Files
Aaru/DiscImageChef.Filesystems/FAT/Info.cs

853 lines
46 KiB
C#

// /***************************************************************************
// The Disc Image Chef
// ----------------------------------------------------------------------------
//
// Filename : Info.cs
// Author(s) : Natalia Portillo <claunia@claunia.com>
//
// Component : Microsoft FAT filesystem plugin.
//
// --[ Description ] ----------------------------------------------------------
//
// Identifies the Microsoft FAT filesystem and shows information.
//
// --[ License ] --------------------------------------------------------------
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, see <http://www.gnu.org/licenses/>.
//
// ----------------------------------------------------------------------------
// Copyright © 2011-2019 Natalia Portillo
// ****************************************************************************/
using System;
using System.IO;
using System.Linq;
using System.Text;
using DiscImageChef.Checksums;
using DiscImageChef.CommonTypes;
using DiscImageChef.CommonTypes.Enums;
using DiscImageChef.CommonTypes.Interfaces;
using DiscImageChef.Console;
using DiscImageChef.Helpers;
using Schemas;
namespace DiscImageChef.Filesystems.FAT
{
public partial class FAT
{
public bool Identify(IMediaImage imagePlugin, Partition partition)
{
if(2 + partition.Start >= partition.End) return false;
ushort bps;
byte spc;
byte numberOfFats;
ushort reservedSecs;
ushort rootEntries;
ushort sectors;
byte mediaDescriptor;
ushort fatSectors;
uint bigSectors;
byte bpbSignature;
byte fat32Signature;
ulong hugeSectors;
byte[] fat32Id = new byte[8];
byte[] msxId = new byte[6];
byte fatId;
byte[] dosOem = new byte[8];
byte[] atariOem = new byte[6];
ushort bootable = 0;
uint sectorsPerBpb = imagePlugin.Info.SectorSize < 512 ? 512 / imagePlugin.Info.SectorSize : 1;
byte[] bpbSector = imagePlugin.ReadSectors(0 + partition.Start, sectorsPerBpb);
byte[] fatSector = imagePlugin.ReadSector(sectorsPerBpb + partition.Start);
HumanParameterBlock humanBpb = Marshal.ByteArrayToStructureBigEndian<HumanParameterBlock>(bpbSector);
ulong expectedClusters = humanBpb.bpc > 0 ? partition.Size / humanBpb.bpc : 0;
DicConsole.DebugWriteLine("FAT plugin", "Human bpc = {0}", humanBpb.bpc);
DicConsole.DebugWriteLine("FAT plugin", "Human clusters = {0}", humanBpb.clusters);
DicConsole.DebugWriteLine("FAT plugin", "Human big_clusters = {0}", humanBpb.big_clusters);
DicConsole.DebugWriteLine("FAT plugin", "Human expected clusters = {0}", expectedClusters);
// Check clusters for Human68k are correct
bool humanClustersCorrect = humanBpb.clusters == 0
? humanBpb.big_clusters == expectedClusters
: humanBpb.clusters == expectedClusters;
// Check OEM for Human68k is correct
bool humanOemCorrect = bpbSector[2] >= 0x20 && bpbSector[3] >= 0x20 && bpbSector[4] >= 0x20 &&
bpbSector[5] >= 0x20 && bpbSector[6] >= 0x20 && bpbSector[7] >= 0x20 &&
bpbSector[8] >= 0x20 && bpbSector[9] >= 0x20 && bpbSector[10] >= 0x20 &&
bpbSector[11] >= 0x20 && bpbSector[12] >= 0x20 && bpbSector[13] >= 0x20 &&
bpbSector[14] >= 0x20 && bpbSector[15] >= 0x20 && bpbSector[16] >= 0x20 &&
bpbSector[17] >= 0x20;
// Check correct branch for Human68k
bool humanBranchCorrect = bpbSector[0] == 0x60 && bpbSector[1] >= 0x20 && bpbSector[1] < 0xFE;
DicConsole.DebugWriteLine("FAT plugin", "humanClustersCorrect = {0}", humanClustersCorrect);
DicConsole.DebugWriteLine("FAT plugin", "humanOemCorrect = {0}", humanOemCorrect);
DicConsole.DebugWriteLine("FAT plugin", "humanBranchCorrect = {0}", humanBranchCorrect);
// If all Human68k checks are correct, it is a Human68k FAT16
if(humanClustersCorrect && humanOemCorrect && humanBranchCorrect && expectedClusters > 0) return true;
Array.Copy(bpbSector, 0x02, atariOem, 0, 6);
Array.Copy(bpbSector, 0x03, dosOem, 0, 8);
bps = BitConverter.ToUInt16(bpbSector, 0x00B);
spc = bpbSector[0x00D];
reservedSecs = BitConverter.ToUInt16(bpbSector, 0x00E);
numberOfFats = bpbSector[0x010];
