mirror of
https://github.com/aaru-dps/Aaru.git
synced 2025-12-16 19:24:25 +00:00
* LICENSE.LGPL: Added LICENSE files for LGPL and MIT licenses. * DiscImageChef.Devices/Enums.cs: * DiscImageChef.Partitions/MBR.cs: * DiscImageChef.Partitions/RDB.cs: * DiscImageChef.DiscImages/GDI.cs: * DiscImageChef.Partitions/Sun.cs: * DiscImageChef.DiscImages/VHD.cs: * DiscImageChef.Partitions/GPT.cs: * DiscImageChef.Filesystems/FFS.cs: * DiscImageChef.Filesystems/FAT.cs: * DiscImageChef.Partitions/NeXT.cs: * DiscImageChef.Devices/Command.cs: * DiscImageChef.DiscImages/Nero.cs: * DiscImageChef.Decoders/CD/PMA.cs: * DiscImageChef.Decoders/CD/TOC.cs: * DiscImageChef.Filesystems/BFS.cs: * DiscImageChef.Filesystems/ODS.cs: * DiscImageChef.Helpers/PrintHex.cs: * DiscImageChef.Helpers/Swapping.cs: * DiscImageChef.Decoders/DVD/PRI.cs: * DiscImageChef.Decoders/DVD/DMI.cs: * DiscImageChef.Decoders/DVD/DDS.cs: * DiscImageChef.Decoders/DVD/RMD.cs: * DiscImageChef.Decoders/DVD/UDI.cs: * DiscImageChef.Partitions/Atari.cs: * DiscImageChef.Decoders/DVD/BCA.cs: * DiscImageChef.Filesystems/SysV.cs: * DiscImageChef.Filesystems/HPFS.cs: * DiscImageChef.Filesystems/NTFS.cs: * DiscImageChef.Filesystems/APFS.cs: * DiscImageChef.Decoders/DVD/PFI.cs: * DiscImageChef.Decoders/CD/ATIP.cs: * DiscImageChef.Filesystems/Acorn.cs: * DiscImageChef.DiscImages/CDRWin.cs: * DiscImageChef.DiscImages/CDRDAO.cs: * DiscImageChef.Filesystems/BTRFS.cs: * DiscImageChef.Decoders/Xbox/DMI.cs: * DiscImageChef.Helpers/ArrayFill.cs: * DiscImageChef.Settings/Settings.cs: * DiscImageChef.Filesystems/Opera.cs: * DiscImageChef.Filesystems/extFS.cs: * DiscImageChef.Decoders/DVD/CPRM.cs: * DiscImageChef.Decoders/DVD/ADIP.cs: * DiscImageChef.Decoders/CD/Enums.cs: * DiscImageChef.Decoders/DVD/AACS.cs: * DiscImageChef.Decoders/SCSI/EVPD.cs: * DiscImageChef.Filesystems/ProDOS.cs: * DiscImageChef.Metadata/MediaType.cs: * DiscImageChef.Console/DicConsole.cs: * DiscImageChef.Decoders/DVD/Spare.cs: * DiscImageChef.Filesystems/ext2FS.cs: * DiscImageChef.Decoders/DVD/Enums.cs: * DiscImageChef.Filesystems/Symbian.cs: * DiscImageChef.Decoders/SCSI/Types.cs: * DiscImageChef.Filesystems/UNIXBFS.cs: * DiscImageChef.DiscImages/TeleDisk.cs: * DiscImageChef.Decoders/SCSI/Sense.cs: * DiscImageChef.Decoders/CD/FullTOC.cs: * DiscImageChef.Decoders/Blu-ray/DI.cs: * DiscImageChef.Decoders/ATA/Errors.cs: * DiscImageChef.Filesystems/ISO9660.cs: * DiscImageChef.Filesystems/MinixFS.cs: * DiscImageChef.Devices/Linux/Enums.cs: * DiscImageChef.Filesystems/SolarFS.cs: * DiscImageChef.Filesystems/Structs.cs: * DiscImageChef.DiscImages/Apple2MG.cs: * DiscImageChef.Decoders/SCSI/Modes.cs: * DiscImageChef.Metadata/Dimensions.cs: * DiscImageChef.Partitions/AppleMap.cs: * DiscImageChef.Decoders/Floppy/ISO.cs: * DiscImageChef.Decoders/DVD/Layers.cs: * DiscImageChef.Decoders/CD/Session.cs: * DiscImageChef.Decoders/SCSI/Enums.cs: * DiscImageChef.Filesystems/Nintendo.cs: * DiscImageChef.Helpers/DateHandlers.cs: * DiscImageChef.Filesystems/AmigaDOS.cs: * DiscImageChef.DiscImages/ImageInfo.cs: * DiscImageChef.Checksums/MD5Context.cs: * DiscImageChef.Devices/Linux/Extern.cs: * DiscImageChef.Filesystems/AppleHFS.cs: * DiscImageChef.Filesystems/AppleMFS.cs: * DiscImageChef.Helpers/ArrayIsEmpty.cs: * DiscImageChef.Decoders/Blu-ray/BCA.cs: * DiscImageChef.Decoders/Blu-ray/DDS.cs: * DiscImageChef.Filesystems/PCEngine.cs: * DiscImageChef.Decoders/ATA/Identify.cs: * DiscImageChef.Devices/Linux/Command.cs: * DiscImageChef.Devices/FreeBSD/Enums.cs: * DiscImageChef.Decoders/SCSI/Inquiry.cs: * DiscImageChef.Metadata/DeviceReport.cs: * DiscImageChef.Decoders/Floppy/Amiga.cs: * DiscImageChef.Devices/Linux/Structs.cs: * DiscImageChef.Devices/Windows/Enums.cs: * DiscImageChef.Decoders/DVD/CSS&CPRM.cs: * DiscImageChef.Checksums/SHA1Context.cs: * DiscImageChef.DiscImages/DiskCopy42.cs: * DiscImageChef.Partitions/PartPlugin.cs: * DiscImageChef.CommonTypes/Partition.cs: * DiscImageChef.Decoders/Floppy/Enums.cs: * DiscImageChef.CommonTypes/MediaType.cs: * DiscImageChef.Decoders/Floppy/Apple2.cs: * DiscImageChef.Devices/Windows/Extern.cs: * DiscImageChef.Decoders/SCSI/MMC/CPRM.cs: * DiscImageChef.Helpers/StringHandlers.cs: * DiscImageChef.DiscImages/ImagePlugin.cs: * DiscImageChef.Checksums/CRC64Context.cs: * DiscImageChef.Checksums/CRC32Context.cs: * DiscImageChef.DiscImages/ZZZRawImage.cs: * DiscImageChef.Checksums/CRC16Context.cs: * DiscImageChef.Filesystems/LisaFS/Dir.cs: * DiscImageChef.Decoders/DVD/Cartridge.cs: * DiscImageChef.Decoders/Blu-ray/Spare.cs: * DiscImageChef.Filesystems/Filesystem.cs: * DiscImageChef.Decoders/SCSI/MMC/AACS.cs: * DiscImageChef.Devices/FreeBSD/Extern.cs: * DiscImageChef.Devices/Device/Commands.cs: * DiscImageChef.Checksums/SHA384Context.cs: * DiscImageChef.Devices/FreeBSD/Command.cs: * DiscImageChef.Checksums/SHA512Context.cs: * DiscImageChef.Decoders/SCSI/MMC/Enums.cs: * DiscImageChef.Devices/Windows/Command.cs: * DiscImageChef.Devices/FreeBSD/Structs.cs: * DiscImageChef.Devices/Windows/Structs.cs: * DiscImageChef.Filesystems/LisaFS/Info.cs: * DiscImageChef.Checksums/SHA256Context.cs: * DiscImageChef.Filesystems/LisaFS/File.cs: * DiscImageChef.Filesystems/AppleHFSPlus.cs: * DiscImageChef.Filesystems/LisaFS/Super.cs: * DiscImageChef.Filesystems/LisaFS/Xattr.cs: * DiscImageChef.Checksums/Adler32Context.cs: * DiscImageChef.Decoders/Floppy/System34.cs: * DiscImageChef.Checksums/SpamSumContext.cs: * DiscImageChef.Decoders/SCSI/MMC/Hybrid.cs: * DiscImageChef.Devices/Device/Variables.cs: * DiscImageChef.Filesystems/LisaFS/Consts.cs: * DiscImageChef.Filesystems/LisaFS/LisaFS.cs: * DiscImageChef.Decoders/Floppy/Commodore.cs: * DiscImageChef.Checksums/FletcherContext.cs: * DiscImageChef.Filesystems/LisaFS/Extent.cs: * DiscImageChef.Devices/Device/Destructor.cs: * DiscImageChef.Decoders/Floppy/AppleSony.cs: * DiscImageChef.Filesystems/LisaFS/Structs.cs: * DiscImageChef.Decoders/SCSI/VendorString.cs: * DiscImageChef.Decoders/SCSI/MMC/Features.cs: * DiscImageChef.Devices/Device/Constructor.cs: * DiscImageChef.Checksums/RIPEMD160Context.cs: * DiscImageChef.Decoders/CD/CDTextOnLeadIn.cs: * DiscImageChef.Decoders/Blu-ray/Cartridge.cs: * DiscImageChef.Decoders/Floppy/System3740.cs: * DiscImageChef.Filesystems/LisaFS/Encoding.cs: * DiscImageChef.Decoders/SCSI/ModesEncoders.cs: * DiscImageChef.CommonTypes/MediaTypeFromSCSI.cs: * DiscImageChef.Helpers/BigEndianBitConverter.cs: * DiscImageChef.Decoders/Floppy/Perpendicular.cs: * DiscImageChef.Decoders/SCSI/SSC/BlockLimits.cs: * DiscImageChef.Decoders/SCSI/MMC/WriteProtect.cs: * DiscImageChef.Devices/Device/ScsiCommands/HP.cs: * DiscImageChef.Devices/Device/AtaCommands/Cfa.cs: * DiscImageChef.Devices/Device/ScsiCommands/NEC.cs: * DiscImageChef.Helpers/EndianAwareBinaryReader.cs: * DiscImageChef.Devices/Device/ScsiCommands/MMC.cs: * DiscImageChef.Devices/Device/AtaCommands/MCPT.cs: * DiscImageChef.Devices/Device/ScsiCommands/SSC.cs: * DiscImageChef.Devices/Device/ScsiCommands/SPC.cs: * DiscImageChef.Devices/Device/ScsiCommands/SMC.cs: * DiscImageChef.Devices/Device/ScsiCommands/SBC.cs: * DiscImageChef.Metadata/Properties/AssemblyInfo.cs: * DiscImageChef.Devices/Device/AtaCommands/Atapi.cs: * DiscImageChef.Devices/Device/AtaCommands/Ata28.cs: * DiscImageChef.Devices/Device/AtaCommands/Smart.cs: * DiscImageChef.Decoders/SCSI/SSC/DensitySupport.cs: * DiscImageChef.Devices/Device/AtaCommands/Ata48.cs: * DiscImageChef.Decoders/SCSI/MMC/DiscInformation.cs: * DiscImageChef.Devices/Device/AtaCommands/AtaCHS.cs: * DiscImageChef.Devices/Device/ScsiCommands/SyQuest.cs: * DiscImageChef.Devices/Device/ScsiCommands/Plextor.cs: * DiscImageChef.Devices/Device/ScsiCommands/Plasmon.cs: * DiscImageChef.Devices/Device/ScsiCommands/Pioneer.cs: * DiscImageChef.Devices/Device/ScsiCommands/Adaptec.cs: * DiscImageChef.Devices/Device/ScsiCommands/Fujitsu.cs: * DiscImageChef.Devices/Device/ScsiCommands/HL-DT-ST.cs: * DiscImageChef.Devices/Device/ScsiCommands/Certance.cs: * DiscImageChef.Decoders/SCSI/DiscStructureCapabilities.cs: * DiscImageChef.Devices/Device/ScsiCommands/ArchiveCorp.cs: Relicensed as LGPL. Updated standard header. * DiscImageChef/Main.cs: * DiscImageChef/Plugins.cs: * DiscImageChef/Options.cs: * DiscImageChef/Commands/Ls.cs: * DiscImageChef/Core/IBGLog.cs: * DiscImageChef/Core/MHDDLog.cs: * DiscImageChef/AssemblyInfo.cs: * DiscImageChef/Core/Checksum.cs: * DiscImageChef/Commands/Decode.cs: * DiscImageChef/Core/Statistics.cs: * DiscImageChef/Commands/Verify.cs: * DiscImageChef/Commands/Formats.cs: * DiscImageChef/Commands/Entropy.cs: * DiscImageChef/Commands/Compare.cs: * DiscImageChef.Interop/DetectOS.cs: * DiscImageChef/Commands/Analyze.cs: * DiscImageChef/Commands/Commands.cs: * DiscImageChef/Commands/PrintHex.cs: * DiscImageChef/Commands/Checksum.cs: * DiscImageChef/DetectImageFormat.cs: * DiscImageChef/Commands/DumpMedia.cs: * DiscImageChef/Commands/Benchmark.cs: * DiscImageChef/Commands/Configure.cs: * DiscImageChef/Commands/MediaInfo.cs: * DiscImageChef.Interop/PlatformID.cs: * DiscImageChef/Commands/MediaScan.cs: * DiscImageChef/Commands/Statistics.cs: * DiscImageChef/Commands/DeviceInfo.cs: * DiscImageChef.Checksums/ReedSolomon.cs: * DiscImageChef/Commands/DeviceReport.cs: * DiscImageChef/Commands/ExtractFiles.cs: * DiscImageChef.Checksums/CDChecksums.cs: * DiscImageChef/Commands/CreateSidecar.cs: Updated standard header. * DiscImageChef.Checksums/DiscImageChef.Checksums.csproj: Relicensed project as LGPL. Updated standard header. Embed license as resource. * DiscImageChef.Console/DiscImageChef.Console.csproj: * DiscImageChef.Devices/DiscImageChef.Devices.csproj: * DiscImageChef.Helpers/DiscImageChef.Helpers.csproj: * DiscImageChef.Settings/DiscImageChef.Settings.csproj: * DiscImageChef.Decoders/DiscImageChef.Decoders.csproj: * DiscImageChef.Metadata/DiscImageChef.Metadata.csproj: * DiscImageChef.Partitions/DiscImageChef.Partitions.csproj: * DiscImageChef.DiscImages/DiscImageChef.DiscImages.csproj: * DiscImageChef.Filesystems/DiscImageChef.Filesystems.csproj: * DiscImageChef.CommonTypes/DiscImageChef.CommonTypes.csproj: Relicensed as LGPL. Updated standard header. Embed license as resource. * DiscImageChef/DiscImageChef.csproj: * DiscImageChef.Interop/DiscImageChef.Interop.csproj: Updated standard header. Embed license as resource.
