of frags
// these are configuration parameters
ufs_sb.fs_maxcontig = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0058); // 0x0058 max number of contiguous blks
ufs_sb.fs_maxbpg = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x005C); // 0x005C max number of blks per cyl group
// these fields can be computed from the others
ufs_sb.fs_fragshift = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0060); // 0x0060 block to frag shift
ufs_sb.fs_fsbtodb = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0064); // 0x0064 fsbtodb and dbtofsb shift constant
ufs_sb.fs_sbsize = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0068); // 0x0068 actual size of super block
ufs_sb.fs_csmask = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x006C); // 0x006C csum block offset
ufs_sb.fs_csshift = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0070); // 0x0070 csum block number
ufs_sb.fs_nindir = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0074); // 0x0074 value of NINDIR
ufs_sb.fs_inopb = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0078); // 0x0078 value of INOPB
ufs_sb.fs_nspf = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x007C); // 0x007C value of NSPF
// yet another configuration parameter
ufs_sb.fs_optim = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0080); // 0x0080 optimization preference, see below
// these fields are derived from the hardware
#region Sun
ufs_sb.fs_npsect_sun = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0084); // 0x0084 # sectors/track including spares
#endregion Sun
#region Sunx86
ufs_sb.fs_state_t_sun86 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0084); // 0x0084 file system state time stamp
#endregion Sunx86
#region COMMON
ufs_sb.fs_interleave = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0088); // 0x0088 hardware sector interleave
ufs_sb.fs_trackskew = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x008C); // 0x008C sector 0 skew, per track
#endregion COMMON
// a unique id for this filesystem (currently unused and unmaintained)
// In 4.3 Tahoe this space is used by fs_headswitch and fs_trkseek
// Neither of those fields is used in the Tahoe code right now but
// there could be problems if they are.
#region COMMON
ufs_sb.fs_id_1 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0090); // 0x0090
ufs_sb.fs_id_2 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0094); // 0x0094
#endregion COMMON
#region 43BSD
ufs_sb.fs_headswitch_43bsd = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0090); // 0x0090
ufs_sb.fs_trkseek_43bsd = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0094); // 0x0094
#endregion 43BSD
#region COMMON
// sizes determined by number of cylinder groups and their sizes
ufs_sb.fs_csaddr = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0098); // 0x0098 blk addr of cyl grp summary area
ufs_sb.fs_cssize = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x009C); // 0x009C size of cyl grp summary area
ufs_sb.fs_cgsize = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x00A0); // 0x00A0 cylinder group size
// these fields are derived from the hardware
ufs_sb.fs_ntrak = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x00A4); // 0x00A4 tracks per cylinder
ufs_sb.fs_nsect = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x00A8); // 0x00A8 sectors per track
ufs_sb.fs_spc = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x00AC); // 0x00AC sectors per cylinder
// this comes from the disk driver partitioning
ufs_sb.fs_ncyl = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x00B0); // 0x00B0 cylinders in file system
// these fields can be computed from the others
ufs_sb.fs_cpg = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x00B4); // 0x00B4 cylinders per group
ufs_sb.fs_ipg = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x00B8); // 0x00B8 inodes per cylinder group
ufs_sb.fs_fpg = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x00BC); // 0x00BC blocks per group * fs_frag
// this data must be re-computed after crashes
// struct ufs_csum fs_cstotal = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0000); // cylinder summary information
ufs_sb.fs_cstotal_ndir = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x00C0); // 0x00C0 number of directories
ufs_sb.fs_cstotal_nbfree = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x00C4); // 0x00C4 number of free blocks
ufs_sb.fs_cstotal_nifree = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x00C8); // 0x00C8 number of free inodes
ufs_sb.fs_cstotal_nffree = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x00CC); // 0x00CC number of free frags
// these fields are cleared at mount time
ufs_sb.fs_fmod = ufs_sb_sectors[0x00D0]; // 0x00D0 super block modified flag
ufs_sb.fs_clean = ufs_sb_sectors[0x00D1]; // 0x00D1 file system is clean flag
ufs_sb.fs_ronly = ufs_sb_sectors[0x00D2]; // 0x00D2 mounted read-only flag
ufs_sb.fs_flags = ufs_sb_sectors[0x00D3]; // 0x00D3
#endregion COMMON
#region UFS1
strings_b = new byte[512];
Array.Copy(ufs_sb_sectors, 0x00D4, strings_b, 0, 512);
ufs_sb.fs_fsmnt_ufs1 = StringHandlers.CToString(strings_b); // 0x00D4, 512 bytes, name mounted on
ufs_sb.fs_cgrotor_ufs1 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0000); // 0x02D4 last cg searched
Array.Copy(ufs_sb_sectors, 0x02D8, ufs_sb.fs_cs_ufs1, 0, 124); // 0x02D8, 124 bytes, UInt32s, list of fs_cs info buffers
ufs_sb.fs_maxcluster_ufs1 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0354); // 0x0354
ufs_sb.fs_cpc_ufs1 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0358); // 0x0358 cyl per cycle in postbl