rootEntries = BitConverter.ToUInt16(bpbSector, 0x011);
sectors = BitConverter.ToUInt16(bpbSector, 0x013);
mediaDescriptor = bpbSector[0x015];
fatSectors = BitConverter.ToUInt16(bpbSector, 0x016);
Array.Copy(bpbSector, 0x052, msxId, 0, 6);
bigSectors = BitConverter.ToUInt32(bpbSector, 0x020);
bpbSignature = bpbSector[0x026];
fat32Signature = bpbSector[0x042];
Array.Copy(bpbSector, 0x052, fat32Id, 0, 8);
hugeSectors = BitConverter.ToUInt64(bpbSector, 0x052);
fatId = fatSector[0];
int bitsInBps = CountBits.Count(bps);
if(imagePlugin.Info.SectorSize >= 512) bootable = BitConverter.ToUInt16(bpbSector, 0x1FE);
bool correctSpc = spc == 1 || spc == 2 || spc == 4 || spc == 8 || spc == 16 || spc == 32 || spc == 64;
string msxString = Encoding.ASCII.GetString(msxId);
string fat32String = Encoding.ASCII.GetString(fat32Id);
bool atariOemCorrect = atariOem[0] >= 0x20 && atariOem[1] >= 0x20 && atariOem[2] >= 0x20 &&
atariOem[3] >= 0x20 && atariOem[4] >= 0x20 && atariOem[5] >= 0x20;
bool dosOemCorrect = dosOem[0] >= 0x20 && dosOem[1] >= 0x20 && dosOem[2] >= 0x20 && dosOem[3] >= 0x20 &&
dosOem[4] >= 0x20 && dosOem[5] >= 0x20 && dosOem[6] >= 0x20 && dosOem[7] >= 0x20;
string atariString = Encoding.ASCII.GetString(atariOem);
string oemString = Encoding.ASCII.GetString(dosOem);
DicConsole.DebugWriteLine("FAT plugin", "atari_oem_correct = {0}", atariOemCorrect);
DicConsole.DebugWriteLine("FAT plugin", "dos_oem_correct = {0}", dosOemCorrect);
DicConsole.DebugWriteLine("FAT plugin", "bps = {0}", bps);
DicConsole.DebugWriteLine("FAT plugin", "bits in bps = {0}", bitsInBps);
DicConsole.DebugWriteLine("FAT plugin", "spc = {0}", spc);
DicConsole.DebugWriteLine("FAT plugin", "correct_spc = {0}", correctSpc);
DicConsole.DebugWriteLine("FAT plugin", "reserved_secs = {0}", reservedSecs);
DicConsole.DebugWriteLine("FAT plugin", "fats_no = {0}", numberOfFats);
DicConsole.DebugWriteLine("FAT plugin", "root_entries = {0}", rootEntries);
DicConsole.DebugWriteLine("FAT plugin", "sectors = {0}", sectors);
DicConsole.DebugWriteLine("FAT plugin", "media_descriptor = 0x{0:X2}", mediaDescriptor);
DicConsole.DebugWriteLine("FAT plugin", "fat_sectors = {0}", fatSectors);
DicConsole.DebugWriteLine("FAT plugin", "msx_id = \"{0}\"", msxString);
DicConsole.DebugWriteLine("FAT plugin", "big_sectors = {0}", bigSectors);
DicConsole.DebugWriteLine("FAT plugin", "bpb_signature = 0x{0:X2}", bpbSignature);
DicConsole.DebugWriteLine("FAT plugin", "fat32_signature = 0x{0:X2}", fat32Signature);
DicConsole.DebugWriteLine("FAT plugin", "fat32_id = \"{0}\"", fat32String);
DicConsole.DebugWriteLine("FAT plugin", "huge_sectors = {0}", hugeSectors);
DicConsole.DebugWriteLine("FAT plugin", "fat_id = 0x{0:X2}", fatId);
ushort apricotBps = BitConverter.ToUInt16(bpbSector, 0x50);
byte apricotSpc = bpbSector[0x52];
ushort apricotReservedSecs = BitConverter.ToUInt16(bpbSector, 0x53);
byte apricotFatsNo = bpbSector[0x55];
ushort apricotRootEntries = BitConverter.ToUInt16(bpbSector, 0x56);
ushort apricotSectors = BitConverter.ToUInt16(bpbSector, 0x58);
byte apricotMediaDescriptor = bpbSector[0x5A];
ushort apricotFatSectors = BitConverter.ToUInt16(bpbSector, 0x5B);
bool apricotCorrectSpc = apricotSpc == 1 || apricotSpc == 2 || apricotSpc == 4 || apricotSpc == 8 ||
apricotSpc == 16 || apricotSpc == 32 || apricotSpc == 64;
int bitsInApricotBps = CountBits.Count(apricotBps);
byte apricotPartitions = bpbSector[0x0C];
DicConsole.DebugWriteLine("FAT plugin", "apricot_bps = {0}", apricotBps);
DicConsole.DebugWriteLine("FAT plugin", "apricot_spc = {0}", apricotSpc);
DicConsole.DebugWriteLine("FAT plugin", "apricot_correct_spc = {0}", apricotCorrectSpc);
DicConsole.DebugWriteLine("FAT plugin", "apricot_reserved_secs = {0}", apricotReservedSecs);
DicConsole.DebugWriteLine("FAT plugin", "apricot_fats_no = {0}", apricotFatsNo);
DicConsole.DebugWriteLine("FAT plugin", "apricot_root_entries = {0}", apricotRootEntries);
DicConsole.DebugWriteLine("FAT plugin", "apricot_sectors = {0}", apricotSectors);