643 lines
25 KiB
C#
643 lines
25 KiB
C#
// /***************************************************************************
|
|
// The Disc Image Chef
|
|
// ----------------------------------------------------------------------------
|
|
//
|
|
// Filename : ReedSolomon.cs
|
|
// Author(s) : Natalia Portillo <claunia@claunia.com>
|
|
//
|
|
// Component : Checksums.
|
|
//
|
|
// --[ Description ] ----------------------------------------------------------
|
|
//
|
|
// Calculates a Reed-Solomon.
|
|
//
|
|
// --[ License ] --------------------------------------------------------------
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation, either version 3 of the
|
|
// License, or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
//
|
|
// ----------------------------------------------------------------------------
|
|
// Copyright © 2011-2016 Natalia Portillo
|
|
// Copyright (C) 1996 Phil Karn
|
|
// Copyright (C) 1995 Robert Morelos-Zaragoza
|
|
// Copyright (C) 1995 Hari Thirumoorthy
|
|
// ****************************************************************************/
|
|
|
|
/*
|
|
* Reed-Solomon coding and decoding
|
|
* Phil Karn (karn at ka9q.ampr.org) September 1996
|
|
*
|
|
* This file is derived from the program "new_rs_erasures.c" by Robert
|
|
* Morelos-Zaragoza (robert at spectra.eng.hawaii.edu) and Hari Thirumoorthy
|
|
* (harit at spectra.eng.hawaii.edu), Aug 1995
|
|
*
|
|
* I've made changes to improve performance, clean up the code and make it
|
|
* easier to follow. Data is now passed to the encoding and decoding functions
|
|
* through arguments rather than in global arrays. The decode function returns
|
|
* the number of corrected symbols, or -1 if the word is uncorrectable.
|
|
*
|
|
* This code supports a symbol size from 2 bits up to 16 bits,
|
|
* implying a block size of 3 2-bit symbols (6 bits) up to 65535
|
|
* 16-bit symbols (1,048,560 bits). The code parameters are set in rs.h.
|
|
*
|
|
* Note that if symbols larger than 8 bits are used, the type of each
|
|
* data array element switches from unsigned char to unsigned int. The
|
|
* caller must ensure that elements larger than the symbol range are
|
|
* not passed to the encoder or decoder.
|
|
*
|
|
*/
|
|
|
|
using System;
|
|
using DiscImageChef.Console;
|
|
|
|
namespace DiscImageChef.Checksums
|
|
{
|
|
public class ReedSolomon
|
|
{
|
|
/* Primitive polynomials - see Lin & Costello, Error Control Coding Appendix A,
|
|
* and Lee & Messerschmitt, Digital Communication p. 453.
|
|
*/
|
|
int[] Pp;
|
|
/* index->polynomial form conversion table */
|
|
int[] Alpha_to;
|
|
/* Polynomial->index form conversion table */
|
|
int[] Index_of;
|
|
/* Generator polynomial g(x)
|
|
* Degree of g(x) = 2*TT
|
|
* has roots @**B0, @**(B0+1), ... ,@^(B0+2*TT-1)
|
|
*/
|
|
int[] Gg;
|
|
int MM, KK, NN;
|
|
/* No legal value in index form represents zero, so
|
|
* we need a special value for this purpose
|
|
*/
|
|
int A0;
|
|
bool initialized;
|
|
/* Alpha exponent for the first root of the generator polynomial */
|
|
const int B0 = 1;
|
|
|
|
/// <summary>
|
|
/// Initializes the Reed-Solomon with RS(n,k) with GF(2^m)
|
|
/// </summary>
|
|
public void InitRS(int n, int k, int m)
|
|
{
|
|
switch(m)
|
|
{
|
|
case 2:
|
|
Pp = new[] { 1, 1, 1 };
|
|
break;
|
|
case 3:
|
|
Pp = new[] { 1, 1, 0, 1 };
|
|
break;
|
|
case 4:
|
|
Pp = new[] { 1, 1, 0, 0, 1 };
|
|
break;
|
|
case 5:
|
|
Pp = new[] { 1, 0, 1, 0, 0, 1 };
|
|
break;
|
|
case 6:
|
|
Pp = new[] { 1, 1, 0, 0, 0, 0, 1 };
|
|
break;
|
|
case 7:
|
|
Pp = new[] { 1, 0, 0, 1, 0, 0, 0, 1 };
|
|
break;
|
|
case 8:
|
|
Pp = new[] { 1, 0, 1, 1, 1, 0, 0, 0, 1 };
|
|
break;
|
|
case 9:
|
|
Pp = new[] { 1, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
|
|
break;
|
|
case 10:
|
|
Pp = new[] { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
|
|
break;
|
|
case 11:
|
|
Pp = new[] { 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
|
|
break;
|
|
case 12:
|
|
Pp = new[] { 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1 };
|
|
break;
|
|
case 13:
|
|
Pp = new[] { 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