Array.Copy(ufs_sb_sectors, 0x035C, ufs_sb.fs_opostbl_ufs1, 0, 256); // 0x035C, 256 bytes, [16][8] matrix of UInt16s, old rotation block list head
#endregion UFS1
#region UFS2
strings_b = new byte[468];
Array.Copy(ufs_sb_sectors, 0x00D4, strings_b, 0, 468);
ufs_sb.fs_fsmnt_ufs2 = StringHandlers.CToString(strings_b); // 0x00D4, 468 bytes, name mounted on
strings_b = new byte[32];
Array.Copy(ufs_sb_sectors, 0x02A8, strings_b, 0, 32);
ufs_sb.fs_volname_ufs2 = StringHandlers.CToString(strings_b); // 0x02A8, 32 bytes, volume name
ufs_sb.fs_swuid_ufs2 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x02C8); // 0x02C8 system-wide uid
ufs_sb.fs_pad_ufs2 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x02D0); // 0x02D0 due to alignment of fs_swuid
ufs_sb.fs_cgrotor_ufs2 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x02D4); // 0x02D4 last cg searched
Array.Copy(ufs_sb_sectors, 0x02D8, ufs_sb.fs_ocsp_ufs2, 0, 112); // 0x02D8, 112 bytes, UInt32s, list of fs_cs info buffers
ufs_sb.fs_contigdirs_ufs2 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0348); // 0x0348 # of contiguously allocated dirs
ufs_sb.fs_csp_ufs2 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x034C); // 0x034C cg summary info buffer for fs_cs
ufs_sb.fs_maxcluster_ufs2 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0350); // 0x0350
ufs_sb.fs_active_ufs2 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0354); // 0x0354 used by snapshots to track fs
ufs_sb.fs_old_cpc_ufs2 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0358); // 0x0358 cyl per cycle in postbl
ufs_sb.fs_maxbsize_ufs2 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x035C); // 0x035C maximum blocking factor permitted
Array.Copy(ufs_sb_sectors, 0x0360, ufs_sb.fs_sparecon64_ufs2, 0, 136); // 0x0360, 136 bytes, UInt64s, old rotation block list head
ufs_sb.fs_sblockloc_ufs2 = BigEndianBitConverter.ToUInt64(ufs_sb_sectors, 0x03E8); // 0x03E8 byte offset of standard superblock
//cylinder summary information*/
ufs_sb.fs_cstotal_ndir_ufs2 = BigEndianBitConverter.ToUInt64(ufs_sb_sectors, 0x03F0); // 0x03F0 number of directories
ufs_sb.fs_cstotal_nbfree_ufs2 = BigEndianBitConverter.ToUInt64(ufs_sb_sectors, 0x03F8); // 0x03F8 number of free blocks
ufs_sb.fs_cstotal_nifree_ufs2 = BigEndianBitConverter.ToUInt64(ufs_sb_sectors, 0x0400); // 0x0400 number of free inodes
ufs_sb.fs_cstotal_nffree_ufs2 = BigEndianBitConverter.ToUInt64(ufs_sb_sectors, 0x0408); // 0x0408 number of free frags
ufs_sb.fs_cstotal_numclusters_ufs2 = BigEndianBitConverter.ToUInt64(ufs_sb_sectors, 0x0410); // 0x0410 number of free clusters
ufs_sb.fs_cstotal_spare0_ufs2 = BigEndianBitConverter.ToUInt64(ufs_sb_sectors, 0x0418); // 0x0418 future expansion
ufs_sb.fs_cstotal_spare1_ufs2 = BigEndianBitConverter.ToUInt64(ufs_sb_sectors, 0x0420); // 0x0420 future expansion
ufs_sb.fs_cstotal_spare2_ufs2 = BigEndianBitConverter.ToUInt64(ufs_sb_sectors, 0x0428); // 0x0428 future expansion
ufs_sb.fs_time_sec_ufs2 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0430); // 0x0430 last time written
ufs_sb.fs_time_usec_ufs2 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0434); // 0x0434 last time written
ufs_sb.fs_size_ufs2 = BigEndianBitConverter.ToUInt64(ufs_sb_sectors, 0x0438); // 0x0438 number of blocks in fs
ufs_sb.fs_dsize_ufs2 = BigEndianBitConverter.ToUInt64(ufs_sb_sectors, 0x0440); // 0x0440 number of data blocks in fs
ufs_sb.fs_csaddr_ufs2 = BigEndianBitConverter.ToUInt64(ufs_sb_sectors, 0x0448); // 0x0448 blk addr of cyl grp summary area
ufs_sb.fs_pendingblocks_ufs2 = BigEndianBitConverter.ToUInt64(ufs_sb_sectors, 0x0450); // 0x0450 blocks in process of being freed
ufs_sb.fs_pendinginodes_ufs2 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0458); // 0x0458 inodes in process of being freed
#endregion UFS2
#region Sun
Array.Copy(ufs_sb_sectors, 0x045C, ufs_sb.fs_sparecon_sun, 0, 212); // 0x045C, 212 bytes, reserved for future constants
ufs_sb.fs_reclaim_sun = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0530); // 0x0530
ufs_sb.fs_sparecon2_sun = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0534); // 0x0534
ufs_sb.fs_state_t_sun = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0538); // 0x0538 file system state time stamp
ufs_sb.fs_qbmask0_sun = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x053C); // 0x053C ~usb_bmask
ufs_sb.fs_qbmask1_sun = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0540); // 0x0540 ~usb_bmask
ufs_sb.fs_qfmask0_sun = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0544); // 0x0544 ~usb_fmask
ufs_sb.fs_qfmask1_sun = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0548); // 0x0548 ~usb_fmask
#endregion Sun
#region Sunx86
Array.Copy(ufs_sb_sectors, 0x045C, ufs_sb.fs_sparecon_sun86, 0, 212); // 0x045C, 212 bytes, reserved for future constants
ufs_sb.fs_reclaim_sun86 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0530); // 0x0530
ufs_sb.fs_sparecon2_sun86 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0534); // 0x0534
ufs_sb.fs_npsect_sun86 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0538); // 0x0538 # sectors/track including spares
ufs_sb.fs_qbmask0_sun86 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x053C); // 0x053C ~usb_bmask
ufs_sb.fs_qbmask1_sun86 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0540); // 0x0540 ~usb_bmask
ufs_sb.fs_qfmask0_sun86 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0544); // 0x0544 ~usb_fmask
ufs_sb.fs_qfmask1_sun86 = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0548); // 0x0548 ~usb_fmask
#endregion Sunx86
#region 44BSD