DicConsole.DebugWriteLine("FAT plugin", "apricot_media_descriptor = 0x{0:X2}", apricotMediaDescriptor);
DicConsole.DebugWriteLine("FAT plugin", "apricot_fat_sectors = {0}", apricotFatSectors);
// This is to support FAT partitions on hybrid ISO/USB images
if(imagePlugin.Info.XmlMediaType == XmlMediaType.OpticalDisc)
{
sectors /= 4;
bigSectors /= 4;
hugeSectors /= 4;
}
switch(oemString)
{
// exFAT
case "EXFAT ": return false;
// NTFS
case "NTFS " when bootable == 0xAA55 && numberOfFats == 0 && fatSectors == 0: return false;
// QNX4
case "FQNX4FS ": return false;
}
// HPFS
if(16 + partition.Start <= partition.End)
{
byte[] hpfsSbSector =
imagePlugin.ReadSector(16 + partition.Start); // Seek to superblock, on logical sector 16
uint hpfsMagic1 = BitConverter.ToUInt32(hpfsSbSector, 0x000);
uint hpfsMagic2 = BitConverter.ToUInt32(hpfsSbSector, 0x004);
if(hpfsMagic1 == 0xF995E849 && hpfsMagic2 == 0xFA53E9C5) return false;
}
switch(bitsInBps)
{
// FAT32 for sure
case 1 when correctSpc && numberOfFats <= 2 && sectors == 0 && fatSectors == 0 &&
fat32Signature == 0x29 && fat32String == "FAT32 ": return true;
// short FAT32
case 1
when correctSpc && numberOfFats <= 2 && sectors == 0 && fatSectors == 0 && fat32Signature == 0x28:
return bigSectors == 0
? hugeSectors <= partition.End - partition.Start + 1
: bigSectors <= partition.End - partition.Start + 1;
// MSX-DOS FAT12
case 1 when correctSpc && numberOfFats <= 2 && rootEntries > 0 &&
sectors <= partition.End - partition.Start + 1 && fatSectors > 0 &&
msxString == "VOL_ID": return true;
// EBPB
case 1 when correctSpc && numberOfFats <= 2 && rootEntries > 0 && fatSectors > 0 &&
(bpbSignature == 0x28 || bpbSignature == 0x29):
return sectors == 0
? bigSectors <= partition.End - partition.Start + 1
: sectors <= partition.End - partition.Start + 1;
// BPB
case 1 when correctSpc && reservedSecs < partition.End - partition.Start && numberOfFats <= 2 &&
rootEntries > 0 && fatSectors > 0:
return sectors == 0
? bigSectors <= partition.End - partition.Start + 1
: sectors <= partition.End - partition.Start + 1;
}
// Apricot BPB
if(bitsInApricotBps == 1 && apricotCorrectSpc &&
apricotReservedSecs < partition.End - partition.Start &&
apricotFatsNo <= 2 &&
apricotRootEntries > 0 && apricotFatSectors > 0 &&
apricotSectors <= partition.End - partition.Start + 1 &&
apricotPartitions == 0) return true;
// All FAT12 without BPB can only be used on floppies, without partitions.
if(partition.Start != 0) return false;
// DEC Rainbow, lacks a BPB but has a very concrete structure...
if(imagePlugin.Info.Sectors == 800 && imagePlugin.Info.SectorSize == 512)
{
// DEC Rainbow boots up with a Z80, first byte should be DI (disable interrupts)
byte z80Di = bpbSector[0];
// First FAT1 sector resides at LBA 0x14
byte[] fat1Sector0 = imagePlugin.ReadSector(0x14);
// First FAT2 sector resides at LBA 0x1A
byte[] fat2Sector0 = imagePlugin.ReadSector(0x1A);
bool equalFatIds = fat1Sector0[0] == fat2Sector0[0] && fat1Sector0[1] == fat2Sector0[1];
// Volume is software interleaved 2:1
MemoryStream rootMs = new MemoryStream();
foreach(byte[] tmp in from ulong rootSector in new ulong[] {0x17, 0x19, 0x1B, 0x1D, 0x1E, 0x20}
select imagePlugin.ReadSector(rootSector)) rootMs.Write(tmp, 0, tmp.Length);
byte[] rootDir = rootMs.ToArray();
bool validRootDir = true;
// Iterate all root directory
for(int e = 0; e < 96 * 32; e += 32)
{
for(int c = 0; c < 11; c++)
if(rootDir[c + e] < 0x20 && rootDir[c + e] != 0x00 && rootDir[c + e] != 0x05 ||
rootDir[c + e] == 0xFF ||
rootDir[c + e] == 0x2E)
{
validRootDir = false;
break;
}
if(!validRootDir) break;
}
if(z80Di == 0xF3 && equalFatIds && (fat1Sector0[0] & 0xF0) == 0xF0 && fat1Sector0[1] == 0xFF &&
validRootDir) return true;
}
byte fat2 = fatSector[1];
byte fat3 = fatSector[2];
ushort fat2ndCluster = (ushort)(((fat2 << 8) + fat3) & 0xFFF);
DicConsole.DebugWriteLine("FAT plugin", "1st fat cluster 1 = {0:X3}", fat2ndCluster);
if(fat2ndCluster < 0xFF0) return false;