|
|
break;
|
|
case 14:
|
|
Pp = new[] { 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 };
|
|
break;
|
|
case 15:
|
|
Pp = new[] { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 };
|
|
break;
|
|
case 16:
|
|
Pp = new[] { 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1 };
|
|
break;
|
|
default:
|
|
throw new ArgumentOutOfRangeException("m", "m must be between 2 and 16 inclusive");
|
|
}
|
|
|
|
MM = m;
|
|
KK = k;
|
|
NN = n;
|
|
A0 = n;
|
|
Alpha_to = new int[n + 1];
|
|
Index_of = new int[n + 1];
|
|
|
|
|
|
Gg = new int[NN - KK + 1];
|
|
|
|
generate_gf();
|
|
gen_poly();
|
|
|
|
initialized = true;
|
|
}
|
|
|
|
int modnn(int x)
|
|
{
|
|
while(x >= NN)
|
|
{
|
|
x -= NN;
|
|
x = (x >> MM) + (x & NN);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static int min(int a, int b)
|
|
{
|
|
return ((a) < (b) ? (a) : (b));
|
|
}
|
|
|
|
static void CLEAR(ref int[] a, int n)
|
|
{
|
|
int ci;
|
|
for(ci = (n) - 1; ci >= 0; ci--)
|
|
(a)[ci] = 0;
|
|
}
|
|
|
|
static void COPY(ref int[] a, ref int[] b, int n)
|
|
{
|
|
int ci;
|
|
for(ci = (n) - 1; ci >= 0; ci--)
|
|
(a)[ci] = (b)[ci];
|
|
}
|
|
|
|
static void COPYDOWN(ref int[] a, ref int[] b, int n)
|
|
{
|
|
int ci;
|
|
for(ci = (n) - 1; ci >= 0; ci--)
|
|
(a)[ci] = (b)[ci];
|
|
}
|
|
|
|
/* generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m]
|
|
lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
|
|
polynomial form -> index form index_of[j=alpha**i] = i
|
|
alpha=2 is the primitive element of GF(2**m)
|
|
HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
|
|
Let @ represent the primitive element commonly called "alpha" that
|
|
is the root of the primitive polynomial p(x). Then in GF(2^m), for any
|
|
0 <= i <= 2^m-2,
|
|
@^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
|
|
where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
|
|
of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
|
|
example the polynomial representation of @^5 would be given by the binary
|
|
representation of the integer "alpha_to[5]".
|
|
Similarily, index_of[] can be used as follows:
|
|
As above, let @ represent the primitive element of GF(2^m) that is
|
|
the root of the primitive polynomial p(x). In order to find the power
|
|
of @ (alpha) that has the polynomial representation
|
|
a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
|
|
we consider the integer "i" whose binary representation with a(0) being LSB
|
|
and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
|
|
"index_of[i]". Now, @^index_of[i] is that element whose polynomial
|
|
representation is (a(0),a(1),a(2),...,a(m-1)).
|
|
NOTE:
|
|
The element alpha_to[2^m-1] = 0 always signifying that the
|
|
representation of "@^infinity" = 0 is (0,0,0,...,0).
|
|
Similarily, the element index_of[0] = A0 always signifying
|
|
that the power of alpha which has the polynomial representation
|
|
(0,0,...,0) is "infinity".
|
|
|
|
*/
|
|
void generate_gf()
|
|
{
|
|
int i, mask;
|
|
|
|
mask = 1;
|
|
Alpha_to[MM] = 0;
|
|
for(i = 0; i < MM; i++)
|
|
{
|
|
Alpha_to[i] = mask;
|
|
Index_of[Alpha_to[i]] = i;
|
|
/* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
|
|
if(Pp[i] != 0)
|
|
Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */
|
|
mask <<= 1; /* single left-shift */
|
|
}
|
|
Index_of[Alpha_to[MM]] = MM;
|
|
/*
|
|
* Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
|
|
* poly-repr of @^i shifted left one-bit and accounting for any @^MM
|
|
* term that may occur when poly-repr of @^i is shifted.
|
|
*/
|
|
mask >>= 1;
|
|
for(i = MM + 1; i < NN; i++)
|
|
{
|
|
if(Alpha_to[i - 1] >= mask)
|
|
Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
|
|
else
|
|
Alpha_to[i] = Alpha_to[i - 1] << 1;
|
|
Index_of[Alpha_to[i]] = i;
|
|
}
|
|
Index_of[0] = A0;
|
|
Alpha_to[NN] = 0;
|
|
}
|
|
|
|
/*
|
|
* Obtain the generator polynomial of the TT-error correcting, length
|
|
* NN=(2**MM -1) Reed Solomon code from the product of (X+@**(B0+i)), i = 0,
|
|
* ... ,(2*TT-1)
|
|
*
|
|
* Examples:
|
|
*
|
|
* If B0 = 1, TT = 1. deg(g(x)) = 2*TT = 2.