Array.Copy(ufs_sb_sectors, 0x045C, ufs_sb.fs_sparecon_44bsd, 0, 200); // 0x045C, 200 bytes
ufs_sb.fs_contigsumsize_44bsd = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0524); // 0x0524 size of cluster summary array
ufs_sb.fs_maxsymlinklen_44bsd = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0528); // 0x0528 max length of an internal symlink
ufs_sb.fs_inodefmt_44bsd = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x052C); // 0x052C format of on-disk inodes
ufs_sb.fs_maxfilesize0_44bsd = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0530); // 0x0530 max representable file size
ufs_sb.fs_maxfilesize1_44bsd = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0534); // 0x0534 max representable file size
ufs_sb.fs_qbmask0_44bsd = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0538); // 0x0538 ~usb_bmask
ufs_sb.fs_qbmask1_44bsd = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x053C); // 0x053C ~usb_bmask
ufs_sb.fs_qfmask0_44bsd = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0540); // 0x0540 ~usb_fmask
ufs_sb.fs_qfmask1_44bsd = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0544); // 0x0544 ~usb_fmask
ufs_sb.fs_state_t_44bsd = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0548); // 0x0548 file system state time stamp
#endregion 44BSD
ufs_sb.fs_postblformat = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x054C); // 0x054C format of positional layout tables
ufs_sb.fs_nrpos = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0550); // 0x0550 number of rotational positions
ufs_sb.fs_postbloff = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0554); // 0x0554 (__s16) rotation block list head
ufs_sb.fs_rotbloff = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x0558); // 0x0558 (__u8) blocks for each rotation
ufs_sb.fs_magic = BigEndianBitConverter.ToUInt32(ufs_sb_sectors, 0x055C); // 0x055C magic number
ufs_sb.fs_space = ufs_sb_sectors[0x0560]; // 0x0560 list of blocks for each rotation
if (MainClass.isDebug)
{
Console.WriteLine("ufs_sb offset: 0x{0:X8}", sb_offset);
Console.WriteLine("fs_link_42bsd: 0x{0:X8}", ufs_sb.fs_link_42bsd);
Console.WriteLine("fs_state_sun: 0x{0:X8}", ufs_sb.fs_state_sun);
Console.WriteLine("fs_rlink: 0x{0:X8}", ufs_sb.fs_rlink);
Console.WriteLine("fs_sblkno: 0x{0:X8}", ufs_sb.fs_sblkno);
Console.WriteLine("fs_cblkno: 0x{0:X8}", ufs_sb.fs_cblkno);
Console.WriteLine("fs_iblkno: 0x{0:X8}", ufs_sb.fs_iblkno);
Console.WriteLine("fs_dblkno: 0x{0:X8}", ufs_sb.fs_dblkno);
Console.WriteLine("fs_cgoffset: 0x{0:X8}", ufs_sb.fs_cgoffset);
Console.WriteLine("fs_cgmask: 0x{0:X8}", ufs_sb.fs_cgmask);
Console.WriteLine("fs_time_t: 0x{0:X8}", ufs_sb.fs_time_t);
Console.WriteLine("fs_size: 0x{0:X8}", ufs_sb.fs_size);
Console.WriteLine("fs_dsize: 0x{0:X8}", ufs_sb.fs_dsize);
Console.WriteLine("fs_ncg: 0x{0:X8}", ufs_sb.fs_ncg);
Console.WriteLine("fs_bsize: 0x{0:X8}", ufs_sb.fs_bsize);
Console.WriteLine("fs_fsize: 0x{0:X8}", ufs_sb.fs_fsize);
Console.WriteLine("fs_frag: 0x{0:X8}", ufs_sb.fs_frag);
Console.WriteLine("fs_minfree: 0x{0:X8}", ufs_sb.fs_minfree);
Console.WriteLine("fs_rotdelay: 0x{0:X8}", ufs_sb.fs_rotdelay);
Console.WriteLine("fs_rps: 0x{0:X8}", ufs_sb.fs_rps);
Console.WriteLine("fs_bmask: 0x{0:X8}", ufs_sb.fs_bmask);
Console.WriteLine("fs_fmask: 0x{0:X8}", ufs_sb.fs_fmask);
Console.WriteLine("fs_bshift: 0x{0:X8}", ufs_sb.fs_bshift);
Console.WriteLine("fs_fshift: 0x{0:X8}", ufs_sb.fs_fshift);
Console.WriteLine("fs_maxcontig: 0x{0:X8}", ufs_sb.fs_maxcontig);
Console.WriteLine("fs_maxbpg: 0x{0:X8}", ufs_sb.fs_maxbpg);
Console.WriteLine("fs_fragshift: 0x{0:X8}", ufs_sb.fs_fragshift);
Console.WriteLine("fs_fsbtodb: 0x{0:X8}", ufs_sb.fs_fsbtodb);
Console.WriteLine("fs_sbsize: 0x{0:X8}", ufs_sb.fs_sbsize);
Console.WriteLine("fs_csmask: 0x{0:X8}", ufs_sb.fs_csmask);
Console.WriteLine("fs_csshift: 0x{0:X8}", ufs_sb.fs_csshift);
Console.WriteLine("fs_nindir: 0x{0:X8}", ufs_sb.fs_nindir);
Console.WriteLine("fs_inopb: 0x{0:X8}", ufs_sb.fs_inopb);
Console.WriteLine("fs_nspf: 0x{0:X8}", ufs_sb.fs_nspf);
Console.WriteLine("fs_optim: 0x{0:X8}", ufs_sb.fs_optim);
Console.WriteLine("fs_npsect_sun: 0x{0:X8}", ufs_sb.fs_npsect_sun);
Console.WriteLine("fs_state_t_sun86: 0x{0:X8}", ufs_sb.fs_state_t_sun86);
Console.WriteLine("fs_interleave: 0x{0:X8}", ufs_sb.fs_interleave);
Console.WriteLine("fs_trackskew: 0x{0:X8}", ufs_sb.fs_trackskew);
Console.WriteLine("fs_id_1: 0x{0:X8}", ufs_sb.fs_id_1);
Console.WriteLine("fs_id_2: 0x{0:X8}", ufs_sb.fs_id_2);
Console.WriteLine("fs_headswitch_43bsd: 0x{0:X8}", ufs_sb.fs_headswitch_43bsd);
Console.WriteLine("fs_trkseek_43bsd: 0x{0:X8}", ufs_sb.fs_trkseek_43bsd);
Console.WriteLine("fs_csaddr: 0x{0:X8}", ufs_sb.fs_csaddr);
Console.WriteLine("fs_cssize: 0x{0:X8}", ufs_sb.fs_cssize);
Console.WriteLine("fs_cgsize: 0x{0:X8}", ufs_sb.fs_cgsize);
Console.WriteLine("fs_ntrak: 0x{0:X8}", ufs_sb.fs_ntrak);
Console.WriteLine("fs_nsect: 0x{0:X8}", ufs_sb.fs_nsect);
Console.WriteLine("fs_spc: 0x{0:X8}", ufs_sb.fs_spc);
Console.WriteLine("fs_ncyl: 0x{0:X8}", ufs_sb.fs_ncyl);
Console.WriteLine("fs_cpg: 0x{0:X8}", ufs_sb.fs_cpg);
Console.WriteLine("fs_ipg: 0x{0:X8}", ufs_sb.fs_ipg);
Console.WriteLine("fs_fpg: 0x{0:X8}", ufs_sb.fs_fpg);
Console.WriteLine("fs_cstotal_ndir: 0x{0:X8}", ufs_sb.fs_cstotal_ndir);
Console.WriteLine("fs_cstotal_nbfree: 0x{0:X8}", ufs_sb.fs_cstotal_nbfree);
Console.WriteLine("fs_cstotal_nifree: 0x{0:X8}", ufs_sb.fs_cstotal_nifree);
Console.WriteLine("fs_cstotal_nffree: 0x{0:X8}", ufs_sb.fs_cstotal_nffree);
Console.WriteLine("fs_fmod: 0x{0:X2}", ufs_sb.fs_fmod);
Console.WriteLine("fs_clean: 0x{0:X2}", ufs_sb.fs_clean);
Console.WriteLine("fs_ronly: 0x{0:X2}", ufs_sb.fs_ronly);