ulong fat2SectorNo = 0;
switch(fatId)
{
case 0xE5:
if(imagePlugin.Info.Sectors == 2002 && imagePlugin.Info.SectorSize == 128) fat2SectorNo = 2;
break;
case 0xFD:
if(imagePlugin.Info.Sectors == 4004 && imagePlugin.Info.SectorSize == 128) fat2SectorNo = 7;
else if(imagePlugin.Info.Sectors == 2002 && imagePlugin.Info.SectorSize == 128) fat2SectorNo = 7;
break;
case 0xFE:
if(imagePlugin.Info.Sectors == 320 && imagePlugin.Info.SectorSize == 512) fat2SectorNo = 2;
else if(imagePlugin.Info.Sectors == 2002 && imagePlugin.Info.SectorSize == 128) fat2SectorNo = 7;
else if(imagePlugin.Info.Sectors == 1232 && imagePlugin.Info.SectorSize == 1024) fat2SectorNo = 3;
else if(imagePlugin.Info.Sectors == 616 && imagePlugin.Info.SectorSize == 1024) fat2SectorNo = 2;
else if(imagePlugin.Info.Sectors == 720 && imagePlugin.Info.SectorSize == 128) fat2SectorNo = 5;
else if(imagePlugin.Info.Sectors == 640 && imagePlugin.Info.SectorSize == 512) fat2SectorNo = 2;
break;
case 0xFF:
if(imagePlugin.Info.Sectors == 640 && imagePlugin.Info.SectorSize == 512) fat2SectorNo = 2;
break;
default:
if(fatId < 0xE8) return false;
fat2SectorNo = 2;
break;
}
if(fat2SectorNo > partition.End) return false;
DicConsole.DebugWriteLine("FAT plugin", "2nd fat starts at = {0}", fat2SectorNo);
byte[] fat2Sector = imagePlugin.ReadSector(fat2SectorNo);
fat2 = fat2Sector[1];
fat3 = fat2Sector[2];
fat2ndCluster = (ushort)(((fat2 << 8) + fat3) & 0xFFF);
if(fat2ndCluster < 0xFF0) return false;
return fatId == fat2Sector[0];
}
public void GetInformation(IMediaImage imagePlugin, Partition partition, out string information,
Encoding encoding)
{
Encoding = encoding ?? Encoding.GetEncoding("IBM437");
information = "";
StringBuilder sb = new StringBuilder();
XmlFsType = new FileSystemType();
uint sectorsPerBpb = imagePlugin.Info.SectorSize < 512 ? 512 / imagePlugin.Info.SectorSize : 1;
byte[] bpbSector = imagePlugin.ReadSectors(0 + partition.Start, sectorsPerBpb);
BpbKind bpbKind = DetectBpbKind(bpbSector, imagePlugin, partition,
out BiosParameterBlockEbpb fakeBpb,
out HumanParameterBlock humanBpb, out AtariParameterBlock atariBpb,
out byte minBootNearJump, out bool andosOemCorrect,
out bool bootable);
bool isFat12 = false;
bool isFat16 = false;
bool isFat32 = false;
ulong rootDirectorySector = 0;
string extraInfo = null;
string bootChk = null;
XmlFsType.Bootable = bootable;
// This is needed because for FAT16, GEMDOS increases bytes per sector count instead of using big_sectors field.
uint sectorsPerRealSector;
// This is needed because some OSes don't put volume label as first entry in the root directory
uint sectorsForRootDirectory = 0;
switch(bpbKind)
{
case BpbKind.DecRainbow:
case BpbKind.Hardcoded:
case BpbKind.Msx:
case BpbKind.Apricot:
isFat12 = true;
break;
case BpbKind.ShortFat32:
case BpbKind.LongFat32:
{
isFat32 = true;
Fat32ParameterBlock fat32Bpb =
Marshal.ByteArrayToStructureLittleEndian<Fat32ParameterBlock>(bpbSector);
Fat32ParameterBlockShort shortFat32Bpb =
Marshal.ByteArrayToStructureLittleEndian<Fat32ParameterBlockShort>(bpbSector);
// This is to support FAT partitions on hybrid ISO/USB images
if(imagePlugin.Info.XmlMediaType == XmlMediaType.OpticalDisc)
{
fat32Bpb.bps *= 4;
fat32Bpb.spc /= 4;
fat32Bpb.big_spfat /= 4;
fat32Bpb.hsectors /= 4;
fat32Bpb.sptrk /= 4;
}
if(fat32Bpb.version != 0)
{
sb.AppendLine("FAT+");
XmlFsType.Type = "FAT+";
}
else
{
sb.AppendLine("Microsoft FAT32");
XmlFsType.Type = "FAT32";
}
if(fat32Bpb.oem_name != null)
if(fat32Bpb.oem_name[5] == 0x49 && fat32Bpb.oem_name[6] == 0x48 && fat32Bpb.oem_name[7] == 0x43)
sb.AppendLine("Volume has been modified by Windows 9x/Me Volume Tracker.");
else XmlFsType.SystemIdentifier = StringHandlers.CToString(fat32Bpb.oem_name);
if(!string.IsNullOrEmpty(XmlFsType.SystemIdentifier))
sb.AppendFormat("OEM Name: {0}", XmlFsType.SystemIdentifier.Trim()).AppendLine();
sb.AppendFormat("{0} bytes per sector.", fat32Bpb.bps).AppendLine();
sb.AppendFormat("{0} sectors per cluster.", fat32Bpb.spc).AppendLine();
