Files
Aaru/Aaru.Core/Devices/Dumping/CompactDisc/Data.cs

1272 lines
55 KiB
C#

// /***************************************************************************
// Aaru Data Preservation Suite
// ----------------------------------------------------------------------------
//
// Filename : Data.cs
// Author(s) : Natalia Portillo <claunia@claunia.com>
//
// Component : CompactDisc dumping.
//
// --[ Description ] ----------------------------------------------------------
//
// Dumps user data part.
//
// --[ License ] --------------------------------------------------------------
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// ----------------------------------------------------------------------------
// Copyright © 2011-2025 Natalia Portillo
// ****************************************************************************/
// ReSharper disable JoinDeclarationAndInitializer
// ReSharper disable InlineOutVariableDeclaration
// ReSharper disable TooWideLocalVariableScope
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Aaru.Checksums;
using Aaru.CommonTypes.AaruMetadata;
using Aaru.CommonTypes.Enums;
using Aaru.CommonTypes.Extents;
using Aaru.CommonTypes.Interfaces;
using Aaru.Core.Logging;
using Aaru.Decoders.CD;
using Aaru.Decoders.SCSI;
using Aaru.Devices;
using Aaru.Localization;
using Aaru.Logging;
using Humanizer;
using Track = Aaru.CommonTypes.Structs.Track;
using TrackType = Aaru.CommonTypes.Enums.TrackType;
namespace Aaru.Core.Devices.Dumping;
partial class Dump
{
/// <summary>Reads all CD user data</summary>
/// <param name="audioExtents">Extents with audio sectors</param>
/// <param name="blocks">Total number of positive sectors</param>
/// <param name="blockSize">Size of the read sector in bytes</param>
/// <param name="currentSpeed">Current read speed</param>
/// <param name="currentTry">Current dump hardware try</param>
/// <param name="extents">Extents</param>
/// <param name="ibgLog">IMGBurn log</param>
/// <param name="imageWriteDuration">Duration of image write</param>
/// <param name="lastSector">Last sector number</param>
/// <param name="leadOutExtents">Lead-out extents</param>
/// <param name="maxSpeed">Maximum speed</param>
/// <param name="mhddLog">MHDD log</param>
/// <param name="minSpeed">Minimum speed</param>
/// <param name="newTrim">Is trim a new one?</param>
/// <param name="nextData">Next cluster of sectors is all data</param>
/// <param name="offsetBytes">Read offset</param>
/// <param name="read6">Device supports READ(6)</param>
/// <param name="read10">Device supports READ(10)</param>
/// <param name="read12">Device supports READ(12)</param>
/// <param name="read16">Device supports READ(16)</param>
/// <param name="readcd">Device supports READ CD</param>
/// <param name="sectorsForOffset">Sectors needed to fix offset</param>
/// <param name="subSize">Subchannel size in bytes</param>
/// <param name="supportedSubchannel">Drive's maximum supported subchannel</param>
/// <param name="supportsLongSectors">Supports reading EDC and ECC</param>
/// <param name="totalDuration">Total commands duration</param>
/// <param name="tracks">Disc tracks</param>
/// <param name="subLog">Subchannel log</param>