|
|
* g(x) = (x+@) (x+@**2)
|
|
*
|
|
* If B0 = 0, TT = 2. deg(g(x)) = 2*TT = 4.
|
|
* g(x) = (x+1) (x+@) (x+@**2) (x+@**3)
|
|
*/
|
|
void gen_poly()
|
|
{
|
|
int i, j;
|
|
|
|
Gg[0] = Alpha_to[B0];
|
|
Gg[1] = 1; /* g(x) = (X+@**B0) initially */
|
|
for(i = 2; i <= NN - KK; i++)
|
|
{
|
|
Gg[i] = 1;
|
|
/*
|
|
* Below multiply (Gg[0]+Gg[1]*x + ... +Gg[i]x^i) by
|
|
* (@**(B0+i-1) + x)
|
|
*/
|
|
for(j = i - 1; j > 0; j--)
|
|
if(Gg[j] != 0)
|
|
Gg[j] = Gg[j - 1] ^ Alpha_to[modnn((Index_of[Gg[j]]) + B0 + i - 1)];
|
|
else
|
|
Gg[j] = Gg[j - 1];
|
|
/* Gg[0] can never be zero */
|
|
Gg[0] = Alpha_to[modnn((Index_of[Gg[0]]) + B0 + i - 1)];
|
|
}
|
|
/* convert Gg[] to index form for quicker encoding */
|
|
for(i = 0; i <= NN - KK; i++)
|
|
Gg[i] = Index_of[Gg[i]];
|
|
}
|
|
|
|
/*
|
|
* take the string of symbols in data[i], i=0..(k-1) and encode
|
|
* systematically to produce NN-KK parity symbols in bb[0]..bb[NN-KK-1] data[]
|
|
* is input and bb[] is output in polynomial form. Encoding is done by using
|
|
* a feedback shift register with appropriate connections specified by the
|
|
* elements of Gg[], which was generated above. Codeword is c(X) =
|
|
* data(X)*X**(NN-KK)+ b(X)
|
|
*/
|
|
/// <summary>
|
|
/// Takes the symbols in data to output parity in bb.
|
|
/// </summary>
|
|
/// <returns>Returns -1 if an illegal symbol is found.</returns>
|
|
/// <param name="data">Data symbols.</param>
|
|
/// <param name="bb">Outs parity symbols.</param>
|
|
public int encode_rs(int[] data, out int[] bb)
|
|
{
|
|
if(initialized)
|
|
{
|
|
int i, j;
|
|
int feedback;
|
|
bb = new int[NN - KK];
|
|
|
|
CLEAR(ref bb, NN - KK);
|
|
for(i = KK - 1; i >= 0; i--)
|
|
{
|
|
if(MM != 8)
|
|
{
|
|
if(data[i] > NN)
|
|
return -1; /* Illegal symbol */
|
|
}
|
|
feedback = Index_of[data[i] ^ bb[NN - KK - 1]];
|
|
if(feedback != A0)
|
|
{ /* feedback term is non-zero */
|
|
for(j = NN - KK - 1; j > 0; j--)
|
|
if(Gg[j] != A0)
|
|
bb[j] = bb[j - 1] ^ Alpha_to[modnn(Gg[j] + feedback)];
|
|
else
|
|
bb[j] = bb[j - 1];
|
|
bb[0] = Alpha_to[modnn(Gg[0] + feedback)];
|
|
}
|
|
else
|
|
{ /* feedback term is zero. encoder becomes a
|
|
* single-byte shifter */
|
|
for(j = NN - KK - 1; j > 0; j--)
|
|
bb[j] = bb[j - 1];
|
|
bb[0] = 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
throw new UnauthorizedAccessException("Trying to calculate RS without initializing!");
|
|
}
|
|
|
|
/*
|
|
* Performs ERRORS+ERASURES decoding of RS codes. If decoding is successful,
|
|
* writes the codeword into data[] itself. Otherwise data[] is unaltered.
|
|
*
|
|
* Return number of symbols corrected, or -1 if codeword is illegal
|
|
* or uncorrectable.
|
|
*
|
|
* First "no_eras" erasures are declared by the calling program. Then, the
|
|
* maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
|
|
* If the number of channel errors is not greater than "t_after_eras" the
|
|
* transmitted codeword will be recovered. Details of algorithm can be found
|
|
* in R. Blahut's "Theory ... of Error-Correcting Codes".
|
|
*/
|
|
/// <summary>
|
|
/// Decodes the RS. If decoding is successful outputs corrected data symbols.
