/* * This file is part of the Aaru Data Preservation Suite. * Copyright (c) 2019-2025 Natalia Portillo. * * This library is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of the * License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include #include #include #ifdef __linux__ #include #endif #include #include "internal.h" #include "log.h" int aaruf_close(void *context) { TRACE("Entering aaruf_close(%p)", context); int i = 0; mediaTagEntry *mediaTag = NULL; mediaTagEntry *tmpMediaTag = NULL; if(context == NULL) { FATAL("Invalid context"); errno = EINVAL; return -1; } aaruformatContext *ctx = context; // Not a libaaruformat context if(ctx->magic != AARU_MAGIC) { FATAL("Invalid context"); errno = EINVAL; return -1; } if(ctx->isWriting) { TRACE("File is writing"); TRACE("Seeking to start of image"); // Write the header at the beginning of the file fseek(ctx->imageStream, 0, SEEK_SET); TRACE("Writing header at position 0"); if(fwrite(&ctx->header, sizeof(AaruHeaderV2), 1, ctx->imageStream) != 1) { fclose(ctx->imageStream); ctx->imageStream = NULL; errno = AARUF_ERROR_CANNOT_WRITE_HEADER; return -1; } // Close current block first TRACE("Closing current block if any"); if(ctx->writingBuffer != NULL) { int error = aaruf_close_current_block(ctx); if(error != AARUF_STATUS_OK) return error; } // Write cached secondary table to file end and update primary table entry with its position // Check if we have a cached table that needs to be written (either it has an offset or exists in memory) bool hasCachedSecondaryDdt = (ctx->userDataDdtHeader.tableShift > 0) && ((ctx->cachedDdtOffset != 0) || (ctx->cachedSecondaryDdtSmall != NULL || ctx->cachedSecondaryDdtBig != NULL)); if(hasCachedSecondaryDdt) { TRACE("Writing cached secondary DDT table to file"); fseek(ctx->imageStream, 0, SEEK_END); long endOfFile = ftell(ctx->imageStream); // Align the position according to block alignment shift uint64_t alignmentMask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1; if(endOfFile & alignmentMask) { // Calculate the next aligned position uint64_t alignedPosition = (endOfFile + alignmentMask) & ~alignmentMask; // Seek to the aligned position and pad with zeros if necessary fseek(ctx->imageStream, alignedPosition, SEEK_SET); endOfFile = alignedPosition; TRACE("Aligned DDT write position from %ld to %" PRIu64 " (alignment shift: %d)", ftell(ctx->imageStream) - (alignedPosition - endOfFile), alignedPosition, ctx->userDataDdtHeader.blockAlignmentShift); } // Prepare DDT header for the cached table DdtHeader2 ddtHeader = {0}; ddtHeader.identifier = DeDuplicationTable2; ddtHeader.type = UserData; ddtHeader.compression = None; ddtHeader.levels = ctx->userDataDdtHeader.levels; ddtHeader.tableLevel = ctx->userDataDdtHeader.tableLevel + 1; ddtHeader.previousLevelOffset = ctx->primaryDdtOffset; ddtHeader.negative = ctx->userDataDdtHeader.negative; ddtHeader.overflow = ctx->userDataDdtHeader.overflow; ddtHeader.blockAlignmentShift = ctx->userDataDdtHeader.blockAlignmentShift; ddtHeader.dataShift = ctx->userDataDdtHeader.dataShift; ddtHeader.tableShift = 0; // Secondary tables are single level ddtHeader.sizeType = ctx->userDataDdtHeader.sizeType; uint64_t itemsPerDdtEntry = 1 << ctx->userDataDdtHeader.tableShift; ddtHeader.blocks = itemsPerDdtEntry; ddtHeader.entries = itemsPerDdtEntry; ddtHeader.start = ctx->cachedDdtPosition * itemsPerDdtEntry; // Calculate data size if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType) ddtHeader.length = itemsPerDdtEntry * sizeof(uint16_t); else ddtHeader.length = itemsPerDdtEntry * sizeof(uint32_t); ddtHeader.cmpLength = ddtHeader.length; // Calculate CRC64 of the data crc64_ctx *crc64_context = aaruf_crc64_init(); if(crc64_context != NULL) { if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType) aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtSmall, ddtHeader.length); else aaruf_crc64_update(crc64_context, (uint8_t *)ctx->cachedSecondaryDdtBig, ddtHeader.length); uint64_t crc64; aaruf_crc64_final(crc64_context, &crc64); ddtHeader.crc64 = crc64; ddtHeader.cmpCrc64 = crc64; } // Write header if(fwrite(&ddtHeader, sizeof(DdtHeader2), 1, ctx->imageStream) == 1) { // Write data size_t writtenBytes = 0; if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType) writtenBytes = fwrite(ctx->cachedSecondaryDdtSmall, ddtHeader.length, 1, ctx->imageStream); else writtenBytes = fwrite(ctx->cachedSecondaryDdtBig, ddtHeader.length, 1, ctx->imageStream); if(writtenBytes == 1) { // Update primary table entry to point to new location uint64_t newSecondaryTableBlockOffset = endOfFile >> ctx->userDataDdtHeader.blockAlignmentShift; if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType) ctx->userDataDdtMini[ctx->cachedDdtPosition] = (uint16_t)newSecondaryTableBlockOffset; else ctx->userDataDdtBig[ctx->cachedDdtPosition] = (uint32_t)newSecondaryTableBlockOffset; // Update index: remove old entry for cached DDT and add new one TRACE("Updating index for cached secondary DDT"); // Remove old index entry for the cached DDT if(ctx->cachedDdtOffset != 0) { TRACE("Removing old index entry for DDT at offset %" PRIu64, ctx->cachedDdtOffset); IndexEntry *entry = NULL; // Find and remove the old index entry for(unsigned int k = 0; k < utarray_len(ctx->indexEntries); k++) { entry = (IndexEntry *)utarray_eltptr(ctx->indexEntries, k); if(entry && entry->offset == ctx->cachedDdtOffset && entry->blockType == DeDuplicationTable2) { TRACE("Found old DDT index entry at position %u, removing", k); utarray_erase(ctx->indexEntries, k, 1); break; } } } // Add new index entry for the newly written secondary DDT IndexEntry newDdtEntry; newDdtEntry.blockType = DeDuplicationTable2; newDdtEntry.dataType = UserData; newDdtEntry.offset = endOfFile; utarray_push_back(ctx->indexEntries, &newDdtEntry); TRACE("Added new DDT index entry at offset %" PRIu64, endOfFile); // Write the updated primary table back to its original position in the file long savedPos = ftell(ctx->imageStream); fseek(ctx->imageStream, ctx->primaryDdtOffset + sizeof(DdtHeader2), SEEK_SET); size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType ? ctx->userDataDdtHeader.entries * sizeof(uint16_t) : ctx->userDataDdtHeader.entries * sizeof(uint32_t); size_t primaryWrittenBytes = 0; if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType) primaryWrittenBytes = fwrite(ctx->userDataDdtMini, primaryTableSize, 1, ctx->imageStream); else primaryWrittenBytes = fwrite(ctx->userDataDdtBig, primaryTableSize, 1, ctx->imageStream); if(primaryWrittenBytes != 1) { TRACE("Could not flush primary DDT table to file."); return AARUF_ERROR_CANNOT_WRITE_HEADER; } fseek(ctx->imageStream, savedPos, SEEK_SET); } else TRACE("Failed to write cached secondary DDT data"); } else TRACE("Failed to write cached secondary DDT header"); // Free the cached table if(ctx->cachedSecondaryDdtSmall != NULL) { free(ctx->cachedSecondaryDdtSmall); ctx->cachedSecondaryDdtSmall = NULL; } if(ctx->cachedSecondaryDdtBig != NULL) { free(ctx->cachedSecondaryDdtBig); ctx->cachedSecondaryDdtBig = NULL; } ctx->cachedDdtOffset = 0; // Set position fseek(ctx->imageStream, 0, SEEK_END); } // Write the cached primary DDT table back to its position in the file if(ctx->userDataDdtHeader.tableShift > 0 && (ctx->userDataDdtMini != NULL || ctx->userDataDdtBig != NULL)) { TRACE("Writing cached primary DDT table back to file"); // Calculate CRC64 of the primary DDT table data first crc64_ctx *crc64_context = aaruf_crc64_init(); if(crc64_context != NULL) { size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType ? ctx->userDataDdtHeader.entries * sizeof(uint16_t) : ctx->userDataDdtHeader.entries * sizeof(uint32_t); if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType) aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtMini, primaryTableSize); else aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtBig, primaryTableSize); uint64_t crc64; aaruf_crc64_final(crc64_context, &crc64); // Properly populate all header fields for multi-level DDT primary table ctx->userDataDdtHeader.identifier = DeDuplicationTable2; ctx->userDataDdtHeader.type = UserData; ctx->userDataDdtHeader.compression = None; // levels, tableLevel, previousLevelOffset, negative, overflow, blockAlignmentShift, // dataShift, tableShift, sizeType, entries, blocks, start are already set during creation ctx->userDataDdtHeader.crc64 = crc64; ctx->userDataDdtHeader.cmpCrc64 = crc64; ctx->userDataDdtHeader.length = primaryTableSize; ctx->userDataDdtHeader.cmpLength = primaryTableSize; TRACE("Calculated CRC64 for primary DDT: 0x%16lX", crc64); } // First write the DDT header fseek(ctx->imageStream, ctx->primaryDdtOffset, SEEK_SET); size_t headerWritten = fwrite(&ctx->userDataDdtHeader, sizeof(DdtHeader2), 1, ctx->imageStream); if(headerWritten != 1) { TRACE("Failed to write primary DDT header to file"); return AARUF_ERROR_CANNOT_WRITE_HEADER; } // Then write the table data (position is already after the header) size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType ? ctx->userDataDdtHeader.entries * sizeof(uint16_t) : ctx->userDataDdtHeader.entries * sizeof(uint32_t); // Write the primary table data size_t writtenBytes = 0; if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType) writtenBytes = fwrite(ctx->userDataDdtMini, primaryTableSize, 1, ctx->imageStream); else writtenBytes = fwrite(ctx->userDataDdtBig, primaryTableSize, 1, ctx->imageStream); if(writtenBytes == 1) { TRACE("Successfully wrote primary DDT header and table to file (%" PRIu64 " entries, %zu bytes)", ctx->userDataDdtHeader.entries, primaryTableSize); // Add primary DDT to index TRACE("Adding primary DDT to index"); IndexEntry primaryDdtEntry; primaryDdtEntry.blockType = DeDuplicationTable2; primaryDdtEntry.dataType = UserData; primaryDdtEntry.offset = ctx->primaryDdtOffset; utarray_push_back(ctx->indexEntries, &primaryDdtEntry); TRACE("Added primary DDT index entry at offset %" PRIu64, ctx->primaryDdtOffset); } else TRACE("Failed to write primary DDT table to file"); } // Write the single level DDT table block aligned just after the header if(ctx->userDataDdtHeader.tableShift == 0 && (ctx->userDataDdtMini != NULL || ctx->userDataDdtBig != NULL)) { TRACE("Writing single-level DDT table to file"); // Calculate CRC64 of the primary DDT table data crc64_ctx *crc64_context = aaruf_crc64_init(); if(crc64_context != NULL) { size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType ? ctx->userDataDdtHeader.entries * sizeof(uint16_t) : ctx->userDataDdtHeader.entries * sizeof(uint32_t); if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType) aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtMini, primaryTableSize); else aaruf_crc64_update(crc64_context, (uint8_t *)ctx->userDataDdtBig, primaryTableSize); uint64_t crc64; aaruf_crc64_final(crc64_context, &crc64); // Properly populate all header fields ctx->userDataDdtHeader.identifier = DeDuplicationTable2; ctx->userDataDdtHeader.type = UserData; ctx->userDataDdtHeader.compression = None; ctx->userDataDdtHeader.levels = 1; // Single level ctx->userDataDdtHeader.tableLevel = 0; // Top level ctx->userDataDdtHeader.previousLevelOffset = 0; // No previous level for single-level DDT // negative and