Console.WriteLine("fs_flags: 0x{0:X2}", ufs_sb.fs_flags);
Console.WriteLine("fs_fsmnt_ufs1: {0}", ufs_sb.fs_fsmnt_ufs1);
Console.WriteLine("fs_cgrotor_ufs1: 0x{0:X8}", ufs_sb.fs_cgrotor_ufs1);
Console.WriteLine("fs_cs_ufs1: 0x{0:X}", ufs_sb.fs_cs_ufs1);
Console.WriteLine("fs_maxcluster_ufs1: 0x{0:X8}", ufs_sb.fs_maxcluster_ufs1);
Console.WriteLine("fs_cpc_ufs1: 0x{0:X8}", ufs_sb.fs_cpc_ufs1);
Console.WriteLine("fs_opostbl_ufs1: 0x{0:X}", ufs_sb.fs_opostbl_ufs1);
Console.WriteLine("fs_fsmnt_ufs2: {0}", ufs_sb.fs_fsmnt_ufs2);
Console.WriteLine("fs_volname_ufs2: {0}", ufs_sb.fs_volname_ufs2);
Console.WriteLine("fs_swuid_ufs2: 0x{0:X16}", ufs_sb.fs_swuid_ufs2);
Console.WriteLine("fs_pad_ufs2: 0x{0:X8}", ufs_sb.fs_pad_ufs2);
Console.WriteLine("fs_cgrotor_ufs2: 0x{0:X8}", ufs_sb.fs_cgrotor_ufs2);
Console.WriteLine("fs_ocsp_ufs2: 0x{0:X}", ufs_sb.fs_ocsp_ufs2);
Console.WriteLine("fs_contigdirs_ufs2: 0x{0:X8}", ufs_sb.fs_contigdirs_ufs2);
Console.WriteLine("fs_csp_ufs2: 0x{0:X8}", ufs_sb.fs_csp_ufs2);
Console.WriteLine("fs_maxcluster_ufs2: 0x{0:X8}", ufs_sb.fs_maxcluster_ufs2);
Console.WriteLine("fs_active_ufs2: 0x{0:X8}", ufs_sb.fs_active_ufs2);
Console.WriteLine("fs_old_cpc_ufs2: 0x{0:X8}", ufs_sb.fs_old_cpc_ufs2);
Console.WriteLine("fs_maxbsize_ufs2: 0x{0:X8}", ufs_sb.fs_maxbsize_ufs2);
Console.WriteLine("fs_sparecon64_ufs2: 0x{0:X}", ufs_sb.fs_sparecon64_ufs2);
Console.WriteLine("fs_sblockloc_ufs2: 0x{0:X16}", ufs_sb.fs_sblockloc_ufs2);
Console.WriteLine("fs_cstotal_ndir_ufs2: 0x{0:X16}", ufs_sb.fs_cstotal_ndir_ufs2);
Console.WriteLine("fs_cstotal_nbfree_ufs2: 0x{0:X16}", ufs_sb.fs_cstotal_nbfree_ufs2);
Console.WriteLine("fs_cstotal_nifree_ufs2: 0x{0:X16}", ufs_sb.fs_cstotal_nifree_ufs2);
Console.WriteLine("fs_cstotal_nffree_ufs2: 0x{0:X16}", ufs_sb.fs_cstotal_nffree_ufs2);
Console.WriteLine("fs_cstotal_numclusters_ufs2: 0x{0:X16}", ufs_sb.fs_cstotal_numclusters_ufs2);
Console.WriteLine("fs_cstotal_spare0_ufs2: 0x{0:X16}", ufs_sb.fs_cstotal_spare0_ufs2);
Console.WriteLine("fs_cstotal_spare1_ufs2: 0x{0:X16}", ufs_sb.fs_cstotal_spare1_ufs2);
Console.WriteLine("fs_cstotal_spare2_ufs2: 0x{0:X16}", ufs_sb.fs_cstotal_spare2_ufs2);
Console.WriteLine("fs_time_sec_ufs2: 0x{0:X8}", ufs_sb.fs_time_sec_ufs2);
Console.WriteLine("fs_time_usec_ufs2: 0x{0:X8}", ufs_sb.fs_time_usec_ufs2);
Console.WriteLine("fs_size_ufs2: 0x{0:X16}", ufs_sb.fs_size_ufs2);
Console.WriteLine("fs_dsize_ufs2: 0x{0:X16}", ufs_sb.fs_dsize_ufs2);
Console.WriteLine("fs_csaddr_ufs2: 0x{0:X16}", ufs_sb.fs_csaddr_ufs2);
Console.WriteLine("fs_pendingblocks_ufs2: 0x{0:X16}", ufs_sb.fs_pendingblocks_ufs2);
Console.WriteLine("fs_pendinginodes_ufs2: 0x{0:X8}", ufs_sb.fs_pendinginodes_ufs2);
Console.WriteLine("fs_sparecon_sun: 0x{0:X}", ufs_sb.fs_sparecon_sun);
Console.WriteLine("fs_reclaim_sun: 0x{0:X8}", ufs_sb.fs_reclaim_sun);
Console.WriteLine("fs_sparecon2_sun: 0x{0:X8}", ufs_sb.fs_sparecon2_sun);
Console.WriteLine("fs_state_t_sun: 0x{0:X8}", ufs_sb.fs_state_t_sun);
Console.WriteLine("fs_qbmask0_sun: 0x{0:X8}", ufs_sb.fs_qbmask0_sun);
Console.WriteLine("fs_qbmask1_sun: 0x{0:X8}", ufs_sb.fs_qbmask1_sun);
Console.WriteLine("fs_qfmask0_sun: 0x{0:X8}", ufs_sb.fs_qfmask0_sun);
Console.WriteLine("fs_qfmask1_sun: 0x{0:X8}", ufs_sb.fs_qfmask1_sun);
Console.WriteLine("fs_sparecon_sun86: 0x{0:X}", ufs_sb.fs_sparecon_sun86);
Console.WriteLine("fs_reclaim_sun86: 0x{0:X8}", ufs_sb.fs_reclaim_sun86);
Console.WriteLine("fs_sparecon2_sun86: 0x{0:X8}", ufs_sb.fs_sparecon2_sun86);
Console.WriteLine("fs_npsect_sun86: 0x{0:X8}", ufs_sb.fs_npsect_sun86);
Console.WriteLine("fs_qbmask0_sun86: 0x{0:X8}", ufs_sb.fs_qbmask0_sun86);
Console.WriteLine("fs_qbmask1_sun86: 0x{0:X8}", ufs_sb.fs_qbmask1_sun86);
Console.WriteLine("fs_qfmask0_sun86: 0x{0:X8}", ufs_sb.fs_qfmask0_sun86);
Console.WriteLine("fs_qfmask1_sun86: 0x{0:X8}", ufs_sb.fs_qfmask1_sun86);
Console.WriteLine("fs_sparecon_44bsd: 0x{0:X}", ufs_sb.fs_sparecon_44bsd);
Console.WriteLine("fs_contigsumsize_44bsd: 0x{0:X8}", ufs_sb.fs_contigsumsize_44bsd);
Console.WriteLine("fs_maxsymlinklen_44bsd: 0x{0:X8}", ufs_sb.fs_maxsymlinklen_44bsd);
Console.WriteLine("fs_inodefmt_44bsd: 0x{0:X8}", ufs_sb.fs_inodefmt_44bsd);
Console.WriteLine("fs_maxfilesize0_44bsd: 0x{0:X8}", ufs_sb.fs_maxfilesize0_44bsd);
Console.WriteLine("fs_maxfilesize1_44bsd: 0x{0:X8}", ufs_sb.fs_maxfilesize1_44bsd);
Console.WriteLine("fs_qbmask0_44bsd: 0x{0:X8}", ufs_sb.fs_qbmask0_44bsd);
Console.WriteLine("fs_qbmask1_44bsd: 0x{0:X8}", ufs_sb.fs_qbmask1_44bsd);
Console.WriteLine("fs_qfmask0_44bsd: 0x{0:X8}", ufs_sb.fs_qfmask0_44bsd);
Console.WriteLine("fs_qfmask1_44bsd: 0x{0:X8}", ufs_sb.fs_qfmask1_44bsd);
Console.WriteLine("fs_state_t_44bsd: 0x{0:X8}", ufs_sb.fs_state_t_44bsd);
Console.WriteLine("fs_postblformat: 0x{0:X8}", ufs_sb.fs_postblformat);
Console.WriteLine("fs_nrpos: 0x{0:X8}", ufs_sb.fs_nrpos);
Console.WriteLine("fs_postbloff: 0x{0:X8}", ufs_sb.fs_postbloff);
Console.WriteLine("fs_rotbloff: 0x{0:X8}", ufs_sb.fs_rotbloff);
Console.WriteLine("fs_magic: 0x{0:X8}", ufs_sb.fs_magic);
Console.WriteLine("fs_space: 0x{0:X2}", ufs_sb.fs_space);
}
sbInformation.AppendLine("There are a lot of variants of UFS using overlapped values on same fields");
sbInformation.AppendLine("I will try to guess which one it is, but unless it's UFS2, I may be surely wrong");
if (ufs_sb.fs_magic == UFS2_MAGIC)
{
fs_type_ufs2 = true;
}
else
{
const UInt32 SunOSEpoch = 0x1A54C580; // We are supposing there cannot be a Sun's fs created before 1/1/1982 00:00:00
fs_type_43bsd = true; // There is no way of knowing this is the version, but there is of knowing it is not.