|
|
/// </summary>
|
|
/// <returns>Returns corrected symbols, -1 if illegal or uncorrectable</returns>
|
|
/// <param name="data">Data symbols.</param>
|
|
/// <param name="eras_pos">Position of erasures.</param>
|
|
/// <param name="no_eras">Number of erasures.</param>
|
|
public int eras_dec_rs(ref int[] data, out int[] eras_pos, int no_eras)
|
|
{
|
|
if(initialized)
|
|
{
|
|
eras_pos = new int[NN - KK];
|
|
int deg_lambda, el, deg_omega;
|
|
int i, j, r;
|
|
int u, q, tmp, num1, num2, den, discr_r;
|
|
int[] recd = new int[NN];
|
|
int[] lambda = new int[NN - KK + 1]; /* Err+Eras Locator poly */
|
|
int[] s = new int[NN - KK + 1]; /* syndrome poly */
|
|
int[] b = new int[NN - KK + 1];
|
|
int[] t = new int[NN - KK + 1];
|
|
int[] omega = new int[NN - KK + 1];
|
|
int[] root = new int[NN - KK];
|
|
int[] reg = new int[NN - KK + 1];
|
|
int[] loc = new int[NN - KK];
|
|
int syn_error, count;
|
|
|
|
/* data[] is in polynomial form, copy and convert to index form */
|
|
for(i = NN - 1; i >= 0; i--)
|
|
{
|
|
if(MM != 8)
|
|
{
|
|
if(data[i] > NN)
|
|
return -1; /* Illegal symbol */
|
|
}
|
|
recd[i] = Index_of[data[i]];
|
|
}
|
|
/* first form the syndromes; i.e., evaluate recd(x) at roots of g(x)
|
|
* namely @**(B0+i), i = 0, ... ,(NN-KK-1)
|
|
*/
|
|
syn_error = 0;
|
|
for(i = 1; i <= NN - KK; i++)
|
|
{
|
|
tmp = 0;
|
|
for(j = 0; j < NN; j++)
|
|
if(recd[j] != A0) /* recd[j] in index form */
|
|
tmp ^= Alpha_to[modnn(recd[j] + (B0 + i - 1) * j)];
|
|
syn_error |= tmp; /* set flag if non-zero syndrome =>
|
|
* error */
|
|
/* store syndrome in index form */
|
|
s[i] = Index_of[tmp];
|
|
}
|
|
if(syn_error == 0)
|
|
{
|
|
/*
|
|
* if syndrome is zero, data[] is a codeword and there are no
|
|
* errors to correct. So return data[] unmodified
|
|
*/
|
|
return 0;
|
|
}
|
|
CLEAR(ref lambda, NN - KK);
|
|
lambda[0] = 1;
|
|
if(no_eras > 0)
|
|
{
|
|
/* Init lambda to be the erasure locator polynomial */
|
|
lambda[1] = Alpha_to[eras_pos[0]];
|
|
for(i = 1; i < no_eras; i++)
|
|
{
|
|
u = eras_pos[i];
|
|
for(j = i + 1; j > 0; j--)
|
|
{
|
|
tmp = Index_of[lambda[j - 1]];
|
|
if(tmp != A0)
|
|
lambda[j] ^= Alpha_to[modnn(u + tmp)];
|
|
}
|
|
}
|
|
|
|
#if DEBUG
|
|
/* find roots of the erasure location polynomial */
|
|
for(i = 1; i <= no_eras; i++)
|
|
reg[i] = Index_of[lambda[i]];
|
|
count = 0;
|
|
for(i = 1; i <= NN; i++)
|
|
{
|
|
q = 1;
|
|
for(j = 1; j <= no_eras; j++)
|
|
if(reg[j] != A0)
|
|
{
|
|
reg[j] = modnn(reg[j] + j);
|
|
q ^= Alpha_to[reg[j]];
|
|
}
|
|
if(q == 0)
|
|
{
|
|
/* store root and error location
|
|
* number indices
|
|
*/
|
|
root[count] = i;
|
|
loc[count] = NN - i;
|
|
count++;
|
|
}
|
|
}
|
|
if(count != no_eras)
|
|
{
|
|
DicConsole.DebugWriteLine("Reed Solomon", "\n lambda(x) is WRONG\n");
|
|
return -1;
|
|
}
|
|
|
|
DicConsole.DebugWriteLine("Reed Solomon", "\n Erasure positions as determined by roots of Eras Loc Poly:\n");
|
|
for(i = 0; i < count; i++)
|
|
DicConsole.DebugWriteLine("Reed Solomon", "{0} ", loc[i]);
|
|
DicConsole.DebugWriteLine("Reed Solomon", "\n");
|
|
#endif
|
|
}
|
|
for(i = 0; i < NN - KK + 1; i++)
|
|
b[i] = Index_of[lambda[i]];
|
|
|
|
/*
|
|
* Begin Berlekamp-Massey algorithm to determine error+erasure
|
|
* locator polynomial
|
|
*/
|
|
r = no_eras;
|
|
el = no_eras;
|
|
while(++r <= NN - KK)
|
|
{ /* r is the step number */
|
|
/* Compute discrepancy at the r-th step in poly-form */
|
|
discr_r = 0;
|
|
for(i = 0; i < r; i++)
|
|
{
|
|
if((lambda[i] != 0) && (s[r - i] != A0))
|
|
{
|
|
discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
