/*
* This file is part of the Aaru Data Preservation Suite.
* Copyright (c) 2019-2025 Natalia Portillo.
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see .
*/
#include
#include
#include
#include "internal.h"
#include "log.h"
/**
* @brief Reads a media tag from the AaruFormat image.
*
* Reads the specified media tag from the image and stores it in the provided buffer.
* Media tags contain metadata information about the storage medium such as disc
* information, lead-in/lead-out data, or manufacturer-specific information.
*
* @param context Pointer to the aaruformat context.
* @param data Pointer to the buffer to store the tag data. Can be NULL to query tag length.
* @param tag Tag identifier to read.
* @param length Pointer to the length of the buffer on input; updated with actual tag length on output.
*
* @return AARUF_STATUS_OK on success,
* AARUF_ERROR_NOT_AARUFORMAT if context is NULL or invalid (magic number mismatch),
* AARUF_ERROR_MEDIA_TAG_NOT_PRESENT if the requested media tag identifier does not exist in the image,
* AARUF_ERROR_BUFFER_TOO_SMALL if data is NULL or provided buffer size is insufficient for the tag data.
*/
int32_t aaruf_read_media_tag(void *context, uint8_t *data, int32_t tag, uint32_t *length)
{
TRACE("Entering aaruf_read_media_tag(%p, %p, %d, %u)", context, data, tag, *length);
aaruformatContext *ctx;
mediaTagEntry *item;
if(context == NULL)
{
FATAL("Invalid context");
TRACE("Exiting aaruf_read_media_tag() = AARUF_ERROR_NOT_AARUFORMAT");
return AARUF_ERROR_NOT_AARUFORMAT;
}
ctx = context;
// Not a libaaruformat context
if(ctx->magic != AARU_MAGIC)
{
FATAL("Invalid context");
TRACE("Exiting aaruf_read_media_tag() = AARUF_ERROR_NOT_AARUFORMAT");
return AARUF_ERROR_NOT_AARUFORMAT;
}
TRACE("Finding media tag %d", tag);
HASH_FIND_INT(ctx->mediaTags, &tag, item);
if(item == NULL)
{
TRACE("Media tag not found");
*length = 0;
TRACE("Exiting aaruf_read_media_tag() = AARUF_ERROR_MEDIA_TAG_NOT_PRESENT");
return AARUF_ERROR_MEDIA_TAG_NOT_PRESENT;
}
if(data == NULL || *length < item->length)
{
TRACE("Buffer too small for media tag %d, required %u bytes", tag, item->length);
*length = item->length;
TRACE("Exiting aaruf_read_media_tag() = AARUF_ERROR_BUFFER_TOO_SMALL");
return AARUF_ERROR_BUFFER_TOO_SMALL;
}
*length = item->length;
memcpy(data, item->data, item->length);
TRACE("Media tag %d read successfully, length %u", tag, *length);
TRACE("Exiting aaruf_read_media_tag() = AARUF_STATUS_OK");
return AARUF_STATUS_OK;
}
/**
* @brief Reads a sector from the AaruFormat image.
*
* Reads user data from the specified sector address in the image. This function
* reads only the user data portion of the sector, without any additional metadata
* or ECC/EDC information.
*
* @param context Pointer to the aaruformat context.
* @param sector_address The logical sector address to read from.
* @param data Pointer to buffer where sector data will be stored. Can be NULL to query length.
* @param length Pointer to variable containing buffer size on input, actual data length on output.
*
* @return AARUF_STATUS_OK on success,
* AARUF_STATUS_SECTOR_NOT_DUMPED if sector was not dumped during imaging,
* AARUF_ERROR_NOT_AARUFORMAT if context is NULL or invalid (magic number mismatch),
* AARUF_ERROR_SECTOR_OUT_OF_BOUNDS if sector address exceeds image sector count,
* AARUF_ERROR_BUFFER_TOO_SMALL if data is NULL or buffer size is insufficient,
* AARUF_ERROR_NOT_ENOUGH_MEMORY if memory allocation fails for block operations,
* AARUF_ERROR_CANNOT_READ_HEADER if block header cannot be read from image stream,
* AARUF_ERROR_CANNOT_READ_BLOCK if block data cannot be read from image stream,
* AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK if LZMA or FLAC decompression fails,
* AARUF_ERROR_UNSUPPORTED_COMPRESSION if block uses unsupported compression algorithm,
* or other error codes from DDT decoding functions.