overflow are already set during creation // blockAlignmentShift, dataShift, tableShift, sizeType, entries, blocks, start are already set ctx->userDataDdtHeader.crc64 = crc64; ctx->userDataDdtHeader.cmpCrc64 = crc64; ctx->userDataDdtHeader.length = primaryTableSize; ctx->userDataDdtHeader.cmpLength = primaryTableSize; TRACE("Calculated CRC64 for single-level DDT: 0x%16lX", crc64); } // Write the DDT header first fseek(ctx->imageStream, ctx->primaryDdtOffset, SEEK_SET); size_t headerWritten = fwrite(&ctx->userDataDdtHeader, sizeof(DdtHeader2), 1, ctx->imageStream); if(headerWritten != 1) { TRACE("Failed to write single-level DDT header to file"); return AARUF_ERROR_CANNOT_WRITE_HEADER; } // Then write the table data (position is already after the header) size_t primaryTableSize = ctx->userDataDdtHeader.sizeType == SmallDdtSizeType ? ctx->userDataDdtHeader.entries * sizeof(uint16_t) : ctx->userDataDdtHeader.entries * sizeof(uint32_t); // Write the primary table data size_t writtenBytes = 0; if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType) writtenBytes = fwrite(ctx->userDataDdtMini, primaryTableSize, 1, ctx->imageStream); else writtenBytes = fwrite(ctx->userDataDdtBig, primaryTableSize, 1, ctx->imageStream); if(writtenBytes == 1) { TRACE("Successfully wrote single-level DDT header and table to file (%" PRIu64 " entries, %zu bytes)", ctx->userDataDdtHeader.entries, primaryTableSize); // Add single-level DDT to index TRACE("Adding single-level DDT to index"); IndexEntry singleDdtEntry; singleDdtEntry.blockType = DeDuplicationTable2; singleDdtEntry.dataType = UserData; singleDdtEntry.offset = ctx->primaryDdtOffset; utarray_push_back(ctx->indexEntries, &singleDdtEntry); TRACE("Added single-level DDT index entry at offset %" PRIu64, ctx->primaryDdtOffset); } else TRACE("Failed to write single-level DDT table data to file"); } // Write the complete index at the end of the file TRACE("Writing index at the end of the file"); fseek(ctx->imageStream, 0, SEEK_END); long indexPosition = ftell(ctx->imageStream); // Align index position to block boundary if needed uint64_t alignmentMask = (1ULL << ctx->userDataDdtHeader.blockAlignmentShift) - 1; if(indexPosition & alignmentMask) { uint64_t alignedPosition = (indexPosition + alignmentMask) & ~alignmentMask; fseek(ctx->imageStream, alignedPosition, SEEK_SET); indexPosition = alignedPosition; TRACE("Aligned index position to %" PRIu64, alignedPosition); } // Prepare index header IndexHeader3 indexHeader; indexHeader.identifier = IndexBlock3; indexHeader.entries = utarray_len(ctx->indexEntries); indexHeader.previous = 0; // No previous index for now TRACE("Writing index with %" PRIu64 " entries at position %ld", indexHeader.entries, indexPosition); // Calculate CRC64 of index entries crc64_ctx *indexCrc64Context = aaruf_crc64_init(); if(indexCrc64Context != NULL && indexHeader.entries > 0) { size_t indexDataSize = indexHeader.entries * sizeof(IndexEntry); aaruf_crc64_update(indexCrc64Context, (uint8_t *)utarray_front(ctx->indexEntries), indexDataSize); aaruf_crc64_final(indexCrc64Context, &indexHeader.crc64); TRACE("Calculated index CRC64: 0x%16lX", indexHeader.crc64); } else { indexHeader.crc64 = 0; } // Write index header if(fwrite(&indexHeader, sizeof(IndexHeader3), 1, ctx->imageStream) == 1) { TRACE("Successfully wrote index header"); // Write index entries if(indexHeader.entries > 0) { size_t entriesWritten = 0; IndexEntry *entry = NULL; for(entry = (IndexEntry *)utarray_front(ctx->indexEntries); entry != NULL; entry = (IndexEntry *)utarray_next(ctx->indexEntries, entry)) { if(fwrite(entry, sizeof(IndexEntry), 1, ctx->imageStream) == 1) { entriesWritten++; TRACE("Wrote index entry: blockType=0x%08X dataType=%u