XmlFsType.ClusterSize = (uint)(fat32Bpb.bps * fat32Bpb.spc);
sb.AppendFormat("{0} sectors reserved between BPB and FAT.", fat32Bpb.rsectors).AppendLine();
if(fat32Bpb.big_sectors == 0 && fat32Bpb.signature == 0x28)
{
sb.AppendFormat("{0} sectors on volume ({1} bytes).", shortFat32Bpb.huge_sectors,
shortFat32Bpb.huge_sectors * shortFat32Bpb.bps).AppendLine();
XmlFsType.Clusters = shortFat32Bpb.huge_sectors / shortFat32Bpb.spc;
}
else
{
sb.AppendFormat("{0} sectors on volume ({1} bytes).", fat32Bpb.big_sectors,
fat32Bpb.big_sectors * fat32Bpb.bps).AppendLine();
XmlFsType.Clusters = fat32Bpb.big_sectors / fat32Bpb.spc;
}
sb.AppendFormat("{0} clusters on volume.", XmlFsType.Clusters).AppendLine();
sb.AppendFormat("Media descriptor: 0x{0:X2}", fat32Bpb.media).AppendLine();
sb.AppendFormat("{0} sectors per FAT.", fat32Bpb.big_spfat).AppendLine();
sb.AppendFormat("{0} sectors per track.", fat32Bpb.sptrk).AppendLine();
sb.AppendFormat("{0} heads.", fat32Bpb.heads).AppendLine();
sb.AppendFormat("{0} hidden sectors before BPB.", fat32Bpb.hsectors).AppendLine();
sb.AppendFormat("Cluster of root directory: {0}", fat32Bpb.root_cluster).AppendLine();
sb.AppendFormat("Sector of FSINFO structure: {0}", fat32Bpb.fsinfo_sector).AppendLine();
sb.AppendFormat("Sector of backup FAT32 parameter block: {0}", fat32Bpb.backup_sector).AppendLine();
sb.AppendFormat("Drive number: 0x{0:X2}", fat32Bpb.drive_no).AppendLine();
sb.AppendFormat("Volume Serial Number: 0x{0:X8}", fat32Bpb.serial_no).AppendLine();
XmlFsType.VolumeSerial = $"{fat32Bpb.serial_no:X8}";
if((fat32Bpb.flags & 0xF8) == 0x00)
{
if((fat32Bpb.flags & 0x01) == 0x01)
{
sb.AppendLine("Volume should be checked on next mount.");
XmlFsType.Dirty = true;
}
if((fat32Bpb.flags & 0x02) == 0x02) sb.AppendLine("Disk surface should be on next mount.");
}
if((fat32Bpb.mirror_flags & 0x80) == 0x80)
sb.AppendFormat("FATs are out of sync. FAT #{0} is in use.", fat32Bpb.mirror_flags & 0xF)
.AppendLine();
else sb.AppendLine("All copies of FAT are the same.");
if((fat32Bpb.mirror_flags & 0x6F20) == 0x6F20)
sb.AppendLine("DR-DOS will boot this FAT32 using CHS.");
else if((fat32Bpb.mirror_flags & 0x4F20) == 0x4F20)
sb.AppendLine("DR-DOS will boot this FAT32 using LBA.");
if(fat32Bpb.signature == 0x29)
{
XmlFsType.VolumeName = Encoding.ASCII.GetString(fat32Bpb.volume_label);
sb.AppendFormat("Filesystem type: {0}", Encoding.ASCII.GetString(fat32Bpb.fs_type))
.AppendLine();
bootChk = Sha1Context.Data(fat32Bpb.boot_code, out _);
}
else bootChk = Sha1Context.Data(shortFat32Bpb.boot_code, out _);
// Check that jumps to a correct boot code position and has boot signature set.
// This will mean that the volume will boot, even if just to say "this is not bootable change disk"......
XmlFsType.Bootable =
fat32Bpb.jump[0] == 0xEB && fat32Bpb.jump[1] >= minBootNearJump && fat32Bpb.jump[1] < 0x80 ||
fat32Bpb.jump[0] == 0xE9 && fat32Bpb.jump.Length >= 3 &&
BitConverter.ToUInt16(fat32Bpb.jump, 1) >= minBootNearJump &&
BitConverter.ToUInt16(fat32Bpb.jump, 1) <= 0x1FC;
sectorsPerRealSector = fat32Bpb.bps / imagePlugin.Info.SectorSize;
// First root directory sector
rootDirectorySector =
(ulong)((fat32Bpb.root_cluster - 2) * fat32Bpb.spc + fat32Bpb.big_spfat * fat32Bpb.fats_no +
fat32Bpb.rsectors) * sectorsPerRealSector;
sectorsForRootDirectory = 1;
if(fat32Bpb.fsinfo_sector + partition.Start <= partition.End)
{
byte[] fsinfoSector = imagePlugin.ReadSector(fat32Bpb.fsinfo_sector + partition.Start);
FsInfoSector fsInfo =
Marshal.ByteArrayToStructureLittleEndian<FsInfoSector>(fsinfoSector);
if(fsInfo.signature1 == FSINFO_SIGNATURE1 && fsInfo.signature2 == FSINFO_SIGNATURE2 &&
fsInfo.signature3 == FSINFO_SIGNATURE3)
{
if(fsInfo.free_clusters < 0xFFFFFFFF)
{
sb.AppendFormat("{0} free clusters", fsInfo.free_clusters).AppendLine();
XmlFsType.FreeClusters = fsInfo.free_clusters;
XmlFsType.FreeClustersSpecified = true;
}
if(fsInfo.last_cluster > 2 && fsInfo.last_cluster < 0xFFFFFFFF)
