Files
86Box/src/ne2000.c

2393 lines
74 KiB
C
Raw Normal View History

/* Copyright holders: Peter Grehan, SA1988
see COPYING for more details
*/
/////////////////////////////////////////////////////////////////////////
// $Id: ne2k.cc,v 1.56.2.1 2004/02/02 22:37:22 cbothamy Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// Peter Grehan (grehan@iprg.nokia.com) coded all of this
// NE2000/ether stuff.
//#include "vl.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "slirp/slirp.h"
#include "slirp/queue.h"
#include <pcap.h>
#include "ibm.h"
#include "device.h"
#include "config.h"
#include "nethandler.h"
#include "io.h"
#include "mem.h"
#include "nethandler.h"
#include "rom.h"
#include "ne2000.h"
#include "pci.h"
#include "pic.h"
#include "timer.h"
//THIS IS THE DEFAULT MAC ADDRESS .... so it wont place nice with multiple VMs. YET.
uint8_t maclocal[6] = {0xac, 0xde, 0x48, 0x88, 0xbb, 0xaa};
#define NETBLOCKING 0 //we won't block our pcap
static HINSTANCE net_hLib = 0; /* handle to DLL */
static char* net_lib_name = "wpcap.dll";
pcap_t *net_pcap;
typedef pcap_t* (__cdecl * PCAP_OPEN_LIVE)(const char *, int, int, int, char *);
typedef int (__cdecl * PCAP_SENDPACKET)(pcap_t* handle, const u_char* msg, int len);
typedef int (__cdecl * PCAP_SETNONBLOCK)(pcap_t *, int, char *);
typedef const u_char*(__cdecl *PCAP_NEXT)(pcap_t *, struct pcap_pkthdr *);
typedef const char*(__cdecl *PCAP_LIB_VERSION)(void);
typedef void (__cdecl *PCAP_CLOSE)(pcap_t *);
typedef int (__cdecl *PCAP_GETNONBLOCK)(pcap_t *p, char *errbuf);
typedef int (__cdecl *PCAP_COMPILE)(pcap_t *p, struct bpf_program *fp, const char *str, int optimize, bpf_u_int32 netmask);
typedef int (__cdecl *PCAP_SETFILTER)(pcap_t *p, struct bpf_program *fp);
PCAP_LIB_VERSION _pcap_lib_version;
PCAP_OPEN_LIVE _pcap_open_live;
PCAP_SENDPACKET _pcap_sendpacket;
PCAP_SETNONBLOCK _pcap_setnonblock;
PCAP_NEXT _pcap_next;
PCAP_CLOSE _pcap_close;
PCAP_GETNONBLOCK _pcap_getnonblock;
PCAP_COMPILE _pcap_compile;
PCAP_SETFILTER _pcap_setfilter;
queueADT slirpq;
int net_slirp_inited=0;
int net_is_slirp=1; //by default we go with slirp
int net_is_pcap=0; //and pretend pcap is dead.
int fizz=0;
void slirp_tic();
#define BX_RESET_HARDWARE 0
#define BX_RESET_SOFTWARE 1
//Never completely fill the ne2k ring so that we never
// hit the unclear completely full buffer condition.
#define BX_NE2K_NEVER_FULL_RING (1)
#define BX_NE2K_MEMSIZ (32*1024)
#define BX_NE2K_MEMSTART (16*1024)
#define BX_NE2K_MEMEND (BX_NE2K_MEMSTART + BX_NE2K_MEMSIZ)
uint8_t rtl8029as_eeprom[128];
typedef struct ne2000_t
{
//
// ne2k register state
//
// Page 0
//
// Command Register - 00h read/write
struct CR_t {
int stop; // STP - Software Reset command
int start; // START - start the NIC
int tx_packet; // TXP - initiate packet transmission
uint8_t rdma_cmd; // RD0,RD1,RD2 - Remote DMA command
uint8_t pgsel; // PS0,PS1 - Page select
} CR;
// Interrupt Status Register - 07h read/write
struct ISR_t {
int pkt_rx; // PRX - packet received with no errors
int pkt_tx; // PTX - packet transmitted with no errors
int rx_err; // RXE - packet received with 1 or more errors
int tx_err; // TXE - packet tx'd " " " " "
int overwrite; // OVW - rx buffer resources exhausted
int cnt_oflow; // CNT - network tally counter MSB's set
int rdma_done; // RDC - remote DMA complete
int reset; // RST - reset status
} ISR;
// Interrupt Mask Register - 0fh write
struct IMR_t {
int rx_inte; // PRXE - packet rx interrupt enable
int tx_inte; // PTXE - packet tx interrput enable
int rxerr_inte; // RXEE - rx error interrupt enable
int txerr_inte; // TXEE - tx error interrupt enable
int overw_inte; // OVWE - overwrite warn int enable
int cofl_inte; // CNTE - counter o'flow int enable
int rdma_inte; // RDCE - remote DMA complete int enable
int reserved; // D7 - reserved
} IMR;
// Data Configuration Register - 0eh write
struct DCR_t {
int wdsize; // WTS - 8/16-bit select
int endian; // BOS - byte-order select
int longaddr; // LAS - long-address select
int loop; // LS - loopback select
int auto_rx; // AR - auto-remove rx packets with remote DMA
uint8_t fifo_size; // FT0,FT1 - fifo threshold
} DCR;
// Transmit Configuration Register - 0dh write
struct TCR_t {
int crc_disable; // CRC - inhibit tx CRC
uint8_t loop_cntl; // LB0,LB1 - loopback control
int ext_stoptx; // ATD - allow tx disable by external mcast
int coll_prio; // OFST - backoff algorithm select
uint8_t reserved; // D5,D6,D7 - reserved
} TCR;
// Transmit Status Register - 04h read
struct TSR_t {
int tx_ok; // PTX - tx complete without error
int reserved; // D1 - reserved
int collided; // COL - tx collided >= 1 times
int aborted; // ABT - aborted due to excessive collisions
int no_carrier; // CRS - carrier-sense lost
int fifo_ur; // FU - FIFO underrun
int cd_hbeat; // CDH - no tx cd-heartbeat from transceiver
int ow_coll; // OWC - out-of-window collision
} TSR;
// Receive Configuration Register - 0ch write
struct RCR_t {
int errors_ok; // SEP - accept pkts with rx errors
int runts_ok; // AR - accept < 64-byte runts
int broadcast; // AB - accept eth broadcast address
int multicast; // AM - check mcast hash array
int promisc; // PRO - accept all packets
int monitor; // MON - check pkts, but don't rx
uint8_t reserved; // D6,D7 - reserved
} RCR;
// Receive Status Register - 0ch read
struct RSR_t {
int rx_ok; // PRX - rx complete without error
int bad_crc; // CRC - Bad CRC detected
int bad_falign; // FAE - frame alignment error
int fifo_or; // FO - FIFO overrun
int rx_missed; // MPA - missed packet error
int rx_mbit; // PHY - unicast or mcast/bcast address match
int rx_disabled; // DIS - set when in monitor mode
int deferred; // DFR - collision active
} RSR;
uint16_t local_dma; // 01,02h read ; current local DMA addr
uint8_t page_start; // 01h write ; page start register
uint8_t page_stop; // 02h write ; page stop register
uint8_t bound_ptr; // 03h read/write ; boundary pointer
uint8_t tx_page_start; // 04h write ; transmit page start register
uint8_t num_coll; // 05h read ; number-of-collisions register
uint16_t tx_bytes; // 05,06h write ; transmit byte-count register
uint8_t fifo; // 06h read ; FIFO
uint16_t remote_dma; // 08,09h read ; current remote DMA addr
uint16_t remote_start; // 08,09h write ; remote start address register
uint16_t remote_bytes; // 0a,0bh write ; remote byte-count register
uint8_t tallycnt_0; // 0dh read ; tally counter 0 (frame align errors)
uint8_t tallycnt_1; // 0eh read ; tally counter 1 (CRC errors)
uint8_t tallycnt_2; // 0fh read ; tally counter 2 (missed pkt errors)
//
// Page 1
//
// Command Register 00h (repeated)
//
uint8_t physaddr[6]; // 01-06h read/write ; MAC address
uint8_t curr_page; // 07h read/write ; current page register
uint8_t mchash[8]; // 08-0fh read/write ; multicast hash array
//
// Page 2 - diagnostic use only
//
// Command Register 00h (repeated)
//
// Page Start Register 01h read (repeated)
// Page Stop Register 02h read (repeated)
// Current Local DMA Address 01,02h write (repeated)
// Transmit Page start address 04h read (repeated)
// Receive Configuration Register 0ch read (repeated)
// Transmit Configuration Register 0dh read (repeated)
// Data Configuration Register 0eh read (repeated)
// Interrupt Mask Register 0fh read (repeated)
//
uint8_t rempkt_ptr; // 03h read/write ; remote next-packet pointer
uint8_t localpkt_ptr; // 05h read/write ; local next-packet pointer
uint16_t address_cnt; // 06,07h read/write ; address counter
//
// Page 3 - should never be modified.
//
// Novell ASIC state
uint8_t macaddr[32]; // ASIC ROM'd MAC address, even bytes
uint8_t mem[BX_NE2K_MEMSIZ]; // on-chip packet memory
// ne2k internal state
uint32_t base_address;
int base_irq;
int tx_timer_index;
int tx_timer_active;
rom_t bios_rom;
} ne2000_t;
int disable_netbios = 0;
void ne2000_tx_event(void *p, uint32_t val);
uint32_t ne2000_chipmem_read(ne2000_t *ne2000, uint32_t address, unsigned int io_len);
void ne2000_page0_write(ne2000_t *ne2000, uint32_t offset, uint32_t value, unsigned io_len);
void ne2000_rx_frame(void *p, const void *buf, int io_len);
int ne2000_do_log = 0;
void ne2000_log(const char *format, ...)