*/
int32_t aaruf_read_sector(void *context, uint64_t sector_address, uint8_t *data, uint32_t *length)
{
TRACE("Entering aaruf_read_sector(%p, %" PRIu64 ", %p, %u)", context, sector_address, data, *length);
aaruformatContext *ctx = NULL;
uint64_t offset = 0;
uint64_t block_offset = 0;
BlockHeader *block_header = NULL;
uint8_t *block = NULL;
size_t read_bytes = 0;
uint8_t lzma_properties[LZMA_PROPERTIES_LENGTH];
size_t lzma_size = 0;
uint8_t *cmp_data = NULL;
int error_no = 0;
uint8_t sector_status = 0;
if(context == NULL)
{
FATAL("Invalid context");
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_NOT_AARUFORMAT");
return AARUF_ERROR_NOT_AARUFORMAT;
}
ctx = context;
// Not a libaaruformat context
if(ctx->magic != AARU_MAGIC)
{
FATAL("Invalid context");
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_NOT_AARUFORMAT");
return AARUF_ERROR_NOT_AARUFORMAT;
}
if(sector_address > ctx->imageInfo.Sectors - 1)
{
FATAL("Sector address out of bounds");
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_SECTOR_OUT_OF_BOUNDS");
return AARUF_ERROR_SECTOR_OUT_OF_BOUNDS;
}
if(ctx->ddtVersion == 1)
error_no = decode_ddt_entry_v1(ctx, sector_address, &offset, &block_offset, §or_status);
else if(ctx->ddtVersion == 2)
error_no = decode_ddt_entry_v2(ctx, sector_address, &offset, &block_offset, §or_status);
if(error_no != AARUF_STATUS_OK)
{
FATAL("Error %d decoding DDT entry", error_no);
TRACE("Exiting aaruf_read_sector() = %d", error_no);
return error_no;
}
// Partially written image... as we can't know the real sector size just assume it's common :/
if(sector_status == SectorStatusNotDumped)
{
*length = ctx->imageInfo.SectorSize;
TRACE("Exiting aaruf_read_sector() = AARUF_STATUS_SECTOR_NOT_DUMPED");
return AARUF_STATUS_SECTOR_NOT_DUMPED;
}
// Check if block header is cached
TRACE("Checking if block header is cached");
block_header = find_in_cache_uint64(&ctx->blockHeaderCache, block_offset);
// Read block header
if(block_header == NULL)
{
TRACE("Allocating memory for block header");
block_header = malloc(sizeof(BlockHeader));
if(block_header == NULL)
{
FATAL("Not enough memory for block header");
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_NOT_ENOUGH_MEMORY");
return AARUF_ERROR_NOT_ENOUGH_MEMORY;
}
TRACE("Reading block header");
fseek(ctx->imageStream, block_offset, SEEK_SET);
read_bytes = fread(block_header, 1, sizeof(BlockHeader), ctx->imageStream);
if(read_bytes != sizeof(BlockHeader))
{
FATAL("Error reading block header");
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_CANNOT_READ_HEADER");
return AARUF_ERROR_CANNOT_READ_HEADER;
}
TRACE("Adding block header to cache");
add_to_cache_uint64(&ctx->blockHeaderCache, block_offset, block_header);
}
else
fseek(ctx->imageStream, block_offset + sizeof(BlockHeader), SEEK_SET); // Advance as if reading the header
if(data == NULL || *length < block_header->sectorSize)
{
TRACE("Buffer too small for sector, required %u bytes", block_header->sectorSize);
*length = block_header->sectorSize;
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_BUFFER_TOO_SMALL");
return AARUF_ERROR_BUFFER_TOO_SMALL;
}
// Check if block is cached
TRACE("Checking if block is cached");
block = find_in_cache_uint64(&ctx->blockCache, block_offset);
if(block != NULL)
{
TRACE("Getting data from cache");
memcpy(data, block + offset * block_header->sectorSize, block_header->sectorSize);
*length = block_header->sectorSize;
TRACE("Exiting aaruf_read_sector() = AARUF_STATUS_OK");
return AARUF_STATUS_OK;
}
// Decompress block
switch(block_header->compression)
{
case None:
TRACE("Allocating memory for block");
block = (uint8_t *)malloc(block_header->length);
if(block == NULL)
{
FATAL("Not enough memory for block");
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_NOT_ENOUGH_MEMORY");
return AARUF_ERROR_NOT_ENOUGH_MEMORY;
}
TRACE("Reading block into memory");
read_bytes = fread(block, 1, block_header->length, ctx->imageStream);