sb.AppendFormat("Last allocated cluster {0}", fsInfo.last_cluster).AppendLine();
}
}
break;
}
// Some fields could overflow fake BPB, those will be handled below
case BpbKind.Atari:
{
ushort sum = 0;
for(int i = 0; i < bpbSector.Length; i += 2) sum += BigEndianBitConverter.ToUInt16(bpbSector, i);
// TODO: Check this
if(sum == 0x1234)
{
XmlFsType.Bootable = true;
StringBuilder atariSb = new StringBuilder();
atariSb.AppendFormat("cmdload will be loaded with value {0:X4}h",
BigEndianBitConverter.ToUInt16(bpbSector, 0x01E)).AppendLine();
atariSb.AppendFormat("Boot program will be loaded at address {0:X4}h", atariBpb.ldaaddr)
.AppendLine();
atariSb.AppendFormat("FAT and directory will be cached at address {0:X4}h", atariBpb.fatbuf)
.AppendLine();
if(atariBpb.ldmode == 0)
{
byte[] tmp = new byte[8];
Array.Copy(atariBpb.fname, 0, tmp, 0, 8);
string fname = Encoding.ASCII.GetString(tmp).Trim();
tmp = new byte[3];
Array.Copy(atariBpb.fname, 8, tmp, 0, 3);
string extension = Encoding.ASCII.GetString(tmp).Trim();
string filename;
if(string.IsNullOrEmpty(extension)) filename = fname;
else filename = fname + "." + extension;
atariSb.AppendFormat("Boot program resides in file \"{0}\"", filename).AppendLine();
}
else
atariSb
.AppendFormat("Boot program starts in sector {0} and is {1} sectors long ({2} bytes)",
atariBpb.ssect, atariBpb.sectcnt, atariBpb.sectcnt * atariBpb.bps)
.AppendLine();
extraInfo = atariSb.ToString();
}
break;
}
case BpbKind.Human:
XmlFsType.Bootable = true;
break;
}
if(!isFat32)
{
// This is to support FAT partitions on hybrid ISO/USB images
if(imagePlugin.Info.XmlMediaType == XmlMediaType.OpticalDisc)
{
fakeBpb.bps *= 4;
fakeBpb.spc /= 4;
fakeBpb.spfat /= 4;
fakeBpb.hsectors /= 4;
fakeBpb.sptrk /= 4;
fakeBpb.rsectors /= 4;
if(fakeBpb.spc == 0) fakeBpb.spc = 1;
}
// This assumes no sane implementation will violate cluster size rules
// However nothing prevents this to happen
// If first file on disk uses only one cluster there is absolutely no way to differentiate between FAT12 and FAT16,
// so let's hope implementations use common sense?
if(!isFat12 && !isFat16)
{
ulong clusters;
if(fakeBpb.sectors == 0)
clusters = fakeBpb.spc == 0 ? fakeBpb.big_sectors : fakeBpb.big_sectors / fakeBpb.spc;
else clusters = fakeBpb.spc == 0 ? fakeBpb.sectors : (ulong)fakeBpb.sectors / fakeBpb.spc;
if(clusters < 4089) isFat12 = true;
else isFat16 = true;
}
if(isFat12)
{
switch(bpbKind)
{
case BpbKind.Atari:
sb.AppendLine("Atari FAT12");
break;
case BpbKind.Apricot:
sb.AppendLine("Apricot FAT12");
break;
case BpbKind.Human:
sb.AppendLine("Human68k FAT12");
break;
default:
sb.AppendLine("Microsoft FAT12");
break;
}
XmlFsType.Type = "FAT12";
}
else if(isFat16)
{
sb.AppendLine(bpbKind == BpbKind.Atari
? "Atari FAT16"
: bpbKind == BpbKind.Human
? "Human68k FAT16"
: "Microsoft FAT16");
XmlFsType.Type = "FAT16";
}
if(bpbKind == BpbKind.Atari)
{
if(atariBpb.serial_no[0] == 0x49 && atariBpb.serial_no[1] == 0x48 && atariBpb.serial_no[2] == 0x43)
sb.AppendLine("Volume has been modified by Windows 9x/Me Volume Tracker.");
else
XmlFsType.VolumeSerial =
$"{atariBpb.serial_no[0]:X2}{atariBpb.serial_no[1]:X2}{atariBpb.serial_no[2]:X2}";
XmlFsType.SystemIdentifier = StringHandlers.CToString(atariBpb.oem_name);
if(string.IsNullOrEmpty(XmlFsType.SystemIdentifier)) XmlFsType.SystemIdentifier = null;
}
else if(fakeBpb.oem_name != null)
{
if(fakeBpb.oem_name[5] == 0x49 && fakeBpb.oem_name[6] == 0x48 && fakeBpb.oem_name[7] == 0x43)
sb.AppendLine("Volume has been modified by Windows 9x/Me Volume Tracker.");
else
{
// Later versions of Windows create a DOS 3 BPB without OEM name on 8 sectors/track floppies
// OEM ID should be ASCII, otherwise ignore it
if(fakeBpb.oem_name[0] >= 0x20 && fakeBpb.oem_name[0] <= 0x7F && fakeBpb.oem_name[1] >= 0x20 &&
fakeBpb.oem_name[1] <= 0x7F && fakeBpb.oem_name[2] >= 0x20 && fakeBpb.oem_name[2] <= 0x7F &&
fakeBpb.oem_name[3] >= 0x20 && fakeBpb.oem_name[3] <= 0x7F && fakeBpb.oem_name[4] >= 0x20 &&