{
if (ne2000_do_log)
{
va_list ap;
va_start(ap, format);
vprintf(format, ap);
va_end(ap);
fflush(stdout);
}
}
static void ne2000_setirq(ne2000_t *ne2000, int irq)
{
ne2000->base_irq = irq;
}
//
// reset - restore state to power-up, cancelling all i/o
//
static void ne2000_reset(void *p, int reset)
{
ne2000_t *ne2000 = (ne2000_t *)p;
int i;
ne2000_log("ne2000 reset\n");
// Initialise the mac address area by doubling the physical address
ne2000->macaddr[0] = ne2000->physaddr[0];
ne2000->macaddr[1] = ne2000->physaddr[0];
ne2000->macaddr[2] = ne2000->physaddr[1];
ne2000->macaddr[3] = ne2000->physaddr[1];
ne2000->macaddr[4] = ne2000->physaddr[2];
ne2000->macaddr[5] = ne2000->physaddr[2];
ne2000->macaddr[6] = ne2000->physaddr[3];
ne2000->macaddr[7] = ne2000->physaddr[3];
ne2000->macaddr[8] = ne2000->physaddr[4];
ne2000->macaddr[9] = ne2000->physaddr[4];
ne2000->macaddr[10] = ne2000->physaddr[5];
ne2000->macaddr[11] = ne2000->physaddr[5];
// ne2k signature
for (i = 12; i < 32; i++)
ne2000->macaddr[i] = 0x57;
// Zero out registers and memory
memset( & ne2000->CR, 0, sizeof(ne2000->CR) );
memset( & ne2000->ISR, 0, sizeof(ne2000->ISR));
memset( & ne2000->IMR, 0, sizeof(ne2000->IMR));
memset( & ne2000->DCR, 0, sizeof(ne2000->DCR));
memset( & ne2000->TCR, 0, sizeof(ne2000->TCR));
memset( & ne2000->TSR, 0, sizeof(ne2000->TSR));
//memset( & ne2000->RCR, 0, sizeof(ne2000->RCR));
memset( & ne2000->RSR, 0, sizeof(ne2000->RSR));
ne2000->tx_timer_active = 0;
ne2000->local_dma = 0;
ne2000->page_start = 0;
ne2000->page_stop = 0;
ne2000->bound_ptr = 0;
ne2000->tx_page_start = 0;
ne2000->num_coll = 0;
ne2000->tx_bytes = 0;
ne2000->fifo = 0;
ne2000->remote_dma = 0;
ne2000->remote_start = 0;
ne2000->remote_bytes = 0;
ne2000->tallycnt_0 = 0;
ne2000->tallycnt_1 = 0;
ne2000->tallycnt_2 = 0;
//memset( & ne2000->physaddr, 0, sizeof(ne2000->physaddr));
//memset( & ne2000->mchash, 0, sizeof(ne2000->mchash));
ne2000->curr_page = 0;
ne2000->rempkt_ptr = 0;
ne2000->localpkt_ptr = 0;
ne2000->address_cnt = 0;
memset( & ne2000->mem, 0, sizeof(ne2000->mem));
// Set power-up conditions
ne2000->CR.stop = 1;
ne2000->CR.rdma_cmd = 4;
ne2000->ISR.reset = 1;
ne2000->DCR.longaddr = 1;
picint(1 << ne2000->base_irq);
picintc(1 << ne2000->base_irq);
//DEV_pic_lower_irq(ne2000->base_irq);
}
#include "bswap.h"
//
// read_cr/write_cr - utility routines for handling reads/writes to
// the Command Register
//
uint32_t ne2000_read_cr(ne2000_t *ne2000)
{
uint32_t val;
val = (((ne2000->CR.pgsel & 0x03) << 6) |
((ne2000->CR.rdma_cmd & 0x07) << 3) |
(ne2000->CR.tx_packet << 2) |
(ne2000->CR.start << 1) |
(ne2000->CR.stop));
ne2000_log("%s: read CR returns 0x%02x\n", (network_card_current == 1) ? "NE2000" : "RTL8029AS", val);
return val;
}
void ne2000_write_cr(ne2000_t *ne2000, uint32_t value)
{
ne2000_log("%s: wrote 0x%02x to CR\n", (network_card_current == 1) ? "NE2000" : "RTL8029AS", value);
// Validate remote-DMA
if ((value & 0x38) == 0x00) {
ne2000_log("CR write - invalid rDMA value 0\n");
value |= 0x20; /* dma_cmd == 4 is a safe default */
}
// Check for s/w reset
if (value & 0x01) {
ne2000->ISR.reset = 1;
ne2000->CR.stop = 1;
} else {
ne2000->CR.stop = 0;
}
ne2000->CR.rdma_cmd = (value & 0x38) >> 3;
// If start command issued, the RST bit in the ISR
// must be cleared
if ((value & 0x02) && !ne2000->CR.start) {
ne2000->ISR.reset = 0;
}
ne2000->CR.start = ((value & 0x02) == 0x02);
ne2000->CR.pgsel = (value & 0xc0) >> 6;
// Check for send-packet command
if (ne2000->CR.rdma_cmd == 3) {
// Set up DMA read from receive ring
ne2000->remote_start = ne2000->remote_dma = ne2000->bound_ptr * 256;
ne2000->remote_bytes = (uint16_t) ne2000_chipmem_read(ne2000, ne2000->bound_ptr * 256 + 2, 2);
ne2000_log("Sending buffer #x%x length %d\n", ne2000->remote_start, ne2000->remote_bytes);
}
// Check for start-tx
if ((value & 0x04) && ne2000->TCR.loop_cntl) {
if (ne2000->TCR.loop_cntl != 1) {
ne2000_log("Loop mode %d not supported\n", ne2000->TCR.loop_cntl);
} else {
ne2000_rx_frame(ne2000, &ne2000->mem[ne2000->tx_page_start*256 - BX_NE2K_MEMSTART],
ne2000->tx_bytes);
}
} else if (value & 0x04) {
if (ne2000->CR.stop || (!ne2000->CR.start && (network_card_current == 1))) {
if (ne2000->tx_bytes == 0) /* njh@bandsman.co.uk */
return; /* Solaris9 probe */
ne2000_log("CR write - tx start, dev in reset\n");
}
if (ne2000->tx_bytes == 0)
ne2000_log("CR write - tx start, tx bytes == 0\n");
// Send the packet to the system driver
ne2000->CR.tx_packet = 1;
if(net_is_slirp)
{
slirp_input(&ne2000->mem[ne2000->tx_page_start*256 - BX_NE2K_MEMSTART], ne2000->tx_bytes);
ne2000_log("ne2000 slirp sending packet\n");
}
if(net_is_pcap && net_pcap!=NULL)
{
_pcap_sendpacket(net_pcap, &ne2000->mem[ne2000->tx_page_start*256 - BX_NE2K_MEMSTART], ne2000->tx_bytes);
ne2000_log("ne2000 pcap sending packet\n");
}
// some more debug
if (ne2000->tx_timer_active)
ne2000_log("CR write, tx timer still active\n");
ne2000_tx_event(ne2000, value);
}
// Linux probes for an interrupt by setting up a remote-DMA read
// of 0 bytes with remote-DMA completion interrupts enabled.
// Detect this here
if (ne2000->CR.rdma_cmd == 0x01 &&
ne2000->CR.start &&
ne2000->remote_bytes == 0) {
ne2000->ISR.rdma_done = 1;
if (ne2000->IMR.rdma_inte) {
picint(1 << ne2000->base_irq);
}
}
}
//
// chipmem_read/chipmem_write - access the 64K private RAM.
// The ne2000 memory is accessed through the data port of
// the asic (offset 0) after setting up a remote-DMA transfer.
// Both byte and word accesses are allowed.
// The first 16 bytes contains the MAC address at even locations,
// and there is 16K of buffer memory starting at 16K
//
uint32_t ne2000_chipmem_read(ne2000_t *ne2000, uint32_t address, unsigned int io_len)
{
uint32_t retval = 0;
if ((io_len == 2) && (address & 0x1))
ne2000_log("unaligned chipmem word read\n");
// ROM'd MAC address
if ((address >=0) && (address <= 31)) {
retval = ne2000->macaddr[address];
if ((io_len == 2) || (io_len == 4)) {
retval |= (ne2000->macaddr[address + 1] << 8);
}
if (io_len == 4) {
retval |= (ne2000->macaddr[address + 2] << 16);
retval |= (ne2000->macaddr[address + 3] << 24);
}
return (retval);
}
if ((address >= BX_NE2K_MEMSTART) && (address < BX_NE2K_MEMEND)) {
retval = ne2000->mem[address - BX_NE2K_MEMSTART];
if ((io_len == 2) || (io_len == 4)) {
retval |= (ne2000->mem[address - BX_NE2K_MEMSTART + 1] << 8);
}
if (io_len == 4) {
retval |= (ne2000->mem[address - BX_NE2K_MEMSTART + 2] << 16);
retval |= (ne2000->mem[address - BX_NE2K_MEMSTART + 3] << 24);
}
return (retval);
}
ne2000_log("out-of-bounds chipmem read, %04X\n", address);
return (0xff);
}
void ne2000_chipmem_write(ne2000_t *ne2000, uint32_t address, uint32_t value, unsigned io_len)
{
if ((io_len == 2) && (address & 0x1))
ne2000_log("unaligned chipmem word write\n");
if ((address >= BX_NE2K_MEMSTART) && (address < BX_NE2K_MEMEND)) {
ne2000->mem[address - BX_NE2K_MEMSTART] = value & 0xff;
if ((io_len == 2) || (io_len == 4)) {
ne2000->mem[address - BX_NE2K_MEMSTART + 1] = value >> 8;
}
if (io_len == 4) {
ne2000->mem[address - BX_NE2K_MEMSTART + 2] = value >> 16;
ne2000->mem[address - BX_NE2K_MEMSTART + 3] = value >> 24;
}
} else
ne2000_log("out-of-bounds chipmem write, %04X\n", address);
}
//
// asic_read/asic_write - This is the high 16 bytes of i/o space
// (the lower 16 bytes is for the DS8390). Only two locations
// are used: offset 0, which is used for data transfer, and
// offset 0xf, which is used to reset the device.
// The data transfer port is used to as 'external' DMA to the
// DS8390. The chip has to have the DMA registers set up, and
// after that, insw/outsw instructions can be used to move
// the appropriate number of bytes to/from the device.