/// <param name="desiredSubchannel">Subchannel desired to save</param>
/// <param name="isrcs">List of disc ISRCs</param>
/// <param name="mcn">Disc media catalogue number</param>
/// <param name="subchannelExtents">List of subchannels not yet dumped correctly</param>
/// <param name="smallestPregapLbaPerTrack">List of smallest pregap relative address per track</param>
void ReadCdData(ExtentsULong audioExtents, ulong blocks, uint blockSize, ref double currentSpeed,
DumpHardware currentTry, ExtentsULong extents, IbgLog ibgLog, ref double imageWriteDuration,
long lastSector, ExtentsULong leadOutExtents, ref double maxSpeed, MhddLog mhddLog,
ref double minSpeed, out bool newTrim, bool nextData, int offsetBytes, bool read6, bool read10,
bool read12, bool read16, bool readcd, int sectorsForOffset, uint subSize,
MmcSubchannel supportedSubchannel, bool supportsLongSectors, ref double totalDuration,
Track[] tracks, SubchannelLog subLog, MmcSubchannel desiredSubchannel,
Dictionary<byte, string> isrcs, ref string mcn, HashSet<int> subchannelExtents,
Dictionary<byte, int> smallestPregapLbaPerTrack)
{
ulong sectorSpeedStart = 0; // Used to calculate correct speed
uint blocksToRead; // How many sectors to read at once
var sense = true; // Sense indicator
byte[] cmdBuf = null; // Data buffer
ReadOnlySpan<byte> senseBuf = null; // Sense buffer
const uint sectorSize = 2352; // Full sector size
newTrim = false;
PlextorSubchannel supportedPlextorSubchannel;
var outputFormat = _outputPlugin as IWritableImage;
supportedPlextorSubchannel = supportedSubchannel switch
{
MmcSubchannel.None => PlextorSubchannel.None,
MmcSubchannel.Raw => PlextorSubchannel.Pack,
MmcSubchannel.Q16 => PlextorSubchannel.Q16,
_ => PlextorSubchannel.None
};
InitProgress?.Invoke();
int currentReadSpeed = _speed;
var crossingLeadOut = false;
var failedCrossingLeadOut = false;
var skippingLead = false;
double elapsed = 0;
for(ulong i = _resume.NextBlock; (long)i <= lastSector; i += blocksToRead)
{
_speedStopwatch.Reset();
if(_aborted)
{
currentTry.Extents = ExtentsConverter.ToMetadata(extents);
UpdateStatus?.Invoke(Localization.Core.Aborted);
break;
}
while(leadOutExtents.Contains(i))
{
skippingLead = true;
i++;
}
if((long)i > lastSector) break;
var firstSectorToRead = (uint)i;
Track track = tracks.OrderBy(static t => t.StartSector).LastOrDefault(t => i >= t.StartSector);
blocksToRead = 0;
bool inData = nextData;
for(ulong j = i; j < i + _maximumReadable; j++)
{
if(j > (ulong)lastSector)
{
if(!failedCrossingLeadOut && !inData) blocksToRead += (uint)sectorsForOffset;
if(sectorsForOffset > 0 && !inData) crossingLeadOut = true;
break;
}
if(nextData)
{
if(audioExtents.Contains(j))
{
nextData = false;
break;
}
blocksToRead++;
}
else
{
if(!audioExtents.Contains(j))
{
nextData = true;
break;
}
blocksToRead++;
}
}
if(track.Sequence != 0 && i + blocksToRead - (ulong)sectorsForOffset > track.EndSector + 1)
blocksToRead = (uint)(track.EndSector + 1 - i + (ulong)sectorsForOffset);
if(blocksToRead == 1 && !inData) blocksToRead += (uint)sectorsForOffset;
if(blocksToRead == 0)
{
if(!skippingLead) i += (ulong)sectorsForOffset;
skippingLead = false;
continue;
}
if(_fixOffset && !inData)
{
if(offsetBytes < 0)
{
if(i == 0)