fakeBpb.oem_name[4] <= 0x7F && fakeBpb.oem_name[5] >= 0x20 && fakeBpb.oem_name[5] <= 0x7F &&
fakeBpb.oem_name[6] >= 0x20 && fakeBpb.oem_name[6] <= 0x7F && fakeBpb.oem_name[7] >= 0x20 &&
fakeBpb.oem_name[7] <= 0x7F)
XmlFsType.SystemIdentifier = StringHandlers.CToString(fakeBpb.oem_name);
else if(fakeBpb.oem_name[0] < 0x20 && fakeBpb.oem_name[1] >= 0x20 &&
fakeBpb.oem_name[1] <= 0x7F && fakeBpb.oem_name[2] >= 0x20 &&
fakeBpb.oem_name[2] <= 0x7F && fakeBpb.oem_name[3] >= 0x20 &&
fakeBpb.oem_name[3] <= 0x7F && fakeBpb.oem_name[4] >= 0x20 &&
fakeBpb.oem_name[4] <= 0x7F && fakeBpb.oem_name[5] >= 0x20 &&
fakeBpb.oem_name[5] <= 0x7F && fakeBpb.oem_name[6] >= 0x20 &&
fakeBpb.oem_name[6] <= 0x7F && fakeBpb.oem_name[7] >= 0x20 &&
fakeBpb.oem_name[7] <= 0x7F)
XmlFsType.SystemIdentifier = StringHandlers.CToString(fakeBpb.oem_name, Encoding, start: 1);
}
if(fakeBpb.signature == 0x28 || fakeBpb.signature == 0x29)
XmlFsType.VolumeSerial = $"{fakeBpb.serial_no:X8}";
}
if(XmlFsType.SystemIdentifier != null)
sb.AppendFormat("OEM Name: {0}", XmlFsType.SystemIdentifier.Trim()).AppendLine();
sb.AppendFormat("{0} bytes per sector.", fakeBpb.bps).AppendLine();
if(bpbKind != BpbKind.Human)
if(fakeBpb.sectors == 0)
{
sb.AppendFormat("{0} sectors on volume ({1} bytes).", fakeBpb.big_sectors,
fakeBpb.big_sectors * fakeBpb.bps).AppendLine();
XmlFsType.Clusters = fakeBpb.spc == 0 ? fakeBpb.big_sectors : fakeBpb.big_sectors / fakeBpb.spc;
}
else
{
sb.AppendFormat("{0} sectors on volume ({1} bytes).", fakeBpb.sectors,
fakeBpb.sectors * fakeBpb.bps).AppendLine();
XmlFsType.Clusters =
(ulong)(fakeBpb.spc == 0 ? fakeBpb.sectors : fakeBpb.sectors / fakeBpb.spc);
}
else
{
XmlFsType.Clusters = humanBpb.clusters == 0 ? humanBpb.big_clusters : humanBpb.clusters;
sb.AppendFormat("{0} sectors on volume ({1} bytes).",
XmlFsType.Clusters * humanBpb.bpc / imagePlugin.Info.SectorSize,
XmlFsType.Clusters * humanBpb.bpc).AppendLine();
}
sb.AppendFormat("{0} sectors per cluster.", fakeBpb.spc).AppendLine();
sb.AppendFormat("{0} clusters on volume.", XmlFsType.Clusters).AppendLine();
XmlFsType.ClusterSize = (uint)(fakeBpb.bps * fakeBpb.spc);
sb.AppendFormat("{0} sectors reserved between BPB and FAT.", fakeBpb.rsectors).AppendLine();
sb.AppendFormat("{0} FATs.", fakeBpb.fats_no).AppendLine();
sb.AppendFormat("{0} entries on root directory.", fakeBpb.root_ent).AppendLine();
if(fakeBpb.media > 0) sb.AppendFormat("Media descriptor: 0x{0:X2}", fakeBpb.media).AppendLine();
sb.AppendFormat("{0} sectors per FAT.", fakeBpb.spfat).AppendLine();
if(fakeBpb.sptrk > 0 && fakeBpb.sptrk < 64 && fakeBpb.heads > 0 && fakeBpb.heads < 256)
{
sb.AppendFormat("{0} sectors per track.", fakeBpb.sptrk).AppendLine();
sb.AppendFormat("{0} heads.", fakeBpb.heads).AppendLine();
}
if(fakeBpb.hsectors <= partition.Start)
sb.AppendFormat("{0} hidden sectors before BPB.", fakeBpb.hsectors).AppendLine();
if(fakeBpb.signature == 0x28 || fakeBpb.signature == 0x29 || andosOemCorrect)
{
sb.AppendFormat("Drive number: 0x{0:X2}", fakeBpb.drive_no).AppendLine();
if(XmlFsType.VolumeSerial != null)
sb.AppendFormat("Volume Serial Number: {0}", XmlFsType.VolumeSerial).AppendLine();
if((fakeBpb.flags & 0xF8) == 0x00)
{
if((fakeBpb.flags & 0x01) == 0x01)
{
sb.AppendLine("Volume should be checked on next mount.");
XmlFsType.Dirty = true;
}
if((fakeBpb.flags & 0x02) == 0x02) sb.AppendLine("Disk surface should be on next mount.");
}
if(fakeBpb.signature == 0x29 || andosOemCorrect)
{
XmlFsType.VolumeName = Encoding.ASCII.GetString(fakeBpb.volume_label);
sb.AppendFormat("Filesystem type: {0}", Encoding.ASCII.GetString(fakeBpb.fs_type)).AppendLine();
}
}
else if(bpbKind == BpbKind.Atari && XmlFsType.VolumeSerial != null)
sb.AppendFormat("Volume Serial Number: {0}", XmlFsType.VolumeSerial).AppendLine();
bootChk = Sha1Context.Data(fakeBpb.boot_code, out _);
// Workaround that PCExchange jumps into "FAT16 "...
if(XmlFsType.SystemIdentifier == "PCX 2.0 ") fakeBpb.jump[1] += 8;
// Check that jumps to a correct boot code position and has boot signature set.