//
uint32_t ne2000_asic_read(ne2000_t *ne2000, uint32_t offset, unsigned int io_len)
{
uint32_t retval = 0;
switch (offset) {
case 0x0: // Data register
//
// A read remote-DMA command must have been issued,
// and the source-address and length registers must
// have been initialised.
//
if (io_len > ne2000->remote_bytes) {
ne2000_log("dma read underrun iolen=%d remote_bytes=%d\n",io_len,ne2000->remote_bytes);
//return 0;
}
ne2000_log("%s read DMA: addr=%4x remote_bytes=%d\n",(network_card_current == 1) ? "NE2000" : "RTL8029AS",ne2000->remote_dma,ne2000->remote_bytes);
retval = ne2000_chipmem_read(ne2000, ne2000->remote_dma, io_len);
//
// The 8390 bumps the address and decreases the byte count
// by the selected word size after every access, not by
// the amount of data requested by the host (io_len).
//
if (io_len == 4) {
ne2000->remote_dma += io_len;
} else {
ne2000->remote_dma += (ne2000->DCR.wdsize + 1);
}
if (ne2000->remote_dma == ne2000->page_stop << 8) {
ne2000->remote_dma = ne2000->page_start << 8;
}
// keep s.remote_bytes from underflowing
if (ne2000->remote_bytes > ne2000->DCR.wdsize)
if (io_len == 4) {
ne2000->remote_bytes -= io_len;
} else {
ne2000->remote_bytes -= (ne2000->DCR.wdsize + 1);
}
else
ne2000->remote_bytes = 0;
// If all bytes have been written, signal remote-DMA complete
if (ne2000->remote_bytes == 0) {
ne2000->ISR.rdma_done = 1;
if (ne2000->IMR.rdma_inte) {
picint(1 << ne2000->base_irq);
}
}
break;
case 0xf: // Reset register
ne2000_reset(ne2000, BX_RESET_SOFTWARE);
break;
default:
ne2000_log("asic read invalid address %04x\n", (unsigned) offset);
break;
}
return (retval);
}
void ne2000_asic_write(ne2000_t *ne2000, uint32_t offset, uint32_t value, unsigned io_len)
{
ne2000_log("%s: asic write addr=0x%02x, value=0x%04x\n", (network_card_current == 1) ? "NE2000" : "RTL8029AS",(unsigned) offset, (unsigned) value);
switch (offset) {
case 0x0: // Data register - see asic_read for a description
if ((io_len > 1) && (ne2000->DCR.wdsize == 0)) {
ne2000_log("dma write length %d on byte mode operation\n", io_len);
break;
}
if (ne2000->remote_bytes == 0) {
ne2000_log("dma write, byte count 0\n");
}
ne2000_chipmem_write(ne2000, ne2000->remote_dma, value, io_len);
if (io_len == 4) {
ne2000->remote_dma += io_len;
} else {
ne2000->remote_dma += (ne2000->DCR.wdsize + 1);
}
if (ne2000->remote_dma == ne2000->page_stop << 8) {
ne2000->remote_dma = ne2000->page_start << 8;
}
if (io_len == 4) {
ne2000->remote_bytes -= io_len;
} else {
ne2000->remote_bytes -= (ne2000->DCR.wdsize + 1);
}
if (ne2000->remote_bytes > BX_NE2K_MEMSIZ)
ne2000->remote_bytes = 0;
// If all bytes have been written, signal remote-DMA complete
if (ne2000->remote_bytes == 0) {
ne2000->ISR.rdma_done = 1;
if (ne2000->IMR.rdma_inte) {
picint(1 << ne2000->base_irq);
}
}
break;
case 0xf: // Reset register
// end of reset pulse
break;
default: // this is invalid, but happens under win95 device detection
ne2000_log("asic write invalid address %04x, ignoring\n", (unsigned) offset);
break;
}
}
//
// page0_read/page0_write - These routines handle reads/writes to
// the 'zeroth' page of the DS8390 register file
//
uint32_t ne2000_page0_read(ne2000_t *ne2000, uint32_t offset, unsigned int io_len)
{
uint8_t value = 0;
if (io_len > 1) {
ne2000_log("bad length! page 0 read from register 0x%02x, len=%u\n", offset,
io_len); /* encountered with win98 hardware probe */
return value;
}
switch (offset) {
case 0x1: // CLDA0
value = (ne2000->local_dma & 0xff);
break;
case 0x2: // CLDA1
value = (ne2000->local_dma >> 8);
break;
case 0x3: // BNRY
value = ne2000->bound_ptr;
break;
case 0x4: // TSR
value = ((ne2000->TSR.ow_coll << 7) |
(ne2000->TSR.cd_hbeat << 6) |
(ne2000->TSR.fifo_ur << 5) |
(ne2000->TSR.no_carrier << 4) |
(ne2000->TSR.aborted << 3) |
(ne2000->TSR.collided << 2) |
(ne2000->TSR.tx_ok));
break;
case 0x5: // NCR
value = ne2000->num_coll;
break;
case 0x6: // FIFO
// reading FIFO is only valid in loopback mode
ne2000_log("reading FIFO not supported yet\n");
value = ne2000->fifo;
break;
case 0x7: // ISR
value = ((ne2000->ISR.reset << 7) |
(ne2000->ISR.rdma_done << 6) |
(ne2000->ISR.cnt_oflow << 5) |
(ne2000->ISR.overwrite << 4) |
(ne2000->ISR.tx_err << 3) |
(ne2000->ISR.rx_err << 2) |
(ne2000->ISR.pkt_tx << 1) |
(ne2000->ISR.pkt_rx));
break;
case 0x8: // CRDA0
value = (ne2000->remote_dma & 0xff);
break;
case 0x9: // CRDA1
value = (ne2000->remote_dma >> 8);
break;
case 0xa: // reserved / RTL8029ID0
if (network_card_current == 2) {
value = 0x50;
} else {
ne2000_log("reserved read - page 0, 0xa\n");
value = 0xff;
}
break;
case 0xb: // reserved / RTL8029ID1
if (network_card_current == 2) {
value = 0x43;
} else {
ne2000_log("reserved read - page 0, 0xb\n");
value = 0xff;
}
break;
case 0xc: // RSR
value = ((ne2000->RSR.deferred << 7) |
(ne2000->RSR.rx_disabled << 6) |
(ne2000->RSR.rx_mbit << 5) |
(ne2000->RSR.rx_missed << 4) |
(ne2000->RSR.fifo_or << 3) |
(ne2000->RSR.bad_falign << 2) |
(ne2000->RSR.bad_crc << 1) |
(ne2000->RSR.rx_ok));
break;
case 0xd: // CNTR0
value = ne2000->tallycnt_0;
break;
case 0xe: // CNTR1
value = ne2000->tallycnt_1;
break;
case 0xf: // CNTR2
value = ne2000->tallycnt_2;
break;
default:
ne2000_log("page 0 register 0x%02x out of range\n", offset);
break;
}
ne2000_log("page 0 read from register 0x%02x, value=0x%02x\n", offset, value);
return value;
}
void ne2000_page0_write(ne2000_t *ne2000, uint32_t offset, uint32_t value, unsigned io_len)
{
uint8_t value2;
// It appears to be a common practice to use outw on page0 regs...
// break up outw into two outb's
if (io_len == 2) {
ne2000_page0_write(ne2000, offset, (value & 0xff), 1);
if (offset < 0x0f) {
ne2000_page0_write(ne2000, offset + 1, ((value >> 8) & 0xff), 1);
}
return;
}
ne2000_log("page 0 write to register 0x%02x, value=0x%02x\n", offset, value);
switch (offset) {
case 0x1: // PSTART
ne2000->page_start = value;
break;
case 0x2: // PSTOP
ne2000->page_stop = value;
break;
case 0x3: // BNRY
ne2000->bound_ptr = value;
break;
case 0x4: // TPSR
ne2000->tx_page_start = value;
break;
case 0x5: // TBCR0
// Clear out low byte and re-insert
ne2000->tx_bytes &= 0xff00;
ne2000->tx_bytes |= (value & 0xff);
break;
case 0x6: // TBCR1
// Clear out high byte and re-insert
ne2000->tx_bytes &= 0x00ff;
ne2000->tx_bytes |= ((value & 0xff) << 8);
break;
case 0x7: // ISR
value &= 0x7f; // clear RST bit - status-only bit
// All other values are cleared iff the ISR bit is 1
ne2000->ISR.pkt_rx &= ~((int)((value & 0x01) == 0x01));
ne2000->ISR.pkt_tx &= ~((int)((value & 0x02) == 0x02));
ne2000->ISR.rx_err &= ~((int)((value & 0x04) == 0x04));
ne2000->ISR.tx_err &= ~((int)((value & 0x08) == 0x08));
ne2000->ISR.overwrite &= ~((int)((value & 0x10) == 0x10));
ne2000->ISR.cnt_oflow &= ~((int)((value & 0x20) == 0x20));
ne2000->ISR.rdma_done &= ~((int)((value & 0x40) == 0x40));
value = ((ne2000->ISR.rdma_done << 6) |
(ne2000->ISR.cnt_oflow << 5) |
(ne2000->ISR.overwrite << 4) |
(ne2000->ISR.tx_err << 3) |
(ne2000->ISR.rx_err << 2) |
(ne2000->ISR.pkt_tx << 1) |
(ne2000->ISR.pkt_rx));
value &= ((ne2000->IMR.rdma_inte << 6) |
(ne2000->IMR.cofl_inte << 5) |
(ne2000->IMR.overw_inte << 4) |
(ne2000->IMR.txerr_inte << 3) |
(ne2000->IMR.rxerr_inte << 2) |
(ne2000->IMR.tx_inte << 1) |
(ne2000->IMR.rx_inte));
if (value == 0)
picintc(1 << ne2000->base_irq);
break;
case 0x8: // RSAR0
// Clear out low byte and re-insert
ne2000->remote_start &= 0xff00;
ne2000->remote_start |= (value & 0xff);
ne2000->remote_dma = ne2000->remote_start;
break;
case 0x9: // RSAR1
// Clear out high byte and re-insert
ne2000->remote_start &= 0x00ff;
ne2000->remote_start |= ((value & 0xff) << 8);
ne2000->remote_dma = ne2000->remote_start;
break;
case 0xa: // RBCR0
// Clear out low byte and re-insert
ne2000->remote_bytes &= 0xff00;
ne2000->remote_bytes |= (value & 0xff);
break;
case 0xb: // RBCR1
// Clear out high byte and re-insert
ne2000->remote_bytes &= 0x00ff;
ne2000->remote_bytes |= ((value & 0xff) << 8);
break;
case 0xc: // RCR
// Check if the reserved bits are set
if (value & 0xc0)
ne2000_log("RCR write, reserved bits set\n");
// Set all other bit-fields
ne2000->RCR.errors_ok = ((value & 0x01) == 0x01);
ne2000->RCR.runts_ok = ((value & 0x02) == 0x02);
ne2000->RCR.broadcast = ((value & 0x04) == 0x04);
ne2000->RCR.multicast = ((value & 0x08) == 0x08);
ne2000->RCR.promisc = ((value & 0x10) == 0x10);
ne2000->RCR.monitor = ((value & 0x20) == 0x20);
// Monitor bit is a little suspicious...