firstSectorToRead = uint.MaxValue - (uint)(sectorsForOffset - 1); // -1
else
firstSectorToRead -= (uint)sectorsForOffset;
if(blocksToRead <= sectorsForOffset) blocksToRead += (uint)sectorsForOffset;
}
}
switch(inData)
{
case false when currentReadSpeed == 0xFFFF:
UpdateStatus?.Invoke(Localization.Core.Setting_speed_to_8x_for_audio_reading);
_dev.SetCdSpeed(out _, RotationalControl.ClvAndImpureCav, 1416, 0, _dev.Timeout, out _);
currentReadSpeed = 1200;
break;
case true when currentReadSpeed != _speed:
{
UpdateStatus?.Invoke(_speed == 0xFFFF
? Localization.Core.Setting_speed_to_MAX_for_data_reading
: string.Format(Localization.Core.Setting_speed_to_0_x_for_data_reading,
_speed));
_speed *= _speedMultiplier;
if(_speed is 0 or > 0xFFFF) _speed = 0xFFFF;
currentReadSpeed = _speed;
_dev.SetCdSpeed(out _, RotationalControl.ClvAndImpureCav, (ushort)_speed, 0, _dev.Timeout, out _);
break;
}
}
if(inData && crossingLeadOut)
{
firstSectorToRead = (uint)i;
blocksToRead = (uint)(lastSector - firstSectorToRead) + 1;
crossingLeadOut = false;
}
if(currentSpeed > maxSpeed && currentSpeed > 0) maxSpeed = currentSpeed;
if(currentSpeed < minSpeed && currentSpeed > 0) minSpeed = currentSpeed;
UpdateProgress?.Invoke(string.Format(Localization.Core.Reading_sector_0_of_1_2,
i,
blocks,
ByteSize.FromMegabytes(currentSpeed).Per(_oneSecond).Humanize()),
(long)i,
(long)blocks);
if(crossingLeadOut && failedCrossingLeadOut && blocksToRead > 1) blocksToRead--;
if(_supportsPlextorD8 && !inData)
{
_speedStopwatch.Start();
sense = ReadPlextorWithSubchannel(out cmdBuf,
out senseBuf,
firstSectorToRead,
blockSize,
blocksToRead,
supportedPlextorSubchannel,
out _);
_speedStopwatch.Stop();
totalDuration += _speedStopwatch.Elapsed.TotalMilliseconds;
}
else if(readcd)
{
if(inData)
{
_speedStopwatch.Start();
sense = _dev.ReadCd(out cmdBuf,
out senseBuf,
firstSectorToRead,
blockSize,
blocksToRead,
MmcSectorTypes.AllTypes,
false,
false,
true,
MmcHeaderCodes.AllHeaders,
true,
true,
MmcErrorField.None,
supportedSubchannel,
_dev.Timeout,
out _);
_speedStopwatch.Stop();
if(sense)
{
DecodedSense? decSense = Sense.Decode(senseBuf);
// Try to workaround firmware
if(decSense?.ASC == 0x64)
{
var goBackTrackTypeChange = false;
// Go one for one as the drive does not tell us which one failed
for(var bi = 0; bi < blocksToRead; bi++)
{
_speedStopwatch.Start();
sense = _dev.ReadCd(out cmdBuf,
out senseBuf,
(uint)(firstSectorToRead + bi),
blockSize,
1,
MmcSectorTypes.AllTypes,
false,
false,
true,
MmcHeaderCodes.AllHeaders,
true,
true,
MmcErrorField.None,
supportedSubchannel,
_dev.Timeout,
out _);
_speedStopwatch.Stop();
if(!sense &&
cmdBuf[0] == 0x00 &&
cmdBuf[1] == 0xFF &&
cmdBuf[2] == 0xFF &&
cmdBuf[3] == 0xFF &&
cmdBuf[4] == 0xFF &&
cmdBuf[5] == 0xFF &&
cmdBuf[6] == 0xFF &&
cmdBuf[7] == 0xFF &&
cmdBuf[8] == 0xFF &&
cmdBuf[9] == 0xFF &&
cmdBuf[10] == 0xFF &&
cmdBuf[11] == 0x00)
continue;
// Set those sectors as audio
for(int bip = bi; bip < blocksToRead; bip++)
audioExtents.Add((ulong)(firstSectorToRead + bip));
goBackTrackTypeChange = true;
break;
}
// Go back to read again
if(goBackTrackTypeChange)
{
blocksToRead = 0;
nextData = true;
continue;
}
// Drive definitively didn't like to read everything so just do something clever...