if (ufs_sb.fs_link_42bsd > 0)
{
fs_type_42bsd = true; // It was used in 4.2BSD
fs_type_43bsd = false;
}
if (ufs_sb.fs_state_t_sun > SunOSEpoch && DateHandlers.UNIXUnsignedToDateTime(ufs_sb.fs_state_t_sun) < DateTime.Now)
{
fs_type_42bsd = false;
fs_type_sun = true;
fs_type_43bsd = false;
}
// This is for sure, as it is shared with a sectors/track with non-x86 SunOS, Epoch is absurdly high for that
if (ufs_sb.fs_state_t_sun86 > SunOSEpoch && DateHandlers.UNIXUnsignedToDateTime(ufs_sb.fs_state_t_sun) < DateTime.Now)
{
fs_type_42bsd = false;
fs_type_sun86 = true;
fs_type_sun = false;
fs_type_43bsd = false;
}
if (ufs_sb.fs_cgrotor_ufs1 > 0x00000000 && ufs_sb.fs_cgrotor_ufs1 < 0xFFFFFFFF)
{
fs_type_42bsd = false;
fs_type_sun = false;
fs_type_sun86 = false;
fs_type_ufs = true;
fs_type_43bsd = false;
}
// 4.3BSD code does not use these fields, they are always set up to 0
fs_type_43bsd &= ufs_sb.fs_trkseek_43bsd == 0 && ufs_sb.fs_headswitch_43bsd == 0;
// This is the only 4.4BSD inode format
fs_type_44bsd |= ufs_sb.fs_inodefmt_44bsd == 2;
}
if (fs_type_42bsd)
sbInformation.AppendLine("Guessed as 42BSD FFS");
if (fs_type_43bsd)
sbInformation.AppendLine("Guessed as 43BSD FFS");
if (fs_type_44bsd)
sbInformation.AppendLine("Guessed as 44BSD FFS");
if (fs_type_sun)
sbInformation.AppendLine("Guessed as SunOS FFS");
if (fs_type_sun86)
sbInformation.AppendLine("Guessed as SunOS/x86 FFS");
if (fs_type_ufs)
sbInformation.AppendLine("Guessed as UFS");
if (fs_type_ufs2)
sbInformation.AppendLine("Guessed as UFS2");
if (fs_type_42bsd)
sbInformation.AppendFormat("Linked list of filesystems: 0x{0:X8}", ufs_sb.fs_link_42bsd).AppendLine();
else if (fs_type_sun)
sbInformation.AppendFormat("Filesystem state flag: 0x{0:X8}", ufs_sb.fs_state_sun).AppendLine();
sbInformation.AppendFormat("Superblock LBA: {0}", ufs_sb.fs_sblkno).AppendLine();
sbInformation.AppendFormat("Cylinder-block LBA: {0}", ufs_sb.fs_cblkno).AppendLine();
sbInformation.AppendFormat("inode-block LBA: {0}", ufs_sb.fs_iblkno).AppendLine();
sbInformation.AppendFormat("First data block LBA: {0}", ufs_sb.fs_dblkno).AppendLine();
sbInformation.AppendFormat("Cylinder group offset in cylinder: {0}", ufs_sb.fs_cgoffset).AppendLine();
sbInformation.AppendFormat("Volume last written on {0}", DateHandlers.UNIXUnsignedToDateTime(ufs_sb.fs_time_t)).AppendLine();
sbInformation.AppendFormat("{0} blocks in volume ({1} bytes)", ufs_sb.fs_size, ufs_sb.fs_size * ufs_sb.fs_bsize).AppendLine();
sbInformation.AppendFormat("{0} data blocks in volume ({1} bytes)", ufs_sb.fs_dsize, ufs_sb.fs_dsize * ufs_sb.fs_bsize).AppendLine();
sbInformation.AppendFormat("{0} cylinder groups in volume", ufs_sb.fs_ncg).AppendLine();
sbInformation.AppendFormat("{0} bytes in a basic block", ufs_sb.fs_bsize).AppendLine();
sbInformation.AppendFormat("{0} bytes in a frag block", ufs_sb.fs_fsize).AppendLine();
sbInformation.AppendFormat("{0} frags in a block", ufs_sb.fs_frag).AppendLine();
sbInformation.AppendFormat("{0}% of blocks must be free", ufs_sb.fs_minfree).AppendLine();
sbInformation.AppendFormat("{0}ms for optimal next block", ufs_sb.fs_rotdelay).AppendLine();
sbInformation.AppendFormat("disk rotates {0} times per second ({1}rpm)", ufs_sb.fs_rps, ufs_sb.fs_rps * 60).AppendLine();
/* sbInformation.AppendFormat("fs_bmask: 0x{0:X8}", ufs_sb.fs_bmask).AppendLine();
sbInformation.AppendFormat("fs_fmask: 0x{0:X8}", ufs_sb.fs_fmask).AppendLine();
sbInformation.AppendFormat("fs_bshift: 0x{0:X8}", ufs_sb.fs_bshift).AppendLine();
sbInformation.AppendFormat("fs_fshift: 0x{0:X8}", ufs_sb.fs_fshift).AppendLine();*/
sbInformation.AppendFormat("{0} contiguous blocks at maximum", ufs_sb.fs_maxcontig).AppendLine();
sbInformation.AppendFormat("{0} blocks per cylinder group at maximum", ufs_sb.fs_maxbpg).AppendLine();
sbInformation.AppendFormat("Superblock is {0} bytes", ufs_sb.fs_sbsize).AppendLine();
sbInformation.AppendFormat("NINDIR: 0x{0:X8}", ufs_sb.fs_nindir).AppendLine();
sbInformation.AppendFormat("INOPB: 0x{0:X8}", ufs_sb.fs_inopb).AppendLine();
sbInformation.AppendFormat("NSPF: 0x{0:X8}", ufs_sb.fs_nspf).AppendLine();
if (ufs_sb.fs_optim == 0)
sbInformation.AppendLine("Filesystem will minimize allocation time");
else if (ufs_sb.fs_optim == 1)
sbInformation.AppendLine("Filesystem will minimize volume fragmentation");
else
sbInformation.AppendFormat("Unknown optimization value: 0x{0:X8}", ufs_sb.fs_optim).AppendLine();
if (fs_type_sun)
sbInformation.AppendFormat("{0} sectors/track", ufs_sb.fs_npsect_sun).AppendLine();
else if (fs_type_sun86)
sbInformation.AppendFormat("Volume state on {0}", DateHandlers.UNIXUnsignedToDateTime(ufs_sb.fs_state_t_sun86)).AppendLine();
sbInformation.AppendFormat("Hardware sector interleave: {0}", ufs_sb.fs_interleave).AppendLine();