if (value & 0x20)
ne2000_log("RCR write, monitor bit set!\n");
break;
case 0xd: // TCR
// Check reserved bits
if (value & 0xe0)
ne2000_log("TCR write, reserved bits set\n");
// Test loop mode (not supported)
if (value & 0x06) {
ne2000->TCR.loop_cntl = (value & 0x6) >> 1;
ne2000_log("TCR write, loop mode %d not supported\n", ne2000->TCR.loop_cntl);
} else {
ne2000->TCR.loop_cntl = 0;
}
// Inhibit-CRC not supported.
if (value & 0x01)
ne2000_log("TCR write, inhibit-CRC not supported\n");
// Auto-transmit disable very suspicious
if (value & 0x08)
ne2000_log("TCR write, auto transmit disable not supported\n");
// Allow collision-offset to be set, although not used
ne2000->TCR.coll_prio = ((value & 0x08) == 0x08);
break;
case 0xe: // DCR
// the loopback mode is not suppported yet
if (!(value & 0x08)) {
ne2000_log("DCR write, loopback mode selected\n");
}
// It is questionable to set longaddr and auto_rx, since they
// aren't supported on the ne2000. Print a warning and continue
if (value & 0x04)
ne2000_log("DCR write - LAS set ???\n");
if (value & 0x10)
ne2000_log("DCR write - AR set ???\n");
// Set other values.
ne2000->DCR.wdsize = ((value & 0x01) == 0x01);
ne2000->DCR.endian = ((value & 0x02) == 0x02);
ne2000->DCR.longaddr = ((value & 0x04) == 0x04); // illegal ?
ne2000->DCR.loop = ((value & 0x08) == 0x08);
ne2000->DCR.auto_rx = ((value & 0x10) == 0x10); // also illegal ?
ne2000->DCR.fifo_size = (value & 0x50) >> 5;
break;
case 0xf: // IMR
// Check for reserved bit
if (value & 0x80)
ne2000_log("IMR write, reserved bit set\n");
// Set other values
ne2000->IMR.rx_inte = ((value & 0x01) == 0x01);
ne2000->IMR.tx_inte = ((value & 0x02) == 0x02);
ne2000->IMR.rxerr_inte = ((value & 0x04) == 0x04);
ne2000->IMR.txerr_inte = ((value & 0x08) == 0x08);
ne2000->IMR.overw_inte = ((value & 0x10) == 0x10);
ne2000->IMR.cofl_inte = ((value & 0x20) == 0x20);
ne2000->IMR.rdma_inte = ((value & 0x40) == 0x40);
value2 = ((ne2000->ISR.rdma_done << 6) |
(ne2000->ISR.cnt_oflow << 5) |
(ne2000->ISR.overwrite << 4) |
(ne2000->ISR.tx_err << 3) |
(ne2000->ISR.rx_err << 2) |
(ne2000->ISR.pkt_tx << 1) |
(ne2000->ISR.pkt_rx));
if (((value & value2) & 0x7f) == 0) {
picintc(1 << ne2000->base_irq);
} else {
picint(1 << ne2000->base_irq);
}
break;
default:
ne2000_log("page 0 write, bad register 0x%02x\n", offset);
break;
}
}
//
// page1_read/page1_write - These routines handle reads/writes to
// the first page of the DS8390 register file
//
uint32_t ne2000_page1_read(ne2000_t *ne2000, uint32_t offset, unsigned int io_len)
{
ne2000_log("page 1 read from register 0x%02x, len=%u\n", offset, io_len);
switch (offset) {
case 0x1: // PAR0-5
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
return (ne2000->physaddr[offset - 1]);
break;
case 0x7: // CURR
ne2000_log("returning current page: 0x%02x\n", (ne2000->curr_page));
return (ne2000->curr_page);
case 0x8: // MAR0-7
case 0x9:
case 0xa:
case 0xb:
case 0xc:
case 0xd:
case 0xe:
case 0xf:
return (ne2000->mchash[offset - 8]);
break;
default:
ne2000_log("page 1 read register 0x%02x out of range\n", offset);
break;
}
return (0);
}
void ne2000_page1_write(ne2000_t *ne2000, uint32_t offset, uint32_t value, unsigned io_len)
{
ne2000_log("page 1 write to register 0x%02x, len=%u, value=0x%04x\n", offset,
io_len, value);
switch (offset) {
case 0x1: // PAR0-5
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
ne2000->physaddr[offset - 1] = value;
if (offset == 6) {
ne2000_log("Physical address set to %02x:%02x:%02x:%02x:%02x:%02x\n",
ne2000->physaddr[0],
ne2000->physaddr[1],
ne2000->physaddr[2],
ne2000->physaddr[3],
ne2000->physaddr[4],
ne2000->physaddr[5]);
}
break;
case 0x7: // CURR
ne2000->curr_page = value;
break;
case 0x8: // MAR0-7
case 0x9:
case 0xa:
case 0xb:
case 0xc:
case 0xd:
case 0xe:
case 0xf:
ne2000->mchash[offset - 8] = value;
break;
default:
ne2000_log("page 1 write register 0x%02x out of range\n", offset);
break;
}
}
//
// page2_read/page2_write - These routines handle reads/writes to
// the second page of the DS8390 register file
//
uint32_t ne2000_page2_read(ne2000_t *ne2000, uint32_t offset, unsigned int io_len)
{
ne2000_log("page 2 read from register 0x%02x, len=%u\n", offset, io_len);
switch (offset) {
case 0x1: // PSTART
return (ne2000->page_start);
case 0x2: // PSTOP
return (ne2000->page_stop);
case 0x3: // Remote Next-packet pointer
return (ne2000->rempkt_ptr);
case 0x4: // TPSR
return (ne2000->tx_page_start);
case 0x5: // Local Next-packet pointer
return (ne2000->localpkt_ptr);
case 0x6: // Address counter (upper)
return (ne2000->address_cnt >> 8);
case 0x7: // Address counter (lower)
return (ne2000->address_cnt & 0xff);
case 0x8: // Reserved
case 0x9:
case 0xa:
case 0xb:
ne2000_log("reserved read - page 2, register 0x%02x\n", offset);
return (0xff);
case 0xc: // RCR
return ((ne2000->RCR.monitor << 5) |
(ne2000->RCR.promisc << 4) |
(ne2000->RCR.multicast << 3) |
(ne2000->RCR.broadcast << 2) |
(ne2000->RCR.runts_ok << 1) |
(ne2000->RCR.errors_ok));
case 0xd: // TCR
return ((ne2000->TCR.coll_prio << 4) |
(ne2000->TCR.ext_stoptx << 3) |
((ne2000->TCR.loop_cntl & 0x3) << 1) |
(ne2000->TCR.crc_disable));
case 0xe: // DCR
return (((ne2000->DCR.fifo_size & 0x3) << 5) |
(ne2000->DCR.auto_rx << 4) |
(ne2000->DCR.loop << 3) |
(ne2000->DCR.longaddr << 2) |
(ne2000->DCR.endian << 1) |
(ne2000->DCR.wdsize));
case 0xf: // IMR
return ((ne2000->IMR.rdma_inte << 6) |
(ne2000->IMR.cofl_inte << 5) |
(ne2000->IMR.overw_inte << 4) |
(ne2000->IMR.txerr_inte << 3) |
(ne2000->IMR.rxerr_inte << 2) |
(ne2000->IMR.tx_inte << 1) |
(ne2000->IMR.rx_inte));
default:
ne2000_log("page 2 register 0x%02x out of range\n", offset);
break;
}
return (0);
}
void ne2000_page2_write(ne2000_t *ne2000, uint32_t offset, uint32_t value, unsigned io_len)
{
// Maybe all writes here should be BX_PANIC()'d, since they
// affect internal operation, but let them through for now
// and print a warning.