// Try again
_speedStopwatch.Start();
sense = _dev.ReadCd(out cmdBuf,
out senseBuf,
firstSectorToRead,
blockSize,
blocksToRead,
MmcSectorTypes.AllTypes,
false,
false,
true,
MmcHeaderCodes.AllHeaders,
true,
true,
MmcErrorField.None,
supportedSubchannel,
_dev.Timeout,
out _);
_speedStopwatch.Stop();
if(sense)
// Try reading one less every time
{
for(uint bi = blocksToRead; bi > 0; bi--)
{
_speedStopwatch.Start();
sense = _dev.ReadCd(out cmdBuf,
out senseBuf,
firstSectorToRead,
blockSize,
bi,
MmcSectorTypes.AllTypes,
false,
false,
true,
MmcHeaderCodes.AllHeaders,
true,
true,
MmcErrorField.None,
supportedSubchannel,
_dev.Timeout,
out _);
_speedStopwatch.Stop();
if(sense) continue;
blocksToRead = bi;
break;
}
}
}
}
}
else
{
_speedStopwatch.Start();
sense = _dev.ReadCd(out cmdBuf,
out senseBuf,
firstSectorToRead,
blockSize,
blocksToRead,
MmcSectorTypes.Cdda,
false,
false,
false,
MmcHeaderCodes.None,
true,
false,
MmcErrorField.None,
supportedSubchannel,
_dev.Timeout,
out _);
_speedStopwatch.Stop();
if(sense)
{
DecodedSense? decSense = Sense.Decode(senseBuf);
// Try to workaround firmware
if(decSense is { ASC: 0x11, ASCQ: 0x05 } || decSense?.ASC == 0x64)
{
_speedStopwatch.Start();
sense = _dev.ReadCd(out cmdBuf,
out _,
firstSectorToRead,
blockSize,
blocksToRead,
MmcSectorTypes.AllTypes,
false,
false,
true,
MmcHeaderCodes.AllHeaders,
true,
true,
MmcErrorField.None,
supportedSubchannel,
_dev.Timeout,
out _);
_speedStopwatch.Stop();
}
}
}
totalDuration += _speedStopwatch.Elapsed.TotalMilliseconds;
}
else if(read16)
{
_speedStopwatch.Start();
sense = _dev.Read16(out cmdBuf,
out senseBuf,
0,
false,
false,
false,
firstSectorToRead,
blockSize,
0,
blocksToRead,
false,
_dev.Timeout,
out _);
_speedStopwatch.Stop();
}
else if(read12)
{
_speedStopwatch.Start();
sense = _dev.Read12(out cmdBuf,
out senseBuf,
0,
false,
false,
false,
false,
firstSectorToRead,
blockSize,
0,
blocksToRead,
false,
_dev.Timeout,
out _);
_speedStopwatch.Stop();
}
else if(read10)
{
_speedStopwatch.Start();
sense = _dev.Read10(out cmdBuf,
out senseBuf,
0,
false,
false,
false,
false,
firstSectorToRead,
blockSize,
0,
(ushort)blocksToRead,
_dev.Timeout,
out _);
_speedStopwatch.Stop();
}
else if(read6)
{
_speedStopwatch.Start();
sense = _dev.Read6(out cmdBuf,
out senseBuf,
firstSectorToRead,
blockSize,
(byte)blocksToRead,
_dev.Timeout,
out _);
_speedStopwatch.Stop();
}
// Overcome the track mode change drive error
if(inData && !nextData && sense)
{
for(uint r = 0; r < blocksToRead; r++)
{
UpdateProgress?.Invoke(string.Format(Localization.Core.Reading_sector_0_of_1_2,
i + r,
blocks,
ByteSize.FromMegabytes(currentSpeed)
.Per(_oneSecond)
.Humanize()),
(long)i + r,
(long)blocks);
if(_supportsPlextorD8)
{
var adjustment = 0;
if(offsetBytes < 0) adjustment = -sectorsForOffset;
_speedStopwatch.Start();
sense = ReadPlextorWithSubchannel(out cmdBuf,
out senseBuf,
(uint)(firstSectorToRead + r + adjustment),
blockSize,
(uint)sectorsForOffset + 1,
supportedPlextorSubchannel,
out _);
_speedStopwatch.Stop();
totalDuration += _speedStopwatch.Elapsed.TotalMilliseconds;
if(!sense)
{
var sectorsForFix = (uint)(1 + sectorsForOffset);
FixOffsetData(offsetBytes,
sectorSize,
sectorsForOffset,
supportedSubchannel,
ref sectorsForFix,
subSize,
ref cmdBuf,
blockSize,
false);