// This will mean that the volume will boot, even if just to say "this is not bootable change disk"......
if(XmlFsType.Bootable == false && fakeBpb.jump != null)
XmlFsType.Bootable |=
fakeBpb.jump[0] == 0xEB && fakeBpb.jump[1] >= minBootNearJump && fakeBpb.jump[1] < 0x80 ||
fakeBpb.jump[0] == 0xE9 && fakeBpb.jump.Length >= 3 &&
BitConverter.ToUInt16(fakeBpb.jump, 1) >= minBootNearJump &&
BitConverter.ToUInt16(fakeBpb.jump, 1) <= 0x1FC;
sectorsPerRealSector = fakeBpb.bps / imagePlugin.Info.SectorSize;
// First root directory sector
rootDirectorySector =
(ulong)(fakeBpb.spfat * fakeBpb.fats_no + fakeBpb.rsectors) * sectorsPerRealSector;
sectorsForRootDirectory = (uint)(fakeBpb.root_ent * 32 / imagePlugin.Info.SectorSize);
}
if(extraInfo != null) sb.Append(extraInfo);
if(rootDirectorySector + partition.Start < partition.End &&
imagePlugin.Info.XmlMediaType != XmlMediaType.OpticalDisc)
{
byte[] rootDirectory =
imagePlugin.ReadSectors(rootDirectorySector + partition.Start, sectorsForRootDirectory);
if(bpbKind == BpbKind.DecRainbow)
{
MemoryStream rootMs = new MemoryStream();
foreach(byte[] tmp in from ulong rootSector in new[] {0x17, 0x19, 0x1B, 0x1D, 0x1E, 0x20}
select imagePlugin.ReadSector(rootSector)) rootMs.Write(tmp, 0, tmp.Length);
rootDirectory = rootMs.ToArray();
}
for(int i = 0; i < rootDirectory.Length; i += 32)
{
// Not a correct entry
if(rootDirectory[i] < DIRENT_MIN && rootDirectory[i] != DIRENT_E5) continue;
// Deleted or subdirectory entry
if(rootDirectory[i] == DIRENT_SUBDIR || rootDirectory[i] == DIRENT_DELETED) continue;
// Not a volume label
if(rootDirectory[i + 0x0B] != 0x08 && rootDirectory[i + 0x0B] != 0x28) continue;
DirectoryEntry entry =
Marshal.ByteArrayToStructureLittleEndian<DirectoryEntry>(rootDirectory, i, 32);
byte[] fullname = new byte[11];
Array.Copy(entry.filename, 0, fullname, 0, 8);
Array.Copy(entry.extension, 0, fullname, 8, 3);
string volname = Encoding.GetString(fullname).Trim();
if(!string.IsNullOrEmpty(volname))
XmlFsType.VolumeName =
entry.caseinfo.HasFlag(CaseInfo.AllLowerCase) ? volname.ToLower() : volname;
if(entry.ctime > 0 && entry.cdate > 0)
{
XmlFsType.CreationDate = DateHandlers.DosToDateTime(entry.cdate, entry.ctime);
if(entry.ctime_ms > 0)
XmlFsType.CreationDate = XmlFsType.CreationDate.AddMilliseconds(entry.ctime_ms * 10);
XmlFsType.CreationDateSpecified = true;
sb.AppendFormat("Volume created on {0}", XmlFsType.CreationDate).AppendLine();
}
if(entry.mtime > 0 && entry.mdate > 0)
{
XmlFsType.ModificationDate = DateHandlers.DosToDateTime(entry.mdate, entry.mtime);
XmlFsType.ModificationDateSpecified = true;
sb.AppendFormat("Volume last modified on {0}", XmlFsType.ModificationDate).AppendLine();
}
if(entry.adate > 0)
sb.AppendFormat("Volume last accessed on {0:d}", DateHandlers.DosToDateTime(entry.adate, 0))
.AppendLine();
break;
}
}
if(!string.IsNullOrEmpty(XmlFsType.VolumeName))
sb.AppendFormat("Volume label: {0}", XmlFsType.VolumeName).AppendLine();
if(XmlFsType.Bootable)
{
// Intel short jump
if(bpbSector[0] == 0xEB && bpbSector[1] < 0x80)
{
int sigSize = bpbSector[510] == 0x55 && bpbSector[511] == 0xAA ? 2 : 0;
byte[] bootCode = new byte[512 - sigSize - bpbSector[1] - 2];
Array.Copy(bpbSector, bpbSector[1] + 2, bootCode, 0, bootCode.Length);
Sha1Context.Data(bootCode, out _);
}
// Intel big jump
else if(bpbSector[0] == 0xE9 && BitConverter.ToUInt16(bpbSector, 1) < 0x1FC)
{
int sigSize = bpbSector[510] == 0x55 && bpbSector[511] == 0xAA ? 2 : 0;
byte[] bootCode = new byte[512 - sigSize - BitConverter.ToUInt16(bpbSector, 1) - 3];
Array.Copy(bpbSector, BitConverter.ToUInt16(bpbSector, 1) + 3, bootCode, 0, bootCode.Length);
Sha1Context.Data(bootCode, out _);
}
sb.AppendLine("Volume is bootable");
sb.AppendFormat("Boot code's SHA1: {0}", bootChk).AppendLine();
string bootName = knownBootHashes.FirstOrDefault(t => t.hash == bootChk).name;
if(string.IsNullOrWhiteSpace(bootName)) sb.AppendLine("Unknown boot code.");
else sb.AppendFormat("Boot code corresponds to {0}", bootName).AppendLine();
}
information = sb.ToString();
}
}
}