if(read_bytes != block_header->length)
{
FATAL("Could not read block");
free(block);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_CANNOT_READ_BLOCK");
return AARUF_ERROR_CANNOT_READ_BLOCK;
}
break;
case Lzma:
lzma_size = block_header->cmpLength - LZMA_PROPERTIES_LENGTH;
TRACE("Allocating memory for compressed data of size %zu bytes", lzma_size);
cmp_data = malloc(lzma_size);
if(cmp_data == NULL)
{
FATAL("Cannot allocate memory for block...");
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_NOT_ENOUGH_MEMORY");
return AARUF_ERROR_NOT_ENOUGH_MEMORY;
}
TRACE("Allocating memory for block of size %zu bytes", block_header->length);
block = malloc(block_header->length);
if(block == NULL)
{
FATAL("Cannot allocate memory for block...");
free(cmp_data);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_NOT_ENOUGH_MEMORY");
return AARUF_ERROR_NOT_ENOUGH_MEMORY;
}
read_bytes = fread(lzma_properties, 1, LZMA_PROPERTIES_LENGTH, ctx->imageStream);
if(read_bytes != LZMA_PROPERTIES_LENGTH)
{
FATAL("Could not read LZMA properties...");
free(block);
free(cmp_data);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
read_bytes = fread(cmp_data, 1, lzma_size, ctx->imageStream);
if(read_bytes != lzma_size)
{
FATAL("Could not read compressed block...");
free(cmp_data);
free(block);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
TRACE("Decompressing block of size %zu bytes", block_header->length);
read_bytes = block_header->length;
error_no = aaruf_lzma_decode_buffer(block, &read_bytes, cmp_data, &lzma_size, lzma_properties,
LZMA_PROPERTIES_LENGTH);
if(error_no != 0)
{
FATAL("Got error %d from LZMA...", error_no);
free(cmp_data);
free(block);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
if(read_bytes != block_header->length)
{
FATAL("Error decompressing block, should be {0} bytes but got {1} bytes...");
free(cmp_data);
free(block);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
free(cmp_data);
break;
case Flac:
TRACE("Allocating memory for compressed data of size %zu bytes", block_header->cmpLength);
cmp_data = malloc(block_header->cmpLength);
if(cmp_data == NULL)
{
FATAL("Cannot allocate memory for block...");
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_NOT_ENOUGH_MEMORY");
return AARUF_ERROR_NOT_ENOUGH_MEMORY;
}
TRACE("Allocating memory for block of size %zu bytes", block_header->length);
block = malloc(block_header->length);
if(block == NULL)
{
FATAL("Cannot allocate memory for block...");
free(cmp_data);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_NOT_ENOUGH_MEMORY");
return AARUF_ERROR_NOT_ENOUGH_MEMORY;
}
TRACE("Reading compressed data into memory");
read_bytes = fread(cmp_data, 1, block_header->cmpLength, ctx->imageStream);
if(read_bytes != block_header->cmpLength)
{
FATAL("Could not read compressed block...");
free(cmp_data);
free(block);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
TRACE("Decompressing block of size %zu bytes", block_header->length);
read_bytes =
aaruf_flac_decode_redbook_buffer(block, block_header->length, cmp_data, block_header->cmpLength);
if(read_bytes != block_header->length)
{
FATAL("Error decompressing block, should be {0} bytes but got {1} bytes...");
free(cmp_data);
free(block);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK");
return AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK;
}
free(cmp_data);
break;
default:
FATAL("Unsupported compression %d", block_header->compression);
TRACE("Exiting aaruf_read_sector() = AARUF_ERROR_UNSUPPORTED_COMPRESSION");
return AARUF_ERROR_UNSUPPORTED_COMPRESSION;
}
// Add block to cache
TRACE("Adding block to cache");
add_to_cache_uint64(&ctx->blockCache, block_offset, block);
memcpy(data, block + (offset * block_header->sectorSize), block_header->sectorSize);
*length = block_header->sectorSize;
TRACE("Exiting aaruf_read_sector() = AARUF_STATUS_OK");
return AARUF_STATUS_OK;
}
/**
* @brief Reads a sector from a specific track in the AaruFormat image.