// Descramble
cmdBuf = Sector.Scramble(cmdBuf);
// Check valid sector
CdChecksums.CheckCdSector(cmdBuf,
out bool? correctEccP,
out bool? correctEccQ,
out bool? correctEdc);
// Check mode, set sense if EDC/ECC validity is not correct
switch(cmdBuf[15] & 0x03)
{
case 0:
for(var c = 16; c < 2352; c++)
{
if(cmdBuf[c] == 0x00) continue;
sense = true;
break;
}
break;
case 1:
sense = correctEdc != true || correctEccP != true || correctEccQ != true;
break;
case 2:
if((cmdBuf[18] & 0x20) != 0x20)
{
if(correctEccP != true) sense = true;
if(correctEccQ != true) sense = true;
}
if(correctEdc != true) sense = true;
break;
}
}
}
else if(readcd)
{
_speedStopwatch.Start();
sense = _dev.ReadCd(out cmdBuf,
out senseBuf,
(uint)(i + r),
blockSize,
1,
MmcSectorTypes.AllTypes,
false,
false,
true,
MmcHeaderCodes.AllHeaders,
true,
true,
MmcErrorField.None,
supportedSubchannel,
_dev.Timeout,
out _);
_speedStopwatch.Stop();
totalDuration += _speedStopwatch.Elapsed.TotalMilliseconds;
}
else if(read16)
{
_speedStopwatch.Start();
sense = _dev.Read16(out cmdBuf,
out senseBuf,
0,
false,
true,
false,
i + r,
blockSize,
0,
1,
false,
_dev.Timeout,
out _);
_speedStopwatch.Stop();
totalDuration += _speedStopwatch.Elapsed.TotalMilliseconds;
}
else if(read12)
{
_speedStopwatch.Start();
sense = _dev.Read12(out cmdBuf,
out senseBuf,
0,
false,
true,
false,
false,
(uint)(i + r),
blockSize,
0,
1,
false,
_dev.Timeout,
out _);
_speedStopwatch.Stop();
totalDuration += _speedStopwatch.Elapsed.TotalMilliseconds;
}
else if(read10)
{
_speedStopwatch.Start();
sense = _dev.Read10(out cmdBuf,
out senseBuf,
0,
false,
true,
false,
false,
(uint)(i + r),
blockSize,
0,
1,
_dev.Timeout,
out _);
_speedStopwatch.Stop();
totalDuration += _speedStopwatch.Elapsed.TotalMilliseconds;
}
else if(read6)
{
_speedStopwatch.Start();
sense = _dev.Read6(out cmdBuf, out senseBuf, (uint)(i + r), blockSize, 1, _dev.Timeout, out _);
_speedStopwatch.Stop();
totalDuration += _speedStopwatch.Elapsed.TotalMilliseconds;
}
if(!sense && !_dev.Error)
{
mhddLog.Write(i + r, _speedStopwatch.Elapsed.TotalMilliseconds);
extents.Add(i + r, 1, true);
_writeStopwatch.Restart();
SectorStatus sectorStatus = SectorStatus.Dumped;
if(supportedSubchannel != MmcSubchannel.None)
{
var data = new byte[sectorSize];
var sub = new byte[subSize];
Array.Copy(cmdBuf, 0, data, 0, sectorSize);
Array.Copy(cmdBuf, sectorSize, sub, 0, subSize);
if(_paranoia)
{
// Check valid sector
CdChecksums.CheckCdSector(data,
out bool? correctEccP,
out bool? correctEccQ,
out bool? correctEdc);
if(correctEdc != true || correctEccP != true || correctEccQ != true)
{
sectorStatus = SectorStatus.Errored;
_resume.BadBlocks.Add(i + r);
if(correctEdc != true)
UpdateStatus?.Invoke(string.Format(UI.Incorrect_EDC_in_sector_0, i + r));
if(correctEccP != true)
UpdateStatus?.Invoke(string.Format(UI.Incorrect_ECC_P_in_sector_0, i + r));
if(correctEccQ != true)
UpdateStatus?.Invoke(string.Format(UI.Incorrect_ECC_Q_in_sector_0, i + r));
}
}
if(supportsLongSectors)
outputFormat.WriteSectorsLong(data, i + r, false, 1, [sectorStatus]);
else
{
var cooked = new MemoryStream();
var sector = new byte[sectorSize];
for(var b = 0; b < blocksToRead; b++)
{
Array.Copy(cmdBuf, (int)(0 + b * blockSize), sector, 0, sectorSize);