sbInformation.AppendFormat("Sector 0 skew: {0}/track", ufs_sb.fs_trackskew).AppendLine();
if (!fs_type_43bsd && ufs_sb.fs_id_1 > 0 && ufs_sb.fs_id_2 > 0)
sbInformation.AppendFormat("Volume ID: 0x{0:X8}{1:X8}", ufs_sb.fs_id_1, ufs_sb.fs_id_2).AppendLine();
else if (fs_type_43bsd && ufs_sb.fs_headswitch_43bsd > 0 && ufs_sb.fs_trkseek_43bsd > 0)
{
sbInformation.AppendFormat("{0} µsec for head switch", ufs_sb.fs_headswitch_43bsd).AppendLine();
sbInformation.AppendFormat("{0} µsec for track-to-track seek", ufs_sb.fs_trkseek_43bsd).AppendLine();
}
sbInformation.AppendFormat("Cylinder group summary LBA: {0}", ufs_sb.fs_csaddr).AppendLine();
sbInformation.AppendFormat("{0} bytes in cylinder group summary", ufs_sb.fs_cssize).AppendLine();
sbInformation.AppendFormat("{0} bytes in cylinder group", ufs_sb.fs_cgsize).AppendLine();
sbInformation.AppendFormat("{0} tracks/cylinder", ufs_sb.fs_ntrak).AppendLine();
sbInformation.AppendFormat("{0} sectors/track", ufs_sb.fs_nsect).AppendLine();
sbInformation.AppendFormat("{0} sectors/cylinder", ufs_sb.fs_spc).AppendLine();
sbInformation.AppendFormat("{0} cylinder in volume", ufs_sb.fs_ncyl).AppendLine();
sbInformation.AppendFormat("{0} cylinders/group", ufs_sb.fs_cpg).AppendLine();
sbInformation.AppendFormat("{0} inodes per cylinder group", ufs_sb.fs_ipg).AppendLine();
sbInformation.AppendFormat("{0} blocks per group", ufs_sb.fs_fpg / ufs_sb.fs_frag).AppendLine();
sbInformation.AppendFormat("{0} directories", ufs_sb.fs_cstotal_ndir).AppendLine();
sbInformation.AppendFormat("{0} free blocks ({1} bytes)", ufs_sb.fs_cstotal_nbfree, ufs_sb.fs_cstotal_nbfree * ufs_sb.fs_bsize).AppendLine();
sbInformation.AppendFormat("{0} free inodes", ufs_sb.fs_cstotal_nifree).AppendLine();
sbInformation.AppendFormat("{0} free frags", ufs_sb.fs_cstotal_nffree).AppendLine();
if (ufs_sb.fs_fmod == 1)
sbInformation.AppendLine("Superblock is under modification");
if (ufs_sb.fs_clean == 1)
sbInformation.AppendLine("Volume is clean");
if (ufs_sb.fs_ronly == 1)
sbInformation.AppendLine("Volume is read-only");
sbInformation.AppendFormat("Volume flags: 0x{0:X2}", ufs_sb.fs_flags).AppendLine();
if (fs_type_ufs)
{
sbInformation.AppendFormat("Volume last mounted on \"{0}\"", ufs_sb.fs_fsmnt_ufs1).AppendLine();
sbInformation.AppendFormat("Last searched cylinder group: {0}", ufs_sb.fs_cgrotor_ufs1).AppendLine();
}
else if (fs_type_ufs2)
{
sbInformation.AppendFormat("Volume last mounted on \"{0}\"", ufs_sb.fs_fsmnt_ufs2).AppendLine();
sbInformation.AppendFormat("Volume name: \"{0}\"", ufs_sb.fs_volname_ufs2).AppendLine();
sbInformation.AppendFormat("Volume ID: 0x{0:X16}", ufs_sb.fs_swuid_ufs2).AppendLine();
sbInformation.AppendFormat("Last searched cylinder group: {0}", ufs_sb.fs_cgrotor_ufs2).AppendLine();
sbInformation.AppendFormat("{0} contiguously allocated directories", ufs_sb.fs_contigdirs_ufs2).AppendLine();
sbInformation.AppendFormat("Standard superblock LBA: {0}", ufs_sb.fs_sblockloc_ufs2).AppendLine();
sbInformation.AppendFormat("{0} directories", ufs_sb.fs_cstotal_ndir_ufs2).AppendLine();
sbInformation.AppendFormat("{0} free blocks ({1} bytes)", ufs_sb.fs_cstotal_nbfree_ufs2, ufs_sb.fs_cstotal_nbfree_ufs2 * ufs_sb.fs_bsize).AppendLine();
sbInformation.AppendFormat("{0} free inodes", ufs_sb.fs_cstotal_nifree_ufs2).AppendLine();
sbInformation.AppendFormat("{0} free frags", ufs_sb.fs_cstotal_nffree_ufs2).AppendLine();
sbInformation.AppendFormat("{0} free clusters", ufs_sb.fs_cstotal_numclusters_ufs2).AppendLine();
sbInformation.AppendFormat("Volume last written on {0}", DateHandlers.UNIXUnsignedToDateTime(ufs_sb.fs_time_sec_ufs2)).AppendLine();
sbInformation.AppendFormat("{0} blocks ({1} bytes)", ufs_sb.fs_size_ufs2, ufs_sb.fs_size_ufs2 * ufs_sb.fs_bsize).AppendLine();
sbInformation.AppendFormat("{0} data blocks ({1} bytes)", ufs_sb.fs_dsize_ufs2, ufs_sb.fs_dsize_ufs2 * ufs_sb.fs_bsize).AppendLine();
sbInformation.AppendFormat("Cylinder group summary area LBA: {0}", ufs_sb.fs_csaddr_ufs2).AppendLine();
sbInformation.AppendFormat("{0} blocks pending of being freed", ufs_sb.fs_pendingblocks_ufs2).AppendLine();
sbInformation.AppendFormat("{0} inodes pending of being freed", ufs_sb.fs_pendinginodes_ufs2).AppendLine();
}
if (fs_type_sun)
{
sbInformation.AppendFormat("Volume state on {0}", DateHandlers.UNIXUnsignedToDateTime(ufs_sb.fs_state_t_sun)).AppendLine();
}
else if (fs_type_sun86)
{
sbInformation.AppendFormat("{0} sectors/track", ufs_sb.fs_npsect_sun86).AppendLine();
}
else if (fs_type_44bsd)
{
sbInformation.AppendFormat("{0} blocks on cluster summary array", ufs_sb.fs_contigsumsize_44bsd).AppendLine();
sbInformation.AppendFormat("Maximum length of a symbolic link: {0}", ufs_sb.fs_maxsymlinklen_44bsd).AppendLine();