*
* Reads user data from the specified sector address within a particular track.
* This function is specifically designed for optical disc images where sectors
* are organized by tracks. The sector address is relative to the start of the track.
*
* @param context Pointer to the aaruformat context.
* @param data Pointer to buffer where sector data will be stored.
* @param sector_address The sector address relative to the track start.
* @param length Pointer to variable containing buffer size on input, actual data length on output.
* @param track The track number to read from.
*
* @return AARUF_STATUS_OK on success,
* AARUF_STATUS_SECTOR_NOT_DUMPED if sector was not dumped during imaging,
* AARUF_ERROR_NOT_AARUFORMAT if context is NULL or invalid (magic number mismatch),
* AARUF_ERROR_INCORRECT_MEDIA_TYPE if media is not an optical disc,
* AARUF_ERROR_TRACK_NOT_FOUND if the specified track sequence does not exist,
* AARUF_ERROR_SECTOR_OUT_OF_BOUNDS if calculated sector address exceeds image bounds,
* AARUF_ERROR_BUFFER_TOO_SMALL if data buffer is NULL or insufficient size,
* AARUF_ERROR_NOT_ENOUGH_MEMORY if memory allocation fails during sector reading,
* AARUF_ERROR_CANNOT_READ_HEADER if block header cannot be read from image stream,
* AARUF_ERROR_CANNOT_READ_BLOCK if block data cannot be read from image stream,
* AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK if LZMA or FLAC decompression fails,
* AARUF_ERROR_UNSUPPORTED_COMPRESSION if block uses unsupported compression,
* or other error codes from underlying aaruf_read_sector function.
*/
int32_t aaruf_read_track_sector(void *context, uint8_t *data, uint64_t sector_address, uint32_t *length, uint8_t track)
{
TRACE("Entering aaruf_read_track_sector(%p, %p, %" PRIu64 ", %u, %d)", context, data, sector_address, *length,
track);
aaruformatContext *ctx;
int i;
if(context == NULL)
{
FATAL("Invalid context");
TRACE("Exiting aaruf_read_track_sector() = AARUF_ERROR_NOT_AARUFORMAT");
return AARUF_ERROR_NOT_AARUFORMAT;
}
ctx = context;
// Not a libaaruformat context
if(ctx->magic != AARU_MAGIC)
{
FATAL("Invalid context");
TRACE("Exiting aaruf_read_track_sector() = AARUF_ERROR_NOT_AARUFORMAT");
return AARUF_ERROR_NOT_AARUFORMAT;
}
if(ctx->imageInfo.XmlMediaType != OpticalDisc)
{
FATAL("Incorrect media type %d, expected OpticalDisc", ctx->imageInfo.XmlMediaType);
TRACE("Exiting aaruf_read_track_sector() = AARUF_ERROR_INCORRECT_MEDIA_TYPE");
return AARUF_ERROR_INCORRECT_MEDIA_TYPE;
}
for(i = 0; i < ctx->numberOfDataTracks; i++)
if(ctx->dataTracks[i].sequence == track)
return aaruf_read_sector(context, ctx->dataTracks[i].start + sector_address, data, length);
TRACE("Track %d not found", track);
TRACE("Exiting aaruf_read_track_sector() = AARUF_ERROR_TRACK_NOT_FOUND");
return AARUF_ERROR_TRACK_NOT_FOUND;
}
/**
* @brief Reads a complete sector with all metadata from the AaruFormat image.
*
* Reads the complete sector data including user data, ECC/EDC, subchannel data,
* and other metadata depending on the media type. For optical discs, this returns
* a full 2352-byte sector with sync, header, user data, and ECC/EDC. For block
* media with tags, this includes both the user data and tag information.
*
* @param context Pointer to the aaruformat context.
* @param sector_address The logical sector address to read from.
* @param data Pointer to buffer where complete sector data will be stored. Can be NULL to query length.