offset=%" PRIu64, entry->blockType, entry->dataType, entry->offset); } else { TRACE("Failed to write index entry %zu", entriesWritten); break; } } if(entriesWritten == indexHeader.entries) { TRACE("Successfully wrote all %zu index entries", entriesWritten); // Update header with index offset and rewrite it ctx->header.indexOffset = indexPosition; TRACE("Updating header with index offset: %" PRIu64, ctx->header.indexOffset); // Seek back to beginning and rewrite header fseek(ctx->imageStream, 0, SEEK_SET); if(fwrite(&ctx->header, sizeof(AaruHeaderV2), 1, ctx->imageStream) == 1) { TRACE("Successfully updated header with index offset"); } else { TRACE("Failed to update header with index offset"); return AARUF_ERROR_CANNOT_WRITE_HEADER; } } else { TRACE("Failed to write all index entries (wrote %zu of %" PRIu64 ")", entriesWritten, indexHeader.entries); return AARUF_ERROR_CANNOT_WRITE_HEADER; } } } else { TRACE("Failed to write index header"); return AARUF_ERROR_CANNOT_WRITE_HEADER; } } TRACE("Freeing memory pointers"); // This may do nothing if imageStream is NULL, but as the behaviour is undefined, better sure than sorry if(ctx->imageStream != NULL) { fclose(ctx->imageStream); ctx->imageStream = NULL; } // Free index entries array if(ctx->indexEntries != NULL) { utarray_free(ctx->indexEntries); ctx->indexEntries = NULL; } free(ctx->sectorPrefix); ctx->sectorPrefix = NULL; free(ctx->sectorPrefixCorrected); ctx->sectorPrefixCorrected = NULL; free(ctx->sectorSuffix); ctx->sectorSuffix = NULL; free(ctx->sectorSuffixCorrected); ctx->sectorSuffixCorrected = NULL; free(ctx->sectorSubchannel); ctx->sectorSubchannel = NULL; free(ctx->mode2Subheaders); ctx->mode2Subheaders = NULL; TRACE("Freeing media tags"); if(ctx->mediaTags != NULL) HASH_ITER(hh, ctx->mediaTags, mediaTag, tmpMediaTag) { HASH_DEL(ctx->mediaTags, mediaTag); free(mediaTag->data); free(mediaTag); } #ifdef __linux__ // TODO: Implement TRACE("Unmapping user data DDT if it is not in memory"); if(!ctx->inMemoryDdt) { munmap(ctx->userDataDdt, ctx->mappedMemoryDdtSize); ctx->userDataDdt = NULL; } #endif free(ctx->sectorPrefixDdt); ctx->sectorPrefixDdt = NULL; free(ctx->sectorSuffixDdt); ctx->sectorSuffixDdt = NULL; free(ctx->metadataBlock); ctx->metadataBlock = NULL; free(ctx->trackEntries); ctx->trackEntries = NULL; free(ctx->cicmBlock); ctx->cicmBlock = NULL; if(ctx->dumpHardwareEntriesWithData != NULL) { for(i = 0; i < ctx->dumpHardwareHeader.entries; i++) { free(ctx->dumpHardwareEntriesWithData[i].extents); ctx->dumpHardwareEntriesWithData[i].extents = NULL; free(ctx->dumpHardwareEntriesWithData[i].manufacturer); ctx->dumpHardwareEntriesWithData[i].manufacturer = NULL; free(ctx->dumpHardwareEntriesWithData[i].model); ctx->dumpHardwareEntriesWithData[i].model = NULL; free(ctx->dumpHardwareEntriesWithData[i].revision); ctx->dumpHardwareEntriesWithData[i].revision = NULL; free(ctx->dumpHardwareEntriesWithData[i].firmware); ctx->dumpHardwareEntriesWithData[i].firmware = NULL; free(ctx->dumpHardwareEntriesWithData[i].serial); ctx->dumpHardwareEntriesWithData[i].serial = NULL; free(ctx->dumpHardwareEntriesWithData[i].softwareName); ctx->dumpHardwareEntriesWithData[i].softwareName = NULL; free(ctx->dumpHardwareEntriesWithData[i].softwareVersion); ctx->dumpHardwareEntriesWithData[i].softwareVersion = NULL; free(ctx->dumpHardwareEntriesWithData[i].softwareOperatingSystem); ctx->dumpHardwareEntriesWithData[i].softwareOperatingSystem = NULL; } ctx->dumpHardwareEntriesWithData = NULL; } free(ctx->readableSectorTags); ctx->readableSectorTags = NULL; free(ctx->eccCdContext); ctx->eccCdContext = NULL; free(ctx->checksums.spamsum); ctx->checksums.spamsum = NULL; // TODO: Free caches free(context); TRACE("Exiting aaruf_close() = 0"); return 0; }