/* * This file is part of the Aaru Data Preservation Suite. * Copyright (c) 2019-2025 Natalia Portillo. * * This library is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2.1 of the * License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include #include #include #include #include "aaruformat.h" int32_t process_ddt_v2(aaruformatContext *ctx, IndexEntry *entry, bool *foundUserDataDdt) { int pos = 0; size_t readBytes = 0; DdtHeader2 ddtHeader; uint8_t *cmpData = NULL; uint8_t lzmaProperties[LZMA_PROPERTIES_LENGTH]; size_t lzmaSize = 0; int errorNo = 0; crc64_ctx *crc64_context = NULL; uint64_t crc64 = 0; uint8_t *buffer = NULL; // Check if the context and image stream are valid if(ctx == NULL || ctx->imageStream == NULL) { fprintf(stderr, "Invalid context or image stream.\n"); return AARUF_ERROR_NOT_AARUFORMAT; } // Seek to block pos = fseek(ctx->imageStream, entry->offset, SEEK_SET); if(pos < 0 || ftell(ctx->imageStream) != entry->offset) { fprintf(stderr, "libaaruformat: Could not seek to %" PRIu64 " as indicated by index entry...\n", entry->offset); return AARUF_ERROR_CANNOT_READ_BLOCK; } // Even if those two checks shall have been done before readBytes = fread(&ddtHeader, 1, sizeof(DdtHeader2), ctx->imageStream); if(readBytes != sizeof(DdtHeader2)) { fprintf(stderr, "libaaruformat: Could not read block header at %" PRIu64 "\n", entry->offset); return AARUF_ERROR_CANNOT_READ_BLOCK; } *foundUserDataDdt = false; ctx->imageInfo.ImageSize += ddtHeader.cmpLength; if(entry->dataType == UserData) { // User area sectors is blocks stored in DDT minus the negative and overflow displacement blocks ctx->imageInfo.Sectors = ddtHeader.blocks - ddtHeader.negative - ddtHeader.overflow; // We need the header later for the shift calculations ctx->userDataDdtHeader = ddtHeader; ctx->ddtVersion = 2; // Check for DDT compression switch(ddtHeader.compression) { case Lzma: lzmaSize = ddtHeader.cmpLength - LZMA_PROPERTIES_LENGTH; cmpData = (uint8_t *)malloc(lzmaSize); if(cmpData == NULL) { fprintf(stderr, "Cannot allocate memory for DDT, continuing...\n"); break; } buffer = malloc(ddtHeader.length); if(buffer == NULL) { fprintf(stderr, "Cannot allocate memory for DDT, continuing...\n"); free(cmpData); break; } readBytes = fread(lzmaProperties, 1, LZMA_PROPERTIES_LENGTH, ctx->imageStream); if(readBytes != LZMA_PROPERTIES_LENGTH) { fprintf(stderr, "Could not read LZMA properties, continuing...\n"); free(cmpData); free(buffer); break; } readBytes = fread(cmpData, 1, lzmaSize, ctx->imageStream); if(readBytes != lzmaSize) { fprintf(stderr, "Could not read compressed block, continuing...\n"); free(cmpData); free(buffer); break; } readBytes = ddtHeader.length; errorNo = aaruf_lzma_decode_buffer(buffer, &readBytes, cmpData, &lzmaSize, lzmaProperties, LZMA_PROPERTIES_LENGTH); if(errorNo != 0) { fprintf(stderr, "Got error %d from LZMA, stopping...\n", errorNo); free(cmpData); free(buffer); return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK; } if(readBytes != ddtHeader.length) { fprintf(stderr, "Error decompressing block, should be {0} bytes but got {1} bytes., stopping...\n"); free(cmpData); free(ctx->userDataDdt); return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK; } free(cmpData); crc64_context = aaruf_crc64_init(); if(crc64_context == NULL) { fprintf(stderr, "Could not initialize CRC64.\n"); free(buffer); return AARUF_ERROR_CANNOT_READ_BLOCK; } aaruf_crc64_update(crc64_context, buffer, readBytes); aaruf_crc64_final(crc64_context, &crc64); if(crc64 != ddtHeader.crc64) { fprintf(stderr, "Expected DDT CRC 0x%16lX but got 0x%16lX.