* @param length Pointer to variable containing buffer size on input, actual data length on output.
*
* @return AARUF_STATUS_OK on success,
* AARUF_STATUS_SECTOR_NOT_DUMPED if sector was not dumped during imaging,
* AARUF_ERROR_NOT_AARUFORMAT if context is NULL or invalid (magic number mismatch),
* AARUF_ERROR_BUFFER_TOO_SMALL if data is NULL or buffer size insufficient for complete sector,
* AARUF_ERROR_NOT_ENOUGH_MEMORY if memory allocation fails for bare data operations,
* AARUF_ERROR_TRACK_NOT_FOUND if sector's track cannot be found in track list,
* AARUF_ERROR_INCORRECT_MEDIA_TYPE if media type doesn't support long sector reading,
* AARUF_ERROR_INVALID_TRACK_FORMAT if track has an unsupported or invalid format,
* AARUF_ERROR_REACHED_UNREACHABLE_CODE if internal logic reaches unexpected state,
* AARUF_ERROR_SECTOR_OUT_OF_BOUNDS if sector address exceeds image bounds (from aaruf_read_sector),
* AARUF_ERROR_CANNOT_READ_HEADER if block header cannot be read (from aaruf_read_sector),
* AARUF_ERROR_CANNOT_READ_BLOCK if block data cannot be read (from aaruf_read_sector),
* AARUF_ERROR_CANNOT_DECOMPRESS_BLOCK if decompression fails (from aaruf_read_sector),
* AARUF_ERROR_UNSUPPORTED_COMPRESSION if compression algorithm not supported (from aaruf_read_sector),
* or other error codes from underlying aaruf_read_sector function calls.
*/
int32_t aaruf_read_sector_long(void *context, uint64_t sector_address, uint8_t *data, uint32_t *length)
{
TRACE("Entering aaruf_read_sector_long(%p, %" PRIu64 ", %p, %u)", context, sector_address, data, *length);
aaruformatContext *ctx = NULL;
uint32_t bare_length = 0;
uint32_t tag_length = 0;
uint8_t *bare_data = NULL;
int32_t res = 0;
TrackEntry trk;
int i = 0;
bool trk_found = false;
if(context == NULL)
{
FATAL("Invalid context");
TRACE("Exiting aaruf_read_sector_long() = AARUF_ERROR_NOT_AARUFORMAT");
return AARUF_ERROR_NOT_AARUFORMAT;
}
ctx = context;
// Not a libaaruformat context
if(ctx->magic != AARU_MAGIC)
{
FATAL("Invalid context");
TRACE("Exiting aaruf_read_sector_long() = AARUF_ERROR_NOT_AARUFORMAT");
return AARUF_ERROR_NOT_AARUFORMAT;
}
switch(ctx->imageInfo.XmlMediaType)
{
case OpticalDisc:
if(*length < 2352 || data == NULL)
{
*length = 2352;
FATAL("Buffer too small for sector, required %u bytes", *length);
TRACE("Exiting aaruf_read_sector_long() = AARUF_ERROR_BUFFER_TOO_SMALL");
return AARUF_ERROR_BUFFER_TOO_SMALL;
}
if((ctx->sectorSuffix == NULL || ctx->sectorPrefix == NULL) &&
(ctx->sectorSuffixCorrected == NULL || ctx->sectorPrefixCorrected == NULL))
return aaruf_read_sector(context, sector_address, data, length);
bare_length = 0;
aaruf_read_sector(context, sector_address, NULL, &bare_length);
TRACE("Allocating memory for bare data");
bare_data = (uint8_t *)malloc(bare_length);
if(bare_data == NULL)
{
FATAL("Could not allocate memory for bare data");
TRACE("Exiting aaruf_read_sector_long() = AARUF_ERROR_NOT_ENOUGH_MEMORY");
return AARUF_ERROR_NOT_ENOUGH_MEMORY;
}
res = aaruf_read_sector(context, sector_address, bare_data, &bare_length);