ne2000_log("page 2 write to register 0x%02x, len=%u, value=0x%04x\n", offset,
io_len, value);
switch (offset) {
case 0x1: // CLDA0
// Clear out low byte and re-insert
ne2000->local_dma &= 0xff00;
ne2000->local_dma |= (value & 0xff);
break;
case 0x2: // CLDA1
// Clear out high byte and re-insert
ne2000->local_dma &= 0x00ff;
ne2000->local_dma |= ((value & 0xff) << 8);
break;
case 0x3: // Remote Next-pkt pointer
ne2000->rempkt_ptr = value;
break;
case 0x4:
ne2000_log("page 2 write to reserved register 0x04\n");
break;
case 0x5: // Local Next-packet pointer
ne2000->localpkt_ptr = value;
break;
case 0x6: // Address counter (upper)
// Clear out high byte and re-insert
ne2000->address_cnt &= 0x00ff;
ne2000->address_cnt |= ((value & 0xff) << 8);
break;
case 0x7: // Address counter (lower)
// Clear out low byte and re-insert
ne2000->address_cnt &= 0xff00;
ne2000->address_cnt |= (value & 0xff);
break;
case 0x8:
case 0x9:
case 0xa:
case 0xb:
case 0xc:
case 0xd:
case 0xe:
case 0xf:
ne2000_log("page 2 write to reserved register 0x%02x\n", offset);
break;
default:
ne2000_log("page 2 write, illegal register 0x%02x\n", offset);
break;
}
}
//
// page3_read/page3_write - writes to this page are illegal
//
uint32_t ne2000_page3_read(ne2000_t *ne2000, uint32_t offset, unsigned int io_len)
{
if (network_card_current == 2) {
switch (offset) {
case 0x3: // CONFIG0
return (0);
case 0x5: // CONFIG2
return (0x40);
case 0x6: // CONFIG3
return (0x40);
default:
ne2000_log("page 3 read register 0x%02x attempted\n", offset);
return (0);
}
} else {
ne2000_log("page 3 read register 0x%02x attempted\n", offset);
return (0);
}
}
void ne2000_page3_write(ne2000_t *ne2000, uint32_t offset, uint32_t value, unsigned io_len)
{
ne2000_log("page 3 write register 0x%02x attempted\n", offset);
return;
}
void ne2000_tx_timer(void *p)
{
ne2000_t *ne2000 = (ne2000_t *)p;
ne2000_log("tx_timer\n");
ne2000->CR.tx_packet = 0;
ne2000->TSR.tx_ok = 1;
ne2000->ISR.pkt_tx = 1;
// Generate an interrupt if not masked
if (ne2000->IMR.tx_inte) {
picint(1 << ne2000->base_irq);
}
ne2000->tx_timer_active = 0;
}
void ne2000_tx_event(void *p, uint32_t val)
{
ne2000_t *ne2000 = (ne2000_t *)p;
ne2000_tx_timer(ne2000);
}
//
// read_handler/read - i/o 'catcher' function called from BOCHS
// mainline when the CPU attempts a read in the i/o space registered
// by this ne2000 instance
//
uint32_t ne2000_read(ne2000_t *ne2000, uint32_t address, unsigned io_len)
{
ne2000_log("%s: read addr %x, len %d\n", (network_card_current == 1) ? "NE2000" : "RTL8029AS", address, io_len);
uint32_t retval = 0;
int offset = address - ne2000->base_address;
if (offset >= 0x10) {
retval = ne2000_asic_read(ne2000, offset - 0x10, io_len);
} else if (offset == 0x00) {
retval = ne2000_read_cr(ne2000);
} else {
switch (ne2000->CR.pgsel) {
case 0x00:
retval = ne2000_page0_read(ne2000, offset, io_len);
break;
case 0x01:
retval = ne2000_page1_read(ne2000, offset, io_len);
break;
case 0x02:
retval = ne2000_page2_read(ne2000, offset, io_len);
break;
case 0x03:
retval = ne2000_page3_read(ne2000, offset, io_len);
break;
default:
ne2000_log("unknown value of pgsel in read - %d\n", ne2000->CR.pgsel);
break;
}
}
return (retval);
}
void ne2000_write(ne2000_t *ne2000, uint32_t address, uint32_t value, unsigned io_len)
{
ne2000_log("%s: write addr %x, value %x len %d\n", (network_card_current == 1) ? "NE2000" : "RTL8029AS", address, value, io_len);
int offset = address - ne2000->base_address;
//
// The high 16 bytes of i/o space are for the ne2000 asic -
// the low 16 bytes are for the DS8390, with the current
// page being selected by the PS0,PS1 registers in the
// command register
//
if (offset >= 0x10) {
ne2000_asic_write(ne2000, offset - 0x10, value, io_len);
} else if (offset == 0x00) {
ne2000_write_cr(ne2000, value);
} else {
switch (ne2000->CR.pgsel) {
case 0x00:
ne2000_page0_write(ne2000, offset, value, io_len);
break;
case 0x01:
ne2000_page1_write(ne2000, offset, value, io_len);
break;
case 0x02:
ne2000_page2_write(ne2000, offset, value, io_len);
break;
case 0x03:
ne2000_page3_write(ne2000, offset, value, io_len);
break;
default:
ne2000_log("unknown value of pgsel in write - %d\n", ne2000->CR.pgsel);
break;
}
}
}
/*
* mcast_index() - return the 6-bit index into the multicast
* table. Stolen unashamedly from FreeBSD's if_ed.c
*/
static int mcast_index(const void *dst)
{
#define POLYNOMIAL 0x04c11db6
unsigned long crc = 0xffffffffL;
int carry, i, j;
unsigned char b;
unsigned char *ep = (unsigned char *) dst;
for (i = 6; --i >= 0;) {
b = *ep++;
for (j = 8; --j >= 0;) {
carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
crc <<= 1;
b >>= 1;
if (carry)
crc = ((crc ^ POLYNOMIAL) | carry);
}
}
return (crc >> 26);
#undef POLYNOMIAL
}
/*
* rx_frame() - called by the platform-specific code when an
* ethernet frame has been received. The destination address
* is tested to see if it should be accepted, and if the
* rx ring has enough room, it is copied into it and
* the receive process is updated
*/
void ne2000_rx_frame(void *p, const void *buf, int io_len)
{
ne2000_t *ne2000 = (ne2000_t *)p;
int pages;
int avail;
int idx;
int wrapped;
int nextpage;
uint8_t pkthdr[4];
uint8_t *pktbuf = (uint8_t *) buf;
uint8_t *startptr;
static uint8_t bcast_addr[6] = {0xff,0xff,0xff,0xff,0xff,0xff};
if(io_len != 60) {
ne2000_log("rx_frame with length %d\n", io_len);
}
//LOG_MSG("stop=%d, pagestart=%x, dcr_loop=%x, tcr_loopcntl=%x",
// ne2000->CR.stop, ne2000->page_start,
// ne2000->DCR.loop, ne2000->TCR.loop_cntl);
if ((ne2000->CR.stop != 0) ||
(ne2000->page_start == 0) /*||
((ne2000->DCR.loop == 0) &&
(ne2000->TCR.loop_cntl != 0))*/) {
return;
}
// Add the pkt header + CRC to the length, and work
// out how many 256-byte pages the frame would occupy
pages = (io_len + 4 + 4 + 255)/256;
if (ne2000->curr_page < ne2000->bound_ptr) {
avail = ne2000->bound_ptr - ne2000->curr_page;
} else {
avail = (ne2000->page_stop - ne2000->page_start) -
(ne2000->curr_page - ne2000->bound_ptr);
wrapped = 1;
}
// Avoid getting into a buffer overflow condition by not attempting
// to do partial receives. The emulation to handle this condition
// seems particularly painful.
if ((avail < pages)
#if BX_NE2K_NEVER_FULL_RING
|| (avail == pages)
#endif
) {
ne2000_log("no space\n");
return;
}
if ((io_len < 40/*60*/) && !ne2000->RCR.runts_ok) {
ne2000_log("rejected small packet, length %d\n", io_len);
return;
}
// some computers don't care...
if (io_len < 60) io_len=60;
// Do address filtering if not in promiscuous mode
if (! ne2000->RCR.promisc) {
if (!memcmp(buf, bcast_addr, 6)) {
if (!ne2000->RCR.broadcast) {
return;
}
} else if (pktbuf[0] & 0x01) {
if (! ne2000->RCR.multicast) {
return;
}
idx = mcast_index(buf);
if (!(ne2000->mchash[idx >> 3] & (1 << (idx & 0x7)))) {
return;
}
} else if (0 != memcmp(buf, ne2000->physaddr, 6)) {
return;
}
} else {
ne2000_log("rx_frame promiscuous receive\n");
}
ne2000_log("rx_frame %d to %x:%x:%x:%x:%x:%x from %x:%x:%x:%x:%x:%x\n",
io_len,
pktbuf[0], pktbuf[1], pktbuf[2], pktbuf[3], pktbuf[4], pktbuf[5],
pktbuf[6], pktbuf[7], pktbuf[8], pktbuf[9], pktbuf[10], pktbuf[11]);
nextpage = ne2000->curr_page + pages;
if (nextpage >= ne2000->page_stop) {
nextpage -= ne2000->page_stop - ne2000->page_start;
}
// Setup packet header
pkthdr[0] = 0; // rx status - old behavior
pkthdr[0] = 1; // Probably better to set it all the time
// rather than set it to 0, which is clearly wrong.