\n", ddtHeader.crc64, crc64); free(buffer); return AARUF_ERROR_INVALID_BLOCK_CRC; } if(ddtHeader.sizeType == SmallDdtSizeType) ctx->userDataDdtMini = (uint16_t *)buffer; else if(ddtHeader.sizeType == BigDdtSizeType) ctx->userDataDdtBig = (uint32_t *)buffer; ctx->inMemoryDdt = true; *foundUserDataDdt = true; break; case None: buffer = malloc(ddtHeader.length); if(buffer == NULL) { fprintf(stderr, "Cannot allocate memory for DDT, continuing...\n"); free(cmpData); break; } readBytes = fread(buffer, 1, ddtHeader.length, ctx->imageStream); if(readBytes != ddtHeader.length) { free(buffer); fprintf(stderr, "libaaruformat: Could not read deduplication table, continuing...\n"); break; } crc64_context = aaruf_crc64_init(); if(crc64_context == NULL) { fprintf(stderr, "Could not initialize CRC64.\n"); free(buffer); return AARUF_ERROR_CANNOT_READ_BLOCK; } aaruf_crc64_update(crc64_context, buffer, readBytes); aaruf_crc64_final(crc64_context, &crc64); if(crc64 != ddtHeader.crc64) { fprintf(stderr, "Expected DDT CRC 0x%16lX but got 0x%16lX.\n", ddtHeader.crc64, crc64); free(buffer); return AARUF_ERROR_INVALID_BLOCK_CRC; } if(ddtHeader.sizeType == SmallDdtSizeType) ctx->userDataDdtMini = (uint16_t *)buffer; else if(ddtHeader.sizeType == BigDdtSizeType) ctx->userDataDdtBig = (uint32_t *)buffer; ctx->inMemoryDdt = true; *foundUserDataDdt = true; break; default: fprintf(stderr, "libaaruformat: Found unknown compression type %d, continuing...\n", ddtHeader.compression); *foundUserDataDdt = false; break; } } else if(entry->dataType == CdSectorPrefixCorrected || entry->dataType == CdSectorSuffixCorrected) { switch(ddtHeader.compression) { case Lzma: lzmaSize = ddtHeader.cmpLength - LZMA_PROPERTIES_LENGTH; cmpData = (uint8_t *)malloc(lzmaSize); if(cmpData == NULL) { fprintf(stderr, "Cannot allocate memory for DDT, continuing...\n"); break; } buffer = malloc(ddtHeader.length); if(buffer == NULL) { fprintf(stderr, "Cannot allocate memory for DDT, continuing...\n"); free(cmpData); break; } readBytes = fread(lzmaProperties, 1, LZMA_PROPERTIES_LENGTH, ctx->imageStream); if(readBytes != LZMA_PROPERTIES_LENGTH) { fprintf(stderr, "Could not read LZMA properties, continuing...\n"); free(cmpData); free(buffer); break; } readBytes = fread(cmpData, 1, lzmaSize, ctx->imageStream); if(readBytes != lzmaSize) { fprintf(stderr, "Could not read compressed block, continuing...\n"); free(cmpData); break; } readBytes = ddtHeader.length; errorNo = aaruf_lzma_decode_buffer(buffer, &readBytes, cmpData, &lzmaSize, lzmaProperties, LZMA_PROPERTIES_LENGTH); if(errorNo != 0) { fprintf(stderr, "Got error %d from LZMA, stopping...\n", errorNo); free(cmpData); free(buffer); return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK; } if(readBytes != ddtHeader.length) { fprintf(stderr, "Error decompressing block, should be {0} bytes but got {1} bytes., stopping...\n"); free(cmpData); free(buffer); return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK; } crc64_context = aaruf_crc64_init(); if(crc64_context == NULL) { fprintf(stderr, "Could not initialize CRC64.\n"); free(buffer); return AARUF_ERROR_CANNOT_READ_BLOCK; } aaruf_crc64_update(crc64_context, buffer, readBytes); aaruf_crc64_final(crc64_context, &crc64); if(crc64 != ddtHeader.crc64) { fprintf(stderr, "Expected DDT CRC 0x%16lX but got 0x%16lX.