if(res < AARUF_STATUS_OK)
{
free(bare_data);
TRACE("Exiting aaruf_read_sector_long() = %d", res);
return res;
}
trk_found = false;
for(i = 0; i < ctx->numberOfDataTracks; i++)
if(sector_address >= ctx->dataTracks[i].start && sector_address <= ctx->dataTracks[i].end)
{
trk_found = true;
trk = ctx->dataTracks[i];
break;
}
if(!trk_found)
{
FATAL("Track not found");
TRACE("Exiting aaruf_read_sector_long() = AARUF_ERROR_TRACK_NOT_FOUND");
return AARUF_ERROR_TRACK_NOT_FOUND;
}
switch(trk.type)
{
case Audio:
case Data:
memcpy(data, bare_data, bare_length);
return res;
case CdMode1:
memcpy(data + 16, bare_data, 2048);
if(ctx->sectorPrefix != NULL)
memcpy(data, ctx->sectorPrefix + (sector_address * 16), 16);
else if(ctx->sectorPrefixDdt != NULL)
{
if((ctx->sectorPrefixDdt[sector_address] & CD_XFIX_MASK) == Correct)
{
aaruf_ecc_cd_reconstruct_prefix(data, trk.type, sector_address);
res = AARUF_STATUS_OK;
}
else if((ctx->sectorPrefixDdt[sector_address] & CD_XFIX_MASK) == NotDumped)
res = AARUF_STATUS_SECTOR_NOT_DUMPED;
else
memcpy(data,
ctx->sectorPrefixCorrected +
((ctx->sectorPrefixDdt[sector_address] & CD_DFIX_MASK) - 1) * 16,
16);
}
else
{
TRACE("Exiting aaruf_read_sector_long() = AARUF_ERROR_REACHED_UNREACHABLE_CODE");
return AARUF_ERROR_REACHED_UNREACHABLE_CODE;
}
if(res != AARUF_STATUS_OK) return res;
if(ctx->sectorSuffix != NULL)
memcpy(data + 2064, ctx->sectorSuffix + sector_address * 288, 288);
else if(ctx->sectorSuffixDdt != NULL)
{
if((ctx->sectorSuffixDdt[sector_address] & CD_XFIX_MASK) == Correct)
{
aaruf_ecc_cd_reconstruct(ctx->eccCdContext, data, trk.type);
res = AARUF_STATUS_OK;
}
else if((ctx->sectorSuffixDdt[sector_address] & CD_XFIX_MASK) == NotDumped)
res = AARUF_STATUS_SECTOR_NOT_DUMPED;
else
memcpy(data + 2064,
ctx->sectorSuffixCorrected +
((ctx->sectorSuffixDdt[sector_address] & CD_DFIX_MASK) - 1) * 288,
288);
}
else
{
TRACE("Exiting aaruf_read_sector_long() = AARUF_ERROR_REACHED_UNREACHABLE_CODE");
return AARUF_ERROR_REACHED_UNREACHABLE_CODE;
}
return res;
case CdMode2Formless:
case CdMode2Form1:
case CdMode2Form2:
if(ctx->sectorPrefix != NULL)
memcpy(data, ctx->sectorPrefix + sector_address * 16, 16);
else if(ctx->sectorPrefixDdt != NULL)
{
if((ctx->sectorPrefixDdt[sector_address] & CD_XFIX_MASK) == Correct)
{
aaruf_ecc_cd_reconstruct_prefix(data, trk.type, sector_address);
res = AARUF_STATUS_OK;
}
else if((ctx->sectorPrefixDdt[sector_address] & CD_XFIX_MASK) == NotDumped)
res = AARUF_STATUS_SECTOR_NOT_DUMPED;
else
memcpy(data,
ctx->sectorPrefixCorrected +
((ctx->sectorPrefixDdt[sector_address] & CD_DFIX_MASK) - 1) * 16,
16);
}
else
{
TRACE("Exiting aaruf_read_sector_long() = AARUF_ERROR_REACHED_UNREACHABLE_CODE");
return AARUF_ERROR_REACHED_UNREACHABLE_CODE;
}
if(res != AARUF_STATUS_OK) return res;
if(ctx->mode2Subheaders != NULL && ctx->sectorSuffixDdt != NULL)
{
memcpy(data + 16, ctx->mode2Subheaders + sector_address * 8, 8);
if((ctx->sectorSuffixDdt[sector_address] & CD_XFIX_MASK) == Mode2Form1Ok)
{
memcpy(data + 24, bare_data, 2048);
aaruf_ecc_cd_reconstruct(ctx->eccCdContext, data, CdMode2Form1);