if (pktbuf[0] & 0x01) {
pkthdr[0] |= 0x20; // rx status += multicast packet
}
pkthdr[1] = nextpage; // ptr to next packet
pkthdr[2] = (io_len + 4) & 0xff; // length-low
pkthdr[3] = (io_len + 4) >> 8; // length-hi
// copy into buffer, update curpage, and signal interrupt if config'd
startptr = & ne2000->mem[ne2000->curr_page * 256 -
BX_NE2K_MEMSTART];
if ((nextpage > ne2000->curr_page) ||
((ne2000->curr_page + pages) == ne2000->page_stop)) {
memcpy(startptr, pkthdr, 4);
memcpy(startptr + 4, buf, io_len);
ne2000->curr_page = nextpage;
} else {
int endbytes = (ne2000->page_stop - ne2000->curr_page)
* 256;
memcpy(startptr, pkthdr, 4);
memcpy(startptr + 4, buf, endbytes - 4);
startptr = & ne2000->mem[ne2000->page_start * 256 -
BX_NE2K_MEMSTART];
memcpy(startptr, (void *)(pktbuf + endbytes - 4),
io_len - endbytes + 8);
ne2000->curr_page = nextpage;
}
ne2000->RSR.rx_ok = 1;
if (pktbuf[0] & 0x80) {
ne2000->RSR.rx_mbit = 1;
}
ne2000->ISR.pkt_rx = 1;
if (ne2000->IMR.rx_inte) {
//LOG_MSG("packet rx interrupt");
picint(1 << ne2000->base_irq);
//DEV_pic_raise_irq(ne2000->base_irq);
} //else LOG_MSG("no packet rx interrupt");
}
uint8_t ne2000_readb(uint16_t addr, void *p)
{
ne2000_t *ne2000 = (ne2000_t *)p;
return ne2000_read(ne2000, addr, 1);
}
uint16_t ne2000_readw(uint16_t addr, void *p)
{
ne2000_t *ne2000 = (ne2000_t *)p;
if (ne2000->DCR.wdsize & 1)
return ne2000_read(ne2000, addr, 2);
else
return ne2000_read(ne2000, addr, 1);
}
uint32_t ne2000_readl(uint16_t addr, void *p)
{
ne2000_t *ne2000 = (ne2000_t *)p;
return ne2000_read(ne2000, addr, 4);
}
void ne2000_writeb(uint16_t addr, uint8_t val, void *p)
{
ne2000_t *ne2000 = (ne2000_t *)p;
ne2000_write(ne2000, addr, val, 1);
}
void ne2000_writew(uint16_t addr, uint16_t val, void *p)
{
ne2000_t *ne2000 = (ne2000_t *)p;
if (ne2000->DCR.wdsize & 1)
ne2000_write(ne2000, addr, val, 2);
else
ne2000_write(ne2000, addr, val, 1);
}
void ne2000_writel(uint16_t addr, uint32_t val, void *p)
{
ne2000_t *ne2000 = (ne2000_t *)p;
ne2000_write(ne2000, addr, val, 4);
}
void ne2000_poller(void *p)
{
ne2000_t *ne2000 = (ne2000_t *)p;
struct queuepacket *qp;
const unsigned char *data;
struct pcap_pkthdr h;
int res;
if(net_is_slirp) {
while(QueuePeek(slirpq)>0)
{
qp=QueueDelete(slirpq);
if((ne2000->DCR.loop == 0) || (ne2000->TCR.loop_cntl != 0))
{
free(qp);
return;
}
ne2000_rx_frame(ne2000,&qp->data,qp->len);
ne2000_log("ne2000 inQ:%d got a %dbyte packet @%d\n",QueuePeek(slirpq),qp->len,qp);
free(qp);
}
fizz++;
if(fizz>1200){fizz=0;slirp_tic();}
}//end slirp
if(net_is_pcap && net_pcap!=NULL)
{
data=_pcap_next(net_pcap,&h);
if(data==0x0){goto WTF;}
if((memcmp(data+6,maclocal,6))==0)
ne2000_log("ne2000 we just saw ourselves\n");
else {
if((ne2000->DCR.loop == 0) || (ne2000->TCR.loop_cntl != 0))
{
return;
}
ne2000_log("ne2000 pcap received a frame %d bytes\n",h.caplen);
ne2000_rx_frame(ne2000,data,h.caplen);
}
WTF:
{}
}
}
typedef union
{
uint32_t addr;
uint8_t addr_regs[4];
} bar_t;
uint8_t ne2000_pci_regs[256];
bar_t ne2000_pci_bar[2];
uint32_t bios_addr = 0xD0000;
uint32_t old_base_addr = 0;
uint32_t bios_size = 0;
uint32_t bios_mask = 0;
void ne2000_io_set(uint16_t addr, ne2000_t *ne2000)
{
old_base_addr = addr;
io_sethandler(addr, 0x0010, ne2000_readb, ne2000_readw, ne2000_readl, ne2000_writeb, ne2000_writew, ne2000_writel, ne2000);
io_sethandler(addr+0x10, 0x0010, ne2000_readb, ne2000_readw, ne2000_readl, ne2000_writeb, ne2000_writew, ne2000_writel, ne2000);
io_sethandler(addr+0x1f, 0x0001, ne2000_readb, ne2000_readw, ne2000_readl, ne2000_writeb, ne2000_writew, ne2000_writel, ne2000);
}
void ne2000_io_remove(int16_t addr, ne2000_t *ne2000)
{
io_removehandler(addr, 0x0010, ne2000_readb, ne2000_readw, ne2000_readl, ne2000_writeb, ne2000_writew, ne2000_writel, ne2000);
io_removehandler(addr+0x10, 0x0010, ne2000_readb, ne2000_readw, ne2000_readl, ne2000_writeb, ne2000_writew, ne2000_writel, ne2000);
io_removehandler(addr+0x1f, 0x0001, ne2000_readb, ne2000_readw, ne2000_readl, ne2000_writeb, ne2000_writew, ne2000_writel, ne2000);
}
uint8_t ne2000_pci_read(int func, int addr, void *p)
{
ne2000_t *ne2000 = (ne2000_t *) p;
// ne2000_log("NE2000 PCI read %08X\n", addr);
switch (addr)
{
case 0x00:/* case 0x2C:*/ return 0xec;
case 0x01:/* case 0x2D:*/ return 0x10;
case 0x02:/* case 0x2E:*/ return 0x29;
case 0x03:/* case 0x2F:*/ return 0x80;
case 0x2C: return 0xF4;
case 0x2D: return 0x1A;
case 0x2E: return 0x00;
case 0x2F: return 0x11;
case 0x04:
return ne2000_pci_regs[0x04]; /*Respond to IO and memory accesses*/
case 0x05:
return ne2000_pci_regs[0x05];
case 0x07: return 2;
case 0x08: return 0; /*Revision ID*/
case 0x09: return 0; /*Programming interface*/
case 0x0B: return ne2000_pci_regs[0x0B];
case 0x10: return 1; /*I/O space*/
case 0x11: return ne2000_pci_bar[0].addr_regs[1];
case 0x12: return ne2000_pci_bar[0].addr_regs[2];
case 0x13: return ne2000_pci_bar[0].addr_regs[3];
case 0x30: return ne2000_pci_bar[1].addr_regs[0] & 0x01; /*BIOS ROM address*/
// case 0x31: return (ne2000_pci_bar[1].addr_regs[1] & 0xE0) | 0x18;
case 0x31: return (ne2000_pci_bar[1].addr_regs[1] & bios_mask) | 0x18;
case 0x32: return ne2000_pci_bar[1].addr_regs[2];
case 0x33: return ne2000_pci_bar[1].addr_regs[3];
case 0x3C: return ne2000_pci_regs[0x3C];
case 0x3D: return ne2000_pci_regs[0x3D];
}
return 0;
}
void ne2000_update_bios(ne2000_t *ne2000)
{
int reg_bios_enable;
// reg_bios_enable = ne2000_pci_regs[0x30];
reg_bios_enable = 1;
/* PCI BIOS stuff, just enable_disable. */
if (!disable_netbios && reg_bios_enable)
{
mem_mapping_enable(&ne2000->bios_rom.mapping);
mem_mapping_set_addr(&ne2000->bios_rom.mapping, bios_addr, 0x10000);
ne2000_log("Network BIOS now at: %08X\n", bios_addr);
}
else
{
mem_mapping_disable(&ne2000->bios_rom.mapping);
if (network_card_current == 2) ne2000_pci_bar[1].addr = 0;
}
}
void ne2000_pci_write(int func, int addr, uint8_t val, void *p)
{
ne2000_t *ne2000 = (ne2000_t *) p;
// ne2000_log("ne2000_pci_write: addr=%02x val=%02x\n", addr, val);
switch (addr)
{
case 0x04:
if (val & PCI_COMMAND_IO)
{
ne2000_io_remove(ne2000->base_address, ne2000);
ne2000_io_set(ne2000->base_address, ne2000);
}
else
{
ne2000_io_remove(ne2000->base_address, ne2000);
}
ne2000_pci_regs[addr] = val;
break;
case 0x10:
val &= 0xfc;
val |= 1;
case 0x11: case 0x12: case 0x13:
/* I/O Base set. */
/* First, remove the old I/O, if old base was >= 0x280. */
ne2000_io_remove(ne2000->base_address, ne2000);
/* Then let's set the PCI regs. */
ne2000_pci_bar[0].addr_regs[addr & 3] = val;
/* Then let's calculate the new I/O base. */
ne2000->base_address = ne2000_pci_bar[0].addr & 0xff00;
/* If the base is below 0x280, return. */
/* Log the new base. */
ne2000_log("NE2000 RTL8029AS PCI: New I/O base is %04X\n" , ne2000->base_address);
/* We're done, so get out of the here. */
return;
case 0x30: case 0x31: case 0x32: case 0x33:
ne2000_pci_bar[1].addr_regs[addr & 3] = val;
ne2000_pci_bar[1].addr_regs[1] &= bios_mask;
bios_addr = ne2000_pci_bar[1].addr & 0xffffe000;
ne2000_pci_bar[1].addr &= 0xffffe000;
ne2000_pci_bar[1].addr |= 0x1801;
ne2000_update_bios(ne2000);
return;
case 0x3C:
ne2000_pci_regs[addr] = val;
if (val != 0xFF)
{
ne2000_log("NE2000 IRQ now: %i\n", val);
ne2000_setirq(ne2000, val);
}
return;
}
}
void ne2000_rom_init(ne2000_t *ne2000, char *s)
{
FILE *f = fopen(s, "rb");
uint32_t temp;
if(!f)
{
disable_netbios = 1;
ne2000_update_bios(ne2000);
return;
}
fseek(f, 0, SEEK_END);
temp = ftell(f);
fclose(f);
bios_size = 0x10000;
if (temp <= 0x8000)
{
bios_size = 0x8000;
}
if (temp <= 0x4000)
{
bios_size = 0x4000;
}
if (temp <= 0x2000)
{
bios_size = 0x2000;
}
bios_mask = (bios_size >> 8) & 0xff;
bios_mask = (0x100 - bios_mask) & 0xff;
rom_init(&ne2000->bios_rom, s, 0xd0000, bios_size, bios_size - 1, 0, MEM_MAPPING_EXTERNAL);
}
void *ne2000_init()
{
int rc;
int config_net_type;
int net_type;
ne2000_t *ne2000 = malloc(sizeof(ne2000_t));
memset(ne2000, 0, sizeof(ne2000_t));
ne2000->base_address = device_get_config_int("addr");
disable_netbios = device_get_config_int("disable_netbios");
ne2000_setirq(ne2000, device_get_config_int("irq"));
//net_type
//0 pcap
//1 slirp
//
config_net_type = device_get_config_int("net_type");
// net_is_slirp = config_get_int(NULL, "net_type", 1);
/* Network type is now specified in device config. */
net_is_slirp = config_net_type ? 1 : 0;
// ne2000_log("ne2000 pcap device %s\n",config_get_string(NULL,"pcap_device","nothing"));
//Check that we have a string setup, otherwise turn pcap off
if(!strcmp("nothing",config_get_string(NULL,"pcap_device","nothing"))) {
net_is_pcap = 0;
}
else {
if( net_is_slirp == 0)
net_is_pcap = 1;
}
ne2000_io_set(ne2000->base_address, ne2000);
memcpy(ne2000->physaddr, maclocal, 6);
if (!disable_netbios)
ne2000_rom_init(ne2000, "roms/ne2000.rom");
ne2000_reset(ne2000, BX_RESET_HARDWARE);
vlan_handler(ne2000_poller, ne2000);
ne2000_log("ne2000 isa init 0x%X %d\tslirp is %d net_is_pcap is %d\n",ne2000->base_address,device_get_config_int("irq"),net_is_slirp,net_is_pcap);
//need a switch statment for more network types.