byte[] cookedSector = Sector.GetUserData(sector);
cooked.Write(cookedSector, 0, cookedSector.Length);
}
outputFormat.WriteSectors(cooked.ToArray(),
i,
false,
blocksToRead,
Enumerable.Repeat(sectorStatus, (int)blocksToRead).ToArray());
}
bool indexesChanged = Media.CompactDisc.WriteSubchannelToImage(supportedSubchannel,
desiredSubchannel,
sub,
i + r,
1,
subLog,
isrcs,
(byte)track.Sequence,
ref mcn,
tracks,
subchannelExtents,
_fixSubchannelPosition,
outputFormat as IWritableOpticalImage,
_fixSubchannel,
_fixSubchannelCrc,
UpdateStatus,
smallestPregapLbaPerTrack,
true,
out List<ulong> newPregapSectors);
// Set tracks and go back
if(indexesChanged)
{
(outputFormat as IWritableOpticalImage).SetTracks(tracks.ToList());
_resume.BadBlocks.AddRange(newPregapSectors);
if(i >= blocksToRead)
i -= blocksToRead;
else
i = 0;
if(i > 0) i--;
foreach(Track aTrack in tracks.Where(static aTrack => aTrack.Type == TrackType.Audio))
audioExtents.Add(aTrack.StartSector, aTrack.EndSector);
continue;
}
}
else
{
if(_paranoia)
{
// Check valid sector
CdChecksums.CheckCdSector(cmdBuf,
out bool? correctEccP,
out bool? correctEccQ,
out bool? correctEdc);
if(correctEdc != true || correctEccP != true || correctEccQ != true)
{
sectorStatus = SectorStatus.Errored;
_resume.BadBlocks.Add(i + r);
if(correctEdc != true)
UpdateStatus?.Invoke(string.Format(UI.Incorrect_EDC_in_sector_0, i + r));
if(correctEccP != true)
UpdateStatus?.Invoke(string.Format(UI.Incorrect_ECC_P_in_sector_0, i + r));
if(correctEccQ != true)
UpdateStatus?.Invoke(string.Format(UI.Incorrect_ECC_Q_in_sector_0, i + r));
}
}
if(supportsLongSectors)
outputFormat.WriteSectorsLong(cmdBuf, i + r, false, 1, [sectorStatus]);
else
{
var cooked = new MemoryStream();
var sector = new byte[sectorSize];
for(var b = 0; b < blocksToRead; b++)
{
Array.Copy(cmdBuf, (int)(b * sectorSize), sector, 0, sectorSize);
byte[] cookedSector = Sector.GetUserData(sector);
cooked.Write(cookedSector, 0, cookedSector.Length);
}
outputFormat.WriteSectors(cooked.ToArray(),
i,
false,
blocksToRead,
Enumerable.Repeat(sectorStatus, (int)blocksToRead).ToArray());
}
}
_mediaGraph?.PaintSectorGood(i + r);
imageWriteDuration += _writeStopwatch.Elapsed.TotalSeconds;
}
else
{
_errorLog?.WriteLine(i + r, _dev.Error, _dev.LastError, senseBuf.ToArray());
// Write empty data
_writeStopwatch.Restart();
if(supportedSubchannel != MmcSubchannel.None)
{
outputFormat.WriteSectorsLong(new byte[sectorSize],
i + r,
false,
1,
[SectorStatus.Errored]);
if(desiredSubchannel != MmcSubchannel.None)
{
outputFormat.WriteSectorsTag(new byte[subSize],
i + r,
false,
1,
SectorTagType.CdSectorSubchannel);
}
}
else
{
if(supportsLongSectors)
{
outputFormat.WriteSectorsLong(new byte[blockSize],
i + r,
false,
1,
[SectorStatus.Errored]);
}
else
{
if(cmdBuf.Length % sectorSize == 0)
outputFormat.WriteSectors(new byte[2048], i + r, false, 1, [SectorStatus.Errored]);
else
{
outputFormat.WriteSectorsLong(new byte[blockSize],
i + r,
false,
1,
[SectorStatus.Errored]);
}
}
}
imageWriteDuration += _writeStopwatch.Elapsed.TotalSeconds;
_mediaGraph?.PaintSectorBad(i + r);
_resume.BadBlocks.Add(i + r);
AaruLogging.Debug(MODULE_NAME, Localization.Core.READ_error_0, Sense.PrettifySense(senseBuf));
mhddLog.Write(i + r,
_speedStopwatch.Elapsed.TotalMilliseconds < 500
? 65535