ulong bsd44_maxfilesize = ((ulong)ufs_sb.fs_maxfilesize0_44bsd) * 0x100000000 + ufs_sb.fs_maxfilesize1_44bsd;
sbInformation.AppendFormat("A file can be {0} bytes at max", bsd44_maxfilesize).AppendLine();
sbInformation.AppendFormat("Volume state on {0}", DateHandlers.UNIXUnsignedToDateTime(ufs_sb.fs_state_t_44bsd)).AppendLine();
}
sbInformation.AppendFormat("{0} rotational positions", ufs_sb.fs_nrpos).AppendLine();
sbInformation.AppendFormat("{0} blocks per rotation", ufs_sb.fs_rotbloff).AppendLine();
information = sbInformation.ToString();
}
const uint block_size = 8192;
// As specified in FreeBSD source code, FFS/UFS can start in any of four places
const ulong sb_start_floppy = 0;
// For floppies, start at offset 0
const ulong sb_start_ufs1 = 1;
// For normal devices, start at offset 8192
const ulong sb_start_ufs2 = 8;
// For UFS2, start at offset 65536
const ulong sb_start_piggy = 32;
// For piggy devices (?), start at offset 262144
// MAGICs
const UInt32 UFS_MAGIC = 0x00011954;
// UFS magic
const UInt32 UFS_MAGIC_BW = 0x0f242697;
// BorderWare UFS
const UInt32 UFS2_MAGIC = 0x19540119;
// UFS2 magic
const UInt32 UFS_CIGAM = 0x54190100;
// byteswapped
const UInt32 UFS_BAD_MAGIC = 0x19960408;
// Incomplete newfs
// On-disk superblock is quite a mixture of all the UFS/FFS variants
// There is no clear way to detect which one is correct
// And as C# does not support unions this struct will clearly appear quite dirty :p
// To clean up things a little, comment starts with relative superblock offset of field
// Biggest sized supleblock would be 1377 bytes
public struct UFSSuperBlock
{
#region 42BSD
public UInt32 fs_link_42bsd;
// 0x0000 linked list of file systems
#endregion
#region Sun
public UInt32 fs_state_sun;
// 0x0000 file system state flag
#endregion
#region COMMON
public UInt32 fs_rlink;
// 0x0004 used for incore super blocks
public UInt32 fs_sblkno;
// 0x0008 addr of super-block in filesys
public UInt32 fs_cblkno;
// 0x000C offset of cyl-block in filesys
public UInt32 fs_iblkno;
// 0x0010 offset of inode-blocks in filesys
public UInt32 fs_dblkno;
// 0x0014 offset of first data after cg
public UInt32 fs_cgoffset;
// 0x0018 cylinder group offset in cylinder
public UInt32 fs_cgmask;
// 0x001C used to calc mod fs_ntrak
public UInt32 fs_time_t;
// 0x0020 last time written -- time_t
public UInt32 fs_size;
// 0x0024 number of blocks in fs
public UInt32 fs_dsize;
// 0x0028 number of data blocks in fs
public UInt32 fs_ncg;
// 0x002C number of cylinder groups
public UInt32 fs_bsize;
// 0x0030 size of basic blocks in fs
public UInt32 fs_fsize;
// 0x0034 size of frag blocks in fs
public UInt32 fs_frag;
// 0x0038 number of frags in a block in fs
// these are configuration parameters
public UInt32 fs_minfree;
// 0x003C minimum percentage of free blocks
public UInt32 fs_rotdelay;
// 0x0040 num of ms for optimal next block
public UInt32 fs_rps;
// 0x0044 disk revolutions per second
// these fields can be computed from the others
public UInt32 fs_bmask;
// 0x0048 ``blkoff'' calc of blk offsets
public UInt32 fs_fmask;
// 0x004C ``fragoff'' calc of frag offsets
public UInt32 fs_bshift;
// 0x0050 ``lblkno'' calc of logical blkno
public UInt32 fs_fshift;
// 0x0054 ``numfrags'' calc number of frags
// these are configuration parameters
public UInt32 fs_maxcontig;
// 0x0058 max number of contiguous blks
public UInt32 fs_maxbpg;
// 0x005C max number of blks per cyl group
// these fields can be computed from the others
public UInt32 fs_fragshift;
// 0x0060 block to frag shift
public UInt32 fs_fsbtodb;
// 0x0064 fsbtodb and dbtofsb shift constant
public UInt32 fs_sbsize;
// 0x0068 actual size of super block
public UInt32 fs_csmask;
// 0x006C csum block offset
public UInt32 fs_csshift;
// 0x0070 csum block number
public UInt32 fs_nindir;
// 0x0074 value of NINDIR
public UInt32 fs_inopb;
// 0x0078 value of INOPB
public UInt32 fs_nspf;
// 0x007C value of NSPF
// yet another configuration parameter
public UInt32 fs_optim;
// 0x0080 optimization preference, see below
#endregion COMMON
// these fields are derived from the hardware
#region Sun
public UInt32 fs_npsect_sun;
// 0x0084 # sectors/track including spares
#endregion Sun
#region Sunx86
public UInt32 fs_state_t_sun86;
// 0x0084 file system state time stamp
#endregion Sunx86
#region COMMON
public UInt32 fs_interleave;
// 0x0088 hardware sector interleave
public UInt32 fs_trackskew;
// 0x008C sector 0 skew, per track
#endregion COMMON
// a unique id for this filesystem (currently unused and unmaintained)
// In 4.3 Tahoe this space is used by fs_headswitch and fs_trkseek
// Neither of those fields is used in the Tahoe code right now but
// there could be problems if they are.