}
else if((ctx->sectorSuffixDdt[sector_address] & CD_XFIX_MASK) == Mode2Form2Ok ||
(ctx->sectorSuffixDdt[sector_address] & CD_XFIX_MASK) == Mode2Form2NoCrc)
{
memcpy(data + 24, bare_data, 2324);
if((ctx->sectorSuffixDdt[sector_address] & CD_XFIX_MASK) == Mode2Form2Ok)
aaruf_ecc_cd_reconstruct(ctx->eccCdContext, data, CdMode2Form2);
}
else if((ctx->sectorSuffixDdt[sector_address] & CD_XFIX_MASK) == NotDumped)
res = AARUF_STATUS_SECTOR_NOT_DUMPED;
else
// Mode 2 where ECC failed
memcpy(data + 24, bare_data, 2328);
}
else if(ctx->mode2Subheaders != NULL)
{
memcpy(data + 16, ctx->mode2Subheaders + sector_address * 8, 8);
memcpy(data + 24, bare_data, 2328);
}
else
memcpy(data + 16, bare_data, 2336);
return res;
default:
FATAL("Invalid track type %d", trk.type);
free(bare_data);
TRACE("Exiting aaruf_read_sector_long() = AARUF_ERROR_INVALID_TRACK_FORMAT");
return AARUF_ERROR_INVALID_TRACK_FORMAT;
}
case BlockMedia:
switch(ctx->imageInfo.MediaType)
{
case AppleFileWare:
case AppleProfile:
case AppleSonySS:
case AppleSonyDS:
case AppleWidget:
case PriamDataTower:
if(ctx->sectorSubchannel == NULL) return aaruf_read_sector(context, sector_address, data, length);
switch(ctx->imageInfo.MediaType)
{
case AppleFileWare:
case AppleProfile:
case AppleWidget:
tag_length = 20;
break;
case AppleSonySS:
case AppleSonyDS:
tag_length = 12;
break;
case PriamDataTower:
tag_length = 24;
break;
default:
FATAL("Unsupported media type %d", ctx->imageInfo.MediaType);
TRACE("Exiting aaruf_read_sector_long() = AARUF_ERROR_INCORRECT_MEDIA_TYPE");
return AARUF_ERROR_INCORRECT_MEDIA_TYPE;
}
bare_length = 512;
if(*length < tag_length + bare_length || data == NULL)
{
*length = tag_length + bare_length;
FATAL("Buffer too small for sector, required %u bytes", *length);
TRACE("Exiting aaruf_read_sector_long() = AARUF_ERROR_BUFFER_TOO_SMALL");
return AARUF_ERROR_BUFFER_TOO_SMALL;
}
TRACE("Allocating memory for bare data of size %u bytes", bare_length);
bare_data = malloc(bare_length);
if(bare_data == NULL)
{
FATAL("Could not allocate memory for bare data");
TRACE("Exiting aaruf_read_sector_long() = AARUF_ERROR_NOT_ENOUGH_MEMORY");
return AARUF_ERROR_NOT_ENOUGH_MEMORY;
}
res = aaruf_read_sector(context, sector_address, bare_data, &bare_length);
if(bare_length != 512)
{
FATAL("Bare data length is %u, expected 512", bareLength);
free(bare_data);
TRACE("Exiting aaruf_read_sector_long() = %d", res);
return res;
}
memcpy(data, ctx->sectorSubchannel + sector_address * tag_length, tag_length);
memcpy(data, bare_data, 512);
free(bare_data);
TRACE("Exiting aaruf_read_sector_long() = %d", res);
return res;
default:
FATAL("Incorrect media type %d for long sector reading", ctx->imageInfo.MediaType);
TRACE("Exiting aaruf_read_sector_long() = AARUF_ERROR_INCORRECT_MEDIA_TYPE");
return AARUF_ERROR_INCORRECT_MEDIA_TYPE;
}
default:
FATAL("Incorrect media type %d for long sector reading", ctx->imageInfo.MediaType);
TRACE("Exiting aaruf_read_sector_long() = AARUF_ERROR_INCORRECT_MEDIA_TYPE");
return AARUF_ERROR_INCORRECT_MEDIA_TYPE;
}
}