if ( net_is_slirp ) {
ne2000_log("ne2000 initalizing SLiRP\n");
net_is_pcap=0;
rc=slirp_init();
ne2000_log("ne2000 slirp_init returned: %d\n",rc);
if ( rc == 0 )
{
ne2000_log("ne2000 slirp initalized!\n");
net_slirp_inited=1;
slirpq = QueueCreate();
net_is_slirp=1;
fizz=0;
ne2000_log("ne2000 slirpq is %x\n",&slirpq);
}
else {
net_slirp_inited=0;
net_is_slirp=0;
}
}
if ( net_is_pcap ) { //pcap
char errbuf[32768];
ne2000_log("ne2000 initalizing libpcap\n");
net_is_slirp=0;
net_hLib = LoadLibraryA(net_lib_name);
if(net_hLib==0)
{
ne2000_log("ne2000 Failed to load %s\n",net_lib_name);
net_is_pcap=0;
//return;
}
_pcap_lib_version =(PCAP_LIB_VERSION)GetProcAddress(net_hLib,"pcap_lib_version");
_pcap_open_live=(PCAP_OPEN_LIVE)GetProcAddress(net_hLib,"pcap_open_live");
_pcap_sendpacket=(PCAP_SENDPACKET)GetProcAddress(net_hLib,"pcap_sendpacket");
_pcap_setnonblock=(PCAP_SETNONBLOCK)GetProcAddress(net_hLib,"pcap_setnonblock");
_pcap_next=(PCAP_NEXT)GetProcAddress(net_hLib,"pcap_next");
_pcap_close=(PCAP_CLOSE)GetProcAddress(net_hLib,"pcap_close");
_pcap_getnonblock=(PCAP_GETNONBLOCK)GetProcAddress(net_hLib,"pcap_getnonblock");
_pcap_compile=(PCAP_COMPILE)GetProcAddress(net_hLib,"pcap_compile");
_pcap_setfilter=(PCAP_SETFILTER)GetProcAddress(net_hLib,"pcap_setfilter");
if(_pcap_lib_version && _pcap_open_live && _pcap_sendpacket && _pcap_setnonblock && _pcap_next && _pcap_close && _pcap_getnonblock)
{
ne2000_log("ne2000 Pcap version [%s]\n",_pcap_lib_version());
//if((net_pcap=_pcap_open_live("\\Device\\NPF_{0CFA803F-F443-4BB9-A83A-657029A98195}",1518,1,15,errbuf))==0)
if((net_pcap=_pcap_open_live(config_get_string(NULL,"pcap_device","nothing"),1518,1,15,errbuf))==0)
{
ne2000_log("ne2000 pcap_open_live error on %s!\n",config_get_string(NULL,"pcap_device","whatever the ethernet is"));
net_is_pcap=0; return(ne2000); //YUCK!!!
}
}
else {
ne2000_log("%d %d %d %d %d %d %d\n",_pcap_lib_version, _pcap_open_live,_pcap_sendpacket,_pcap_setnonblock,_pcap_next,_pcap_close,_pcap_getnonblock);
net_is_pcap=1;
}
//Time to check that we are in non-blocking mode.
rc=_pcap_getnonblock(net_pcap,errbuf);
ne2000_log("ne2000 pcap is currently in %s mode\n",rc? "non-blocking":"blocking");
switch(rc)
{
case 0:
ne2000_log("ne2000 Setting interface to non-blocking mode..");
rc=_pcap_setnonblock(net_pcap,1,errbuf);
if(rc==0) { //no errors!
ne2000_log("..");
rc=_pcap_getnonblock(net_pcap,errbuf);
if(rc==1) {
ne2000_log("..!",rc);
net_is_pcap=1;
}
else{
ne2000_log("\tunable to set pcap into non-blocking mode!\nContinuining without pcap.\n");
net_is_pcap=0;
}
}//end set nonblock
else{ne2000_log("There was an unexpected error of [%s]\n\nexiting.\n",errbuf);net_is_pcap=0;}
ne2000_log("\n");
break;
case 1:
ne2000_log("non blocking\n");
break;
default:
ne2000_log("this isn't right!!!\n");
net_is_pcap=0;
break;
}
if( net_is_pcap ) {
if(_pcap_compile && _pcap_setfilter) { //we can do this!
struct bpf_program fp;
char filter_exp[255];
ne2000_log("ne2000 Building packet filter...");
sprintf(filter_exp,"( ((ether dst ff:ff:ff:ff:ff:ff) or (ether dst %02x:%02x:%02x:%02x:%02x:%02x)) and not (ether src %02x:%02x:%02x:%02x:%02x:%02x) )", \
maclocal[0], maclocal[1], maclocal[2], maclocal[3], maclocal[4], maclocal[5],\
maclocal[0], maclocal[1], maclocal[2], maclocal[3], maclocal[4], maclocal[5]);
//I'm doing a MAC level filter so TCP/IP doesn't matter.
if (_pcap_compile(net_pcap, &fp, filter_exp, 0, 0xffffffff) == -1) {
ne2000_log("\nne2000 Couldn't compile filter\n");
}
else {
ne2000_log("...");
if (_pcap_setfilter(net_pcap, &fp) == -1) {
ne2000_log("\nError installing pcap filter.\n");
}//end of set_filter failure
else {
ne2000_log("...!\n");
}
}
ne2000_log("ne2000 Using filter\t[%s]\n",filter_exp);
//scanf(filter_exp); //pause
}
else
{
ne2000_log("ne2000 Your platform lacks pcap_compile & pcap_setfilter\n");
net_is_pcap=0;
}
ne2000_log("ne2000 net_is_pcap is %d and net_pcap is %x\n",net_is_pcap,net_pcap);
}
} //end pcap setup
//timer_add(slirp_tic,&delay,TIMER_ALWAYS_ENABLED,NULL);
//timer_add(keyboard_amstrad_poll, &keybsenddelay, TIMER_ALWAYS_ENABLED, NULL);
ne2000_log("ne2000 is_slirp %d is_pcap %d\n",net_is_slirp,net_is_pcap);
//exit(0);
return ne2000;
}
void *rtl8029as_init()
{
int rc;
int config_net_type;
int net_type;
ne2000_t *ne2000 = malloc(sizeof(ne2000_t));
memset(ne2000, 0, sizeof(ne2000_t));
disable_netbios = device_get_config_int("disable_netbios");
ne2000_setirq(ne2000, (ide_ter_enabled ? 11 : 10));
//net_type
//0 pcap
//1 slirp
//
config_net_type = device_get_config_int("net_type");
// net_is_slirp = config_get_int(NULL, "net_type", 1);
/* Network type is now specified in device config. */
net_is_slirp = config_net_type ? 1 : 0;
// ne2000_log("ne2000 pcap device %s\n",config_get_string(NULL,"pcap_device","nothing"));
//Check that we have a string setup, otherwise turn pcap off
if(!strcmp("nothing",config_get_string(NULL,"pcap_device","nothing"))) {
net_is_pcap = 0;
}
else {
if( net_is_slirp == 0)
net_is_pcap = 1;
}
pci_add(ne2000_pci_read, ne2000_pci_write, ne2000);
if (!disable_netbios)
{
ne2000_rom_init(ne2000, "roms/rtl8029as.rom");
if (PCI) mem_mapping_disable(&ne2000->bios_rom.mapping);
}
ne2000_pci_regs[0x04] = 1;
ne2000_pci_regs[0x05] = 0;
ne2000_pci_regs[0x07] = 2;
/* Network controller. */
ne2000_pci_regs[0x0B] = 2;
ne2000_pci_bar[0].addr_regs[0] = 1;
if (disable_netbios)
{
ne2000_pci_bar[1].addr = 0;
bios_addr = 0;
}
else
{
ne2000_pci_bar[1].addr = 0x000F8000;
ne2000_pci_bar[1].addr_regs[1] = bios_mask;
ne2000_pci_bar[1].addr |= 0x1801;
bios_addr = 0xD0000;
}
ne2000_pci_regs[0x3C] = ide_ter_enabled ? 11 : 10;
ne2000_pci_regs[0x3D] = 1;
memset(rtl8029as_eeprom, 0, 128);
rtl8029as_eeprom[0x76] = rtl8029as_eeprom[0x7A] = rtl8029as_eeprom[0x7E] = 0x29;
rtl8029as_eeprom[0x77] = rtl8029as_eeprom[0x7B] = rtl8029as_eeprom[0x7F] = 0x80;
rtl8029as_eeprom[0x78] = rtl8029as_eeprom[0x7C] = 0x10;
rtl8029as_eeprom[0x79] = rtl8029as_eeprom[0x7D] = 0xEC;
ne2000->base_address = 0x340;
ne2000_io_set(ne2000->base_address, ne2000);
memcpy(ne2000->physaddr, maclocal, 6);
ne2000_reset(ne2000, BX_RESET_HARDWARE);
vlan_handler(ne2000_poller, ne2000);
ne2000_log("ne2000 pci init 0x%X\tslirp is %d net_is_pcap is %d\n",ne2000->base_address,net_is_slirp,net_is_pcap);
//need a switch statment for more network types.