\n", ddtHeader.crc64, crc64); free(buffer); return AARUF_ERROR_INVALID_BLOCK_CRC; } if(entry->dataType == CdSectorPrefixCorrected) { if(ddtHeader.sizeType == SmallDdtSizeType) ctx->sectorPrefixDdtMini = (uint16_t *)buffer; else if(ddtHeader.sizeType == BigDdtSizeType) ctx->sectorPrefixDdt = (uint32_t *)buffer; } else if(entry->dataType == CdSectorSuffixCorrected) { if(ddtHeader.sizeType == SmallDdtSizeType) ctx->sectorSuffixDdtMini = (uint16_t *)buffer; else if(ddtHeader.sizeType == BigDdtSizeType) ctx->sectorSuffixDdt = (uint32_t *)buffer; } else free(buffer); break; case None: buffer = malloc(ddtHeader.length); if(buffer == NULL) { fprintf(stderr, "libaaruformat: Cannot allocate memory for deduplication table.\n"); break; } readBytes = fread(buffer, 1, ddtHeader.length, ctx->imageStream); if(readBytes != ddtHeader.length) { free(buffer); fprintf(stderr, "libaaruformat: Could not read deduplication table, continuing...\n"); break; } crc64_context = aaruf_crc64_init(); if(crc64_context == NULL) { fprintf(stderr, "Could not initialize CRC64.\n"); free(ctx->userDataDdt); return AARUF_ERROR_CANNOT_READ_BLOCK; } aaruf_crc64_update(crc64_context, buffer, readBytes); aaruf_crc64_final(crc64_context, &crc64); if(crc64 != ddtHeader.crc64) { fprintf(stderr, "Expected DDT CRC 0x%16lX but got 0x%16lX.\n", ddtHeader.crc64, crc64); free(ctx->userDataDdt); return AARUF_ERROR_INVALID_BLOCK_CRC; } if(entry->dataType == CdSectorPrefixCorrected) { if(ddtHeader.sizeType == SmallDdtSizeType) ctx->sectorPrefixDdtMini = (uint16_t *)buffer; else if(ddtHeader.sizeType == BigDdtSizeType) ctx->sectorPrefixDdt = (uint32_t *)buffer; } else if(entry->dataType == CdSectorSuffixCorrected) { if(ddtHeader.sizeType == SmallDdtSizeType) ctx->sectorSuffixDdtMini = (uint16_t *)buffer; else if(ddtHeader.sizeType == BigDdtSizeType) ctx->sectorSuffixDdt = (uint32_t *)buffer; } else free(buffer); break; default: fprintf(stderr, "libaaruformat: Found unknown compression type %d, continuing...\n", ddtHeader.compression); break; } } return AARUF_STATUS_OK; } int32_t decode_ddt_entry_v2(aaruformatContext *ctx, uint64_t sectorAddress, uint64_t *offset, uint64_t *blockOffset, uint8_t *sectorStatus) { uint64_t ddtEntry = 0; // Check if the context and image stream are valid if(ctx == NULL || ctx->imageStream == NULL) { fprintf(stderr, "Invalid context or image stream.\n"); return AARUF_ERROR_NOT_AARUFORMAT; } // TODO: Implement multi-level tables if(ctx->userDataDdtHeader.tableShift != 0) return AARUF_ERROR_CANNOT_READ_BLOCK; // TODO: Take into account the negative and overflow blocks, library-wide sectorAddress += ctx->userDataDdtHeader.negative; if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType) ddtEntry = ctx->userDataDdtMini[sectorAddress]; else if(ctx->userDataDdtHeader.sizeType == BigDdtSizeType) ddtEntry = ctx->userDataDdtBig[sectorAddress]; else { fprintf(stderr, "libaaruformat: Unknown DDT size type %d.\n", ctx->userDataDdtHeader.sizeType); return AARUF_ERROR_CANNOT_READ_BLOCK; } if(ddtEntry == 0) { *sectorStatus = SectorStatusNotDumped; *offset = 0; *blockOffset = 0; return AARUF_STATUS_OK; } if(ctx->userDataDdtHeader.sizeType == SmallDdtSizeType) { *sectorStatus = ddtEntry >> 12; ddtEntry &= 0xfff; } else if(ctx->userDataDdtHeader.sizeType == BigDdtSizeType) { *sectorStatus = ddtEntry >> 28; ddtEntry &= 0x0fffffff; } const uint64_t offsetMask = (uint64_t)((1 << ctx->userDataDdtHeader.dataShift) - 1); *offset = (ddtEntry & offsetMask) * (1 << ctx->userDataDdtHeader.blockAlignmentShift); *blockOffset = ddtEntry >> ctx->userDataDdtHeader.dataShift; return AARUF_STATUS_OK; }