: _speedStopwatch.Elapsed.TotalMilliseconds);
AaruLogging.WriteLine(Localization.Core.Skipping_0_blocks_from_errored_block_1, 1, i + r);
newTrim = true;
}
_writeStopwatch.Stop();
sectorSpeedStart += r;
_resume.NextBlock = i + r;
_speedStopwatch.Reset();
elapsed += _speedStopwatch.Elapsed.TotalMilliseconds;
if(elapsed < 100) continue;
currentSpeed = sectorSpeedStart * blockSize / (1048576 * elapsed / 1000);
ibgLog.Write(i + r, currentSpeed * 1024);
sectorSpeedStart = 0;
elapsed = 0;
}
continue;
}
if(!sense && !_dev.Error)
{
if(crossingLeadOut && failedCrossingLeadOut)
{
var tmp = new byte[cmdBuf.Length + blockSize];
Array.Copy(cmdBuf, 0, tmp, 0, cmdBuf.Length);
}
// Because one block has been partially used to fix the offset
if(_fixOffset && !inData && offsetBytes != 0)
{
FixOffsetData(offsetBytes,
sectorSize,
sectorsForOffset,
supportedSubchannel,
ref blocksToRead,
subSize,
ref cmdBuf,
blockSize,
failedCrossingLeadOut);
}
mhddLog.Write(i, _speedStopwatch.Elapsed.TotalMilliseconds, blocksToRead);
ibgLog.Write(i, currentSpeed * 1024);
extents.Add(i, blocksToRead, true);
_writeStopwatch.Restart();
if(supportedSubchannel != MmcSubchannel.None)
{
var data = new byte[sectorSize * blocksToRead];
var sub = new byte[subSize * blocksToRead];
var sectorStatus = new SectorStatus[blocksToRead];
var sector = new byte[sectorSize];
for(var b = 0; b < blocksToRead; b++)
{
Array.Copy(cmdBuf, (int)(0 + b * blockSize), data, sectorSize * b, sectorSize);
Array.Copy(cmdBuf, (int)(sectorSize + b * blockSize), sub, subSize * b, subSize);
Array.Copy(cmdBuf, (int)(0 + b * blockSize), sector, 0, sectorSize);
sectorStatus[b] = SectorStatus.Dumped;
if(!inData || !_paranoia) continue;
// Check valid sector
CdChecksums.CheckCdSector(sector,
out bool? correctEccP,
out bool? correctEccQ,
out bool? correctEdc);
if(correctEdc == true && correctEccP == true && correctEccQ == true) continue;
sectorStatus[b] = SectorStatus.Errored;
_resume.BadBlocks.Add(i + (ulong)b);
if(correctEdc != true)
UpdateStatus?.Invoke(string.Format(UI.Incorrect_EDC_in_sector_0, i + (ulong)b));
if(correctEccP != true)
UpdateStatus?.Invoke(string.Format(UI.Incorrect_ECC_P_in_sector_0, i + (ulong)b));
if(correctEccQ != true)
UpdateStatus?.Invoke(string.Format(UI.Incorrect_ECC_Q_in_sector_0, i + (ulong)b));
}
if(supportsLongSectors)
outputFormat.WriteSectorsLong(data, i, false, blocksToRead, sectorStatus);
else
{
var cooked = new MemoryStream();
for(var b = 0; b < blocksToRead; b++)
{
Array.Copy(cmdBuf, (int)(0 + b * blockSize), sector, 0, sectorSize);
byte[] cookedSector = Sector.GetUserData(sector);
cooked.Write(cookedSector, 0, cookedSector.Length);
}
outputFormat.WriteSectors(cooked.ToArray(), i, false, blocksToRead, sectorStatus);
}
bool indexesChanged = Media.CompactDisc.WriteSubchannelToImage(supportedSubchannel,
desiredSubchannel,
sub,
i,
blocksToRead,
subLog,
isrcs,
(byte)track.Sequence,
ref mcn,
tracks,
subchannelExtents,
_fixSubchannelPosition,
outputFormat as IWritableOpticalImage,
_fixSubchannel,
_fixSubchannelCrc,
UpdateStatus,
smallestPregapLbaPerTrack,
true,
out List<ulong> newPregapSectors);
// Set tracks and go back
if(indexesChanged)
{
(outputFormat as IWritableOpticalImage).SetTracks(tracks.ToList());
_resume.BadBlocks.AddRange(newPregapSectors);