|
|
}
|
|
}
|
|
discr_r = Index_of[discr_r]; /* Index form */
|
|
if(discr_r == A0)
|
|
{
|
|
/* 2 lines below: B(x) <-- x*B(x) */
|
|
COPYDOWN(ref b, ref b, NN - KK);
|
|
b[0] = A0;
|
|
}
|
|
else
|
|
{
|
|
/* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
|
|
t[0] = lambda[0];
|
|
for(i = 0; i < NN - KK; i++)
|
|
{
|
|
if(b[i] != A0)
|
|
t[i + 1] = lambda[i + 1] ^ Alpha_to[modnn(discr_r + b[i])];
|
|
else
|
|
t[i + 1] = lambda[i + 1];
|
|
}
|
|
if(2 * el <= r + no_eras - 1)
|
|
{
|
|
el = r + no_eras - el;
|
|
/*
|
|
* 2 lines below: B(x) <-- inv(discr_r) *
|
|
* lambda(x)
|
|
*/
|
|
for(i = 0; i <= NN - KK; i++)
|
|
b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
|
|
}
|
|
else
|
|
{
|
|
/* 2 lines below: B(x) <-- x*B(x) */
|
|
COPYDOWN(ref b, ref b, NN - KK);
|
|
b[0] = A0;
|
|
}
|
|
COPY(ref lambda, ref t, NN - KK + 1);
|
|
}
|
|
}
|
|
|
|
/* Convert lambda to index form and compute deg(lambda(x)) */
|
|
deg_lambda = 0;
|
|
for(i = 0; i < NN - KK + 1; i++)
|
|
{
|
|
lambda[i] = Index_of[lambda[i]];
|
|
if(lambda[i] != A0)
|
|
deg_lambda = i;
|
|
}
|
|
/*
|
|
* Find roots of the error+erasure locator polynomial. By Chien
|
|
* Search
|
|
*/
|
|
int temp = reg[0];
|
|
COPY(ref reg, ref lambda, NN - KK);
|
|
reg[0] = temp;
|
|
count = 0; /* Number of roots of lambda(x) */
|
|
for(i = 1; i <= NN; i++)
|
|
{
|
|
q = 1;
|
|
for(j = deg_lambda; j > 0; j--)
|
|
if(reg[j] != A0)
|
|
{
|
|
reg[j] = modnn(reg[j] + j);
|
|
q ^= Alpha_to[reg[j]];
|
|
}
|
|
if(q == 0)
|
|
{
|
|
/* store root (index-form) and error location number */
|
|
root[count] = i;
|
|
loc[count] = NN - i;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
#if DEBUG
|
|
DicConsole.DebugWriteLine("Reed Solomon", "\n Final error positions:\t");
|
|
for(i = 0; i < count; i++)
|
|
DicConsole.DebugWriteLine("Reed Solomon", "{0} ", loc[i]);
|
|
DicConsole.DebugWriteLine("Reed Solomon", "\n");
|
|
#endif
|
|
|
|
if(deg_lambda != count)
|
|
{
|
|
/*
|
|
* deg(lambda) unequal to number of roots => uncorrectable
|
|
* error detected
|
|
*/
|
|
return -1;
|
|
}
|
|
/*
|
|
* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
|
|
* x**(NN-KK)). in index form. Also find deg(omega).
|
|
*/
|
|
deg_omega = 0;
|
|
for(i = 0; i < NN - KK; i++)
|
|
{
|
|
tmp = 0;
|
|
j = (deg_lambda < i) ? deg_lambda : i;
|
|
for(; j >= 0; j--)
|
|
{
|
|
if((s[i + 1 - j] != A0) && (lambda[j] != A0))
|
|
tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
|
|
}
|
|
if(tmp != 0)
|
|
deg_omega = i;
|
|
omega[i] = Index_of[tmp];
|
|
}
|
|
omega[NN - KK] = A0;
|
|
|
|
/*
|
|
* Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
|
|
* inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
|
|
*/
|
|
for(j = count - 1; j >= 0; j--)
|
|
{
|
|
num1 = 0;
|
|
for(i = deg_omega; i >= 0; i--)
|
|
{
|
|
if(omega[i] != A0)
|
|
num1 ^= Alpha_to[modnn(omega[i] + i * root[j])];
|
|
}
|
|
num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
|
|
den = 0;
|
|
|
|
/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
|
|
for(i = min(deg_lambda, NN - KK - 1) & ~1; i >= 0; i -= 2)
|
|
{
|
|
if(lambda[i + 1] != A0)
|
|
den ^= Alpha_to[modnn(lambda[i + 1] + i * root[j])];
|
|
}
|
|
if(den == 0)
|
|
{
|
|
DicConsole.DebugWriteLine("Reed Solomon", "\n ERROR: denominator = 0\n");
|
|
return -1;
|
|
}
|
|
/* Apply error to data */
|
|
if(num1 != 0)
|
|
{
|
|
data[loc[j]] ^= Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
throw new UnauthorizedAccessException("Trying to calculate RS without initializing!");
|
|
}
|
|
}
|
|
}
|