if ( net_is_slirp ) {
ne2000_log("ne2000 initalizing SLiRP\n");
net_is_pcap=0;
rc=slirp_init();
ne2000_log("ne2000 slirp_init returned: %d\n",rc);
if ( rc == 0 )
{
ne2000_log("ne2000 slirp initalized!\n");
net_slirp_inited=1;
slirpq = QueueCreate();
net_is_slirp=1;
fizz=0;
ne2000_log("ne2000 slirpq is %x\n",&slirpq);
}
else {
net_slirp_inited=0;
net_is_slirp=0;
}
}
if ( net_is_pcap ) { //pcap
char errbuf[32768];
ne2000_log("ne2000 initalizing libpcap\n");
net_is_slirp=0;
net_hLib = LoadLibraryA(net_lib_name);
if(net_hLib==0)
{
ne2000_log("ne2000 Failed to load %s\n",net_lib_name);
net_is_pcap=0;
//return;
}
_pcap_lib_version =(PCAP_LIB_VERSION)GetProcAddress(net_hLib,"pcap_lib_version");
_pcap_open_live=(PCAP_OPEN_LIVE)GetProcAddress(net_hLib,"pcap_open_live");
_pcap_sendpacket=(PCAP_SENDPACKET)GetProcAddress(net_hLib,"pcap_sendpacket");
_pcap_setnonblock=(PCAP_SETNONBLOCK)GetProcAddress(net_hLib,"pcap_setnonblock");
_pcap_next=(PCAP_NEXT)GetProcAddress(net_hLib,"pcap_next");
_pcap_close=(PCAP_CLOSE)GetProcAddress(net_hLib,"pcap_close");
_pcap_getnonblock=(PCAP_GETNONBLOCK)GetProcAddress(net_hLib,"pcap_getnonblock");
_pcap_compile=(PCAP_COMPILE)GetProcAddress(net_hLib,"pcap_compile");
_pcap_setfilter=(PCAP_SETFILTER)GetProcAddress(net_hLib,"pcap_setfilter");
if(_pcap_lib_version && _pcap_open_live && _pcap_sendpacket && _pcap_setnonblock && _pcap_next && _pcap_close && _pcap_getnonblock)
{
ne2000_log("ne2000 Pcap version [%s]\n",_pcap_lib_version());
//if((net_pcap=_pcap_open_live("\\Device\\NPF_{0CFA803F-F443-4BB9-A83A-657029A98195}",1518,1,15,errbuf))==0)
if((net_pcap=_pcap_open_live(config_get_string(NULL,"pcap_device","nothing"),1518,1,15,errbuf))==0)
{
ne2000_log("ne2000 pcap_open_live error on %s!\n",config_get_string(NULL,"pcap_device","whatever the ethernet is"));
net_is_pcap=0; return(ne2000); //YUCK!!!
}
}
else {
ne2000_log("%d %d %d %d %d %d %d\n",_pcap_lib_version, _pcap_open_live,_pcap_sendpacket,_pcap_setnonblock,_pcap_next,_pcap_close,_pcap_getnonblock);
net_is_pcap=1;
}
//Time to check that we are in non-blocking mode.
rc=_pcap_getnonblock(net_pcap,errbuf);
ne2000_log("ne2000 pcap is currently in %s mode\n",rc? "non-blocking":"blocking");
switch(rc)
{
case 0:
ne2000_log("ne2000 Setting interface to non-blocking mode..");
rc=_pcap_setnonblock(net_pcap,1,errbuf);
if(rc==0) { //no errors!
ne2000_log("..");
rc=_pcap_getnonblock(net_pcap,errbuf);
if(rc==1) {
ne2000_log("..!",rc);
net_is_pcap=1;
}
else{
ne2000_log("\tunable to set pcap into non-blocking mode!\nContinuining without pcap.\n");
net_is_pcap=0;
}
}//end set nonblock
else{ne2000_log("There was an unexpected error of [%s]\n\nexiting.\n",errbuf);net_is_pcap=0;}
ne2000_log("\n");
break;
case 1:
ne2000_log("non blocking\n");
break;
default:
ne2000_log("this isn't right!!!\n");
net_is_pcap=0;
break;
}
if( net_is_pcap ) {
if(_pcap_compile && _pcap_setfilter) { //we can do this!
struct bpf_program fp;
char filter_exp[255];
ne2000_log("ne2000 Building packet filter...");
sprintf(filter_exp,"( ((ether dst ff:ff:ff:ff:ff:ff) or (ether dst %02x:%02x:%02x:%02x:%02x:%02x)) and not (ether src %02x:%02x:%02x:%02x:%02x:%02x) )", \
maclocal[0], maclocal[1], maclocal[2], maclocal[3], maclocal[4], maclocal[5],\
maclocal[0], maclocal[1], maclocal[2], maclocal[3], maclocal[4], maclocal[5]);
//I'm doing a MAC level filter so TCP/IP doesn't matter.
if (_pcap_compile(net_pcap, &fp, filter_exp, 0, 0xffffffff) == -1) {
ne2000_log("\nne2000 Couldn't compile filter\n");
}
else {
ne2000_log("...");
if (_pcap_setfilter(net_pcap, &fp) == -1) {
ne2000_log("\nError installing pcap filter.\n");
}//end of set_filter failure
else {
ne2000_log("...!\n");
}
}
ne2000_log("ne2000 Using filter\t[%s]\n",filter_exp);
//scanf(filter_exp); //pause
}
else
{
ne2000_log("ne2000 Your platform lacks pcap_compile & pcap_setfilter\n");
net_is_pcap=0;
}
ne2000_log("ne2000 net_is_pcap is %d and net_pcap is %x\n",net_is_pcap,net_pcap);
}
} //end pcap setup
//timer_add(slirp_tic,&delay,TIMER_ALWAYS_ENABLED,NULL);
//timer_add(keyboard_amstrad_poll, &keybsenddelay, TIMER_ALWAYS_ENABLED, NULL);
ne2000_log("ne2000 is_slirp %d is_pcap %d\n",net_is_slirp,net_is_pcap);
//exit(0);
return ne2000;
}
void ne2000_close(void *p)
{
ne2000_t *ne2000 = (ne2000_t *)p;
ne2000_io_remove(ne2000->base_address, ne2000);
free(ne2000);
if(net_is_slirp) {
QueueDestroy(slirpq);
slirp_exit(0);
net_slirp_inited=0;
ne2000_log("ne2000 exiting slirp\n");
}
if(net_is_pcap && net_pcap!=NULL)
{
_pcap_close(net_pcap);
FreeLibrary(net_hLib);
ne2000_log("ne2000 closing pcap\n");
}
ne2000_log("ne2000 close\n");
}
static device_config_t ne2000_config[] =
{
{
.name = "addr",
.description = "Address",
.type = CONFIG_BINARY,
.type = CONFIG_SELECTION,
.selection =
{
{
.description = "0x280",
.value = 0x280
},
{
.description = "0x300",
.value = 0x300
},
{
.description = "0x320",
.value = 0x320
},
{
.description = "0x340",
.value = 0x340
},
{
.description = "0x360",
.value = 0x360
},
{
.description = "0x380",
.value = 0x380
},
{
.description = ""
}
},
.default_int = 0x300
},
{
.name = "irq",
.description = "IRQ",
.type = CONFIG_SELECTION,
.selection =
{
{
.description = "IRQ 3",
.value = 3
},
{
.description = "IRQ 5",
.value = 5
},
{
.description = "IRQ 7",
.value = 7
},
{
.description = "IRQ 10",
.value = 10
},
{
.description = "IRQ 11",
.value = 11
},
{
.description = ""
}
},
.default_int = 10
},
{
.name = "net_type",
.description = "Network type",
.type = CONFIG_BINARY,
.type = CONFIG_SELECTION,
.selection =
{
{
.description = "PCap",
.value = 0
},
{
.description = "SLiRP",
.value = 1
},
{
.description = ""
}
},
.default_int = 0
},
{
.name = "disable_netbios",
.description = "Network bios",
.type = CONFIG_BINARY,
.type = CONFIG_SELECTION,
.selection =
{
{
.description = "Enabled",
.value = 0
},
{
.description = "Disabled",
.value = 1
},
{
.description = ""
}
},
.default_int = 0
},
{
.type = -1
}
};
static device_config_t rtl8029as_config[] =
{
{
.name = "net_type",
.description = "Network type",
.type = CONFIG_BINARY,
.type = CONFIG_SELECTION,
.selection =
{
{
.description = "PCap",
.value = 0
},
{
.description = "SLiRP",
.value = 1
},
{
.description = ""
}
},
.default_int = 0
},
{
.name = "disable_netbios",
.description = "Network bios",
.type = CONFIG_BINARY,
.type = CONFIG_SELECTION,
.selection =
{
{
.description = "Enabled",
.value = 0
},
{
.description = "Disabled",
.value = 1
},
{
.description = ""
}
},
.default_int = 0
},
{
.type = -1
}
};
device_t ne2000_device =
{
"Novell NE2000",
0,
ne2000_init,
ne2000_close,
NULL,
NULL,
NULL,
NULL,
ne2000_config
};
device_t rtl8029as_device =
{
"Realtek RTL8029AS",
0,
rtl8029as_init,
ne2000_close,
NULL,
NULL,
NULL,
NULL,
rtl8029as_config
};
//SLIRP stuff
int slirp_can_output(void)
{
return net_slirp_inited;
}
void slirp_output (const unsigned char *pkt, int pkt_len)
{
struct queuepacket *p;
p=(struct queuepacket *)malloc(sizeof(struct queuepacket));
p->len=pkt_len;
memcpy(p->data,pkt,pkt_len);
QueueEnter(slirpq,p);
ne2000_log("ne2000 slirp_output %d @%d\n",pkt_len,p);
}
// Instead of calling this and crashing some times
// or experencing jitter, this is called by the
// 60Hz clock which seems to do the job.
void slirp_tic()
{
int ret2,nfds;
struct timeval tv;
fd_set rfds, wfds, xfds;
int timeout;
nfds=-1;
if(net_slirp_inited)
{
FD_ZERO(&rfds);
FD_ZERO(&wfds);
FD_ZERO(&xfds);
timeout=slirp_select_fill(&nfds,&rfds,&wfds,&xfds); //this can crash
if(timeout<0)
timeout=500;
tv.tv_sec=0;
tv.tv_usec = timeout; //basilisk default 10000
ret2 = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
if(ret2>=0){
slirp_select_poll(&rfds, &wfds, &xfds);
}
//ne2000_log("ne2000 slirp_tic()\n");
}//end if slirp inited
}