#region COMMON
public UInt32 fs_id_1;
// 0x0090
public UInt32 fs_id_2;
// 0x0094
#endregion COMMON
#region 43BSD
public UInt32 fs_headswitch_43bsd;
// 0x0090 head switch time, usec
public UInt32 fs_trkseek_43bsd;
// 0x0094 track-to-track seek, usec
#endregion 43BSD
#region COMMON
// sizes determined by number of cylinder groups and their sizes
public UInt32 fs_csaddr;
// 0x0098 blk addr of cyl grp summary area
public UInt32 fs_cssize;
// 0x009C size of cyl grp summary area
public UInt32 fs_cgsize;
// 0x00A0 cylinder group size
// these fields are derived from the hardware
public UInt32 fs_ntrak;
// 0x00A4 tracks per cylinder
public UInt32 fs_nsect;
// 0x00A8 sectors per track
public UInt32 fs_spc;
// 0x00AC sectors per cylinder
// this comes from the disk driver partitioning
public UInt32 fs_ncyl;
// 0x00B0 cylinders in file system
// these fields can be computed from the others
public UInt32 fs_cpg;
// 0x00B4 cylinders per group
public UInt32 fs_ipg;
// 0x00B8 inodes per cylinder group
public UInt32 fs_fpg;
// 0x00BC blocks per group * fs_frag
// this data must be re-computed after crashes
// struct ufs_csum fs_cstotal; // cylinder summary information
public UInt32 fs_cstotal_ndir;
// 0x00C0 number of directories
public UInt32 fs_cstotal_nbfree;
// 0x00C4 number of free blocks
public UInt32 fs_cstotal_nifree;
// 0x00C8 number of free inodes
public UInt32 fs_cstotal_nffree;
// 0x00CC number of free frags
// these fields are cleared at mount time
public byte fs_fmod;
// 0x00D0 super block modified flag
public byte fs_clean;
// 0x00D1 file system is clean flag
public byte fs_ronly;
// 0x00D2 mounted read-only flag
public byte fs_flags;
// 0x00D3
#endregion common
#region UFS1
public string fs_fsmnt_ufs1;
// 0x00D4, 512 bytes, name mounted on
public UInt32 fs_cgrotor_ufs1;
// 0x02D4 last cg searched
public byte[] fs_cs_ufs1;
// 0x02D8, 124 bytes, UInt32s, list of fs_cs info buffers
public UInt32 fs_maxcluster_ufs1;
// 0x0354
public UInt32 fs_cpc_ufs1;
// 0x0358 cyl per cycle in postbl
public byte[] fs_opostbl_ufs1;
// 0x035C, 256 bytes, [16][8] matrix of UInt16s, old rotation block list head
#endregion UFS1
#region UFS2
public string fs_fsmnt_ufs2;
// 0x00D4, 468 bytes, name mounted on
public string fs_volname_ufs2;
// 0x02A8, 32 bytes, volume name
public UInt64 fs_swuid_ufs2;
// 0x02C8 system-wide uid
public UInt32 fs_pad_ufs2;
// 0x02D0 due to alignment of fs_swuid
public UInt32 fs_cgrotor_ufs2;
// 0x02D4 last cg searched
public byte[] fs_ocsp_ufs2;
// 0x02D8, 112 bytes, UInt32s, list of fs_cs info buffers
public UInt32 fs_contigdirs_ufs2;
// 0x0348 # of contiguously allocated dirs
public UInt32 fs_csp_ufs2;
// 0x034C cg summary info buffer for fs_cs
public UInt32 fs_maxcluster_ufs2;
// 0x0350
public UInt32 fs_active_ufs2;
// 0x0354 used by snapshots to track fs
public UInt32 fs_old_cpc_ufs2;
// 0x0358 cyl per cycle in postbl
public UInt32 fs_maxbsize_ufs2;
// 0x035C maximum blocking factor permitted
public byte[] fs_sparecon64_ufs2;
// 0x0360, 136 bytes, UInt64s, old rotation block list head
public UInt64 fs_sblockloc_ufs2;
// 0x03E8 byte offset of standard superblock
//cylinder summary information*/
public UInt64 fs_cstotal_ndir_ufs2;
// 0x03F0 number of directories
public UInt64 fs_cstotal_nbfree_ufs2;
// 0x03F8 number of free blocks
public UInt64 fs_cstotal_nifree_ufs2;
// 0x0400 number of free inodes
public UInt64 fs_cstotal_nffree_ufs2;
// 0x0408 number of free frags
public UInt64 fs_cstotal_numclusters_ufs2;
// 0x0410 number of free clusters
public UInt64 fs_cstotal_spare0_ufs2;
// 0x0418 future expansion
public UInt64 fs_cstotal_spare1_ufs2;
// 0x0420 future expansion
public UInt64 fs_cstotal_spare2_ufs2;
// 0x0428 future expansion
public UInt32 fs_time_sec_ufs2;
// 0x0430 last time written
public UInt32 fs_time_usec_ufs2;
// 0x0434 last time written
public UInt64 fs_size_ufs2;
// 0x0438 number of blocks in fs
public UInt64 fs_dsize_ufs2;
// 0x0440 number of data blocks in fs
public UInt64 fs_csaddr_ufs2;
// 0x0448 blk addr of cyl grp summary area
public UInt64 fs_pendingblocks_ufs2;
// 0x0450 blocks in process of being freed
public UInt32 fs_pendinginodes_ufs2;
// 0x0458 inodes in process of being freed
#endregion UFS2
#region Sun
public byte[] fs_sparecon_sun;
// 0x045C, 212 bytes, reserved for future constants
public UInt32 fs_reclaim_sun;
// 0x0530
public UInt32 fs_sparecon2_sun;
// 0x0534
public UInt32 fs_state_t_sun;
// 0x0538 file system state time stamp
public UInt32 fs_qbmask0_sun;
// 0x053C ~usb_bmask
public UInt32 fs_qbmask1_sun;
// 0x0540 ~usb_bmask
public UInt32 fs_qfmask0_sun;
// 0x0544 ~usb_fmask
public UInt32 fs_qfmask1_sun;
// 0x0548 ~usb_fmask
#endregion Sun
#region Sunx86
public byte[] fs_sparecon_sun86;
// 0x045C, 212 bytes, reserved for future constants
public UInt32 fs_reclaim_sun86;
// 0x0530
public UInt32 fs_sparecon2_sun86;
// 0x0534
public UInt32 fs_npsect_sun86;
// 0x0538 # sectors/track including spares
public UInt32 fs_qbmask0_sun86;
// 0x053C ~usb_bmask
public UInt32 fs_qbmask1_sun86;
// 0x0540 ~usb_bmask
public UInt32 fs_qfmask0_sun86;
// 0x0544 ~usb_fmask
public UInt32 fs_qfmask1_sun86;
// 0x0548 ~usb_fmask
#endregion Sunx86
#region 44BSD
public byte[] fs_sparecon_44bsd;
// 0x045C, 200 bytes
public UInt32 fs_contigsumsize_44bsd;
// 0x0524 size of cluster summary array
public UInt32 fs_maxsymlinklen_44bsd;
// 0x0528 max length of an internal symlink
public UInt32 fs_inodefmt_44bsd;
// 0x052C format of on-disk inodes
public UInt32 fs_maxfilesize0_44bsd;
// 0x0530 max representable file size
public UInt32 fs_maxfilesize1_44bsd;
// 0x0534 max representable file size
public UInt32 fs_qbmask0_44bsd;
// 0x0538 ~usb_bmask
public UInt32 fs_qbmask1_44bsd;
// 0x053C ~usb_bmask
public UInt32 fs_qfmask0_44bsd;
// 0x0540 ~usb_fmask
public UInt32 fs_qfmask1_44bsd;
// 0x0544 ~usb_fmask
public UInt32 fs_state_t_44bsd;
// 0x0548 file system state time stamp
#endregion 44BSD
public UInt32 fs_postblformat;
// 0x054C format of positional layout tables
public UInt32 fs_nrpos;
// 0x0550 number of rotational positions
public UInt32 fs_postbloff;
// 0x0554 (__s16) rotation block list head
public UInt32 fs_rotbloff;
// 0x0558 (__u8) blocks for each rotation
public UInt32 fs_magic;
// 0x055C magic number
public byte fs_space;
// 0x0560 list of blocks for each rotation
// 0x0561
}
}
}