if(i >= blocksToRead)
i -= blocksToRead;
else
i = 0;
if(i > 0) i--;
foreach(Track aTrack in tracks.Where(static aTrack => aTrack.Type == TrackType.Audio))
audioExtents.Add(aTrack.StartSector, aTrack.EndSector);
continue;
}
}
else
{
if(supportsLongSectors)
{
outputFormat.WriteSectorsLong(cmdBuf,
i,
false,
blocksToRead,
Enumerable.Repeat(SectorStatus.Dumped, (int)blocksToRead)
.ToArray());
}
else
{
var cooked = new MemoryStream();
var sector = new byte[sectorSize];
for(var b = 0; b < blocksToRead; b++)
{
Array.Copy(cmdBuf, (int)(b * sectorSize), sector, 0, sectorSize);
byte[] cookedSector = Sector.GetUserData(sector);
cooked.Write(cookedSector, 0, cookedSector.Length);
}
outputFormat.WriteSectors(cooked.ToArray(),
i,
false,
blocksToRead,
Enumerable.Repeat(SectorStatus.Dumped, (int)blocksToRead).ToArray());
}
}
_mediaGraph?.PaintSectorsGood(i, blocksToRead);
imageWriteDuration += _writeStopwatch.Elapsed.TotalSeconds;
}
else
{
if(crossingLeadOut && Sense.Decode(senseBuf)?.ASC == 0x21)
{
if(failedCrossingLeadOut) break;
failedCrossingLeadOut = true;
blocksToRead = 0;
continue;
}
_errorLog?.WriteLine(firstSectorToRead, _dev.Error, _dev.LastError, senseBuf.ToArray());
// TODO: Reset device after X errors
if(_stopOnError) return; // TODO: Return more cleanly
if(i + _skip > blocks) _skip = (uint)(blocks - i);
// Write empty data
_writeStopwatch.Restart();
if(supportedSubchannel != MmcSubchannel.None)
{
outputFormat.WriteSectorsLong(new byte[sectorSize * _skip],
i,
false,
_skip,
Enumerable.Repeat(SectorStatus.NotDumped, (int)_skip).ToArray());
if(desiredSubchannel != MmcSubchannel.None)
{
outputFormat.WriteSectorsTag(new byte[subSize * _skip],
i,
false,
_skip,
SectorTagType.CdSectorSubchannel);
}
}
else
{
if(supportsLongSectors)
{
outputFormat.WriteSectorsLong(new byte[blockSize * _skip],
i,
false,
_skip,
Enumerable.Repeat(SectorStatus.NotDumped, (int)_skip).ToArray());
}
else
{
if(cmdBuf.Length % sectorSize == 0)
{
outputFormat.WriteSectors(new byte[2048 * _skip],
i,
false,
_skip,
Enumerable.Repeat(SectorStatus.NotDumped, (int)_skip).ToArray());
}
else
{
outputFormat.WriteSectorsLong(new byte[blockSize * _skip],
i,
false,
_skip,
Enumerable.Repeat(SectorStatus.NotDumped, (int)_skip)
.ToArray());
}
}
}
imageWriteDuration += _writeStopwatch.Elapsed.TotalSeconds;
for(ulong b = i; b < i + _skip; b++) _resume.BadBlocks.Add(b);
AaruLogging.Debug(MODULE_NAME, Localization.Core.READ_error_0, Sense.PrettifySense(senseBuf));
mhddLog.Write(i,
_speedStopwatch.Elapsed.TotalMilliseconds < 500
? 65535
: _speedStopwatch.Elapsed.TotalMilliseconds,
_skip);
AaruLogging.WriteLine(Localization.Core.Skipping_0_blocks_from_errored_block_1, _skip, i);
i += _skip - blocksToRead;
newTrim = true;
}
_writeStopwatch.Stop();
sectorSpeedStart += blocksToRead;
_resume.NextBlock = i + blocksToRead;
elapsed += _speedStopwatch.Elapsed.TotalMilliseconds;
if(elapsed < 100) continue;
currentSpeed = sectorSpeedStart * blockSize / (1048576 * elapsed / 1000);
ibgLog.Write(i, currentSpeed * 1024);
sectorSpeedStart = 0;
elapsed = 0;
}
_speedStopwatch.Stop();
EndProgress?.Invoke();
_resume.BadBlocks = _resume.BadBlocks.Distinct().ToList();
if(!failedCrossingLeadOut) return;
UpdateStatus?.Invoke(Localization.Core.Failed_crossing_into_Lead_Out);
}
}