clang-format in src/floppy/

This commit is contained in:
Jasmine Iwanek
2022-09-18 17:14:15 -04:00
parent 696f6f7e2f
commit 58d86a0739
11 changed files with 6570 additions and 6752 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -31,20 +31,20 @@
#include <86box/fdc.h> #include <86box/fdc.h>
#include <86box/fdc_ext.h> #include <86box/fdc_ext.h>
#define ROM_B215 "roms/floppy/magitronic/Magitronic B215 - BIOS ROM.bin" #define ROM_B215 "roms/floppy/magitronic/Magitronic B215 - BIOS ROM.bin"
#define ROM_ADDR (uint32_t)(device_get_config_hex20("bios_addr") & 0x000fffff) #define ROM_ADDR (uint32_t)(device_get_config_hex20("bios_addr") & 0x000fffff)
#define DRIVE_SELECT (int)(real_drive(dev->fdc_controller, i)) #define DRIVE_SELECT (int) (real_drive(dev->fdc_controller, i))
typedef struct typedef struct
{ {
fdc_t *fdc_controller; fdc_t *fdc_controller;
rom_t rom; rom_t rom;
} b215_t; } b215_t;
static uint8_t static uint8_t
b215_read(uint16_t addr, void *priv) b215_read(uint16_t addr, void *priv)
{ {
b215_t *dev = (b215_t *)priv; b215_t *dev = (b215_t *) priv;
/* /*
Register 3F0h Register 3F0h
@@ -59,19 +59,15 @@ b215_read(uint16_t addr, void *priv)
*/ */
int drive_spec[2]; int drive_spec[2];
for (int i = 0; i <= 1; i++) for (int i = 0; i <= 1; i++) {
{ if (fdd_is_525(DRIVE_SELECT)) {
if (fdd_is_525(DRIVE_SELECT))
{
if (!fdd_is_dd(DRIVE_SELECT)) if (!fdd_is_dd(DRIVE_SELECT))
drive_spec[i] = 1; drive_spec[i] = 1;
else if (fdd_doublestep_40(DRIVE_SELECT)) else if (fdd_doublestep_40(DRIVE_SELECT))
drive_spec[i] = 2; drive_spec[i] = 2;
else else
drive_spec[i] = 0; drive_spec[i] = 0;
} } else {
else
{
if (fdd_is_dd(DRIVE_SELECT) && !fdd_is_double_sided(DRIVE_SELECT)) if (fdd_is_dd(DRIVE_SELECT) && !fdd_is_double_sided(DRIVE_SELECT))
drive_spec[i] = 0; drive_spec[i] = 0;
else if (fdd_is_dd(DRIVE_SELECT) && fdd_is_double_sided(DRIVE_SELECT)) else if (fdd_is_dd(DRIVE_SELECT) && fdd_is_double_sided(DRIVE_SELECT))
@@ -87,7 +83,7 @@ b215_read(uint16_t addr, void *priv)
static void static void
b215_close(void *priv) b215_close(void *priv)
{ {
b215_t *dev = (b215_t *)priv; b215_t *dev = (b215_t *) priv;
free(dev); free(dev);
} }
@@ -95,7 +91,7 @@ b215_close(void *priv)
static void * static void *
b215_init(const device_t *info) b215_init(const device_t *info)
{ {
b215_t *dev = (b215_t *)malloc(sizeof(b215_t)); b215_t *dev = (b215_t *) malloc(sizeof(b215_t));
memset(dev, 0, sizeof(b215_t)); memset(dev, 0, sizeof(b215_t));
rom_init(&dev->rom, ROM_B215, ROM_ADDR, 0x2000, 0x1fff, 0, MEM_MAPPING_EXTERNAL); rom_init(&dev->rom, ROM_B215, ROM_ADDR, 0x2000, 0x1fff, 0, MEM_MAPPING_EXTERNAL);
@@ -106,13 +102,14 @@ b215_init(const device_t *info)
return dev; return dev;
} }
static int b215_available(void) static int
b215_available(void)
{ {
return rom_present(ROM_B215); return rom_present(ROM_B215);
} }
static const device_config_t b215_config[] = { static const device_config_t b215_config[] = {
// clang-format off // clang-format off
{ {
.name = "bios_addr", .name = "bios_addr",
.description = "BIOS Address:", .description = "BIOS Address:",
@@ -132,15 +129,15 @@ static const device_config_t b215_config[] = {
}; };
const device_t fdc_b215_device = { const device_t fdc_b215_device = {
.name = "Magitronic B215", .name = "Magitronic B215",
.internal_name = "b215", .internal_name = "b215",
.flags = DEVICE_ISA, .flags = DEVICE_ISA,
.local = 0, .local = 0,
.init = b215_init, .init = b215_init,
.close = b215_close, .close = b215_close,
.reset = NULL, .reset = NULL,
{ .available = b215_available }, { .available = b215_available },
.speed_changed = NULL, .speed_changed = NULL,
.force_redraw = NULL, .force_redraw = NULL,
.config = b215_config .config = b215_config
}; };

View File

@@ -76,9 +76,9 @@ MiniMicro 4 also won't work with the XT FDC which the Zilog claims to be.
#include <86box/fdc.h> #include <86box/fdc.h>
#include <86box/fdc_ext.h> #include <86box/fdc_ext.h>
#define DTK_VARIANT ((info->local == 158) ? ROM_PII_158B : ROM_PII_151B) #define DTK_VARIANT ((info->local == 158) ? ROM_PII_158B : ROM_PII_151B)
#define DTK_CHIP ((info->local == 158) ? &fdc_xt_device : &fdc_dp8473_device) #define DTK_CHIP ((info->local == 158) ? &fdc_xt_device : &fdc_dp8473_device)
#define BIOS_ADDR (uint32_t)(device_get_config_hex20("bios_addr") & 0x000fffff) #define BIOS_ADDR (uint32_t)(device_get_config_hex20("bios_addr") & 0x000fffff)
#define ROM_PII_151B "roms/floppy/dtk/pii-151b.rom" #define ROM_PII_151B "roms/floppy/dtk/pii-151b.rom"
#define ROM_PII_158B "roms/floppy/dtk/pii-158b.rom" #define ROM_PII_158B "roms/floppy/dtk/pii-158b.rom"
@@ -90,7 +90,7 @@ typedef struct
static void static void
pii_close(void *priv) pii_close(void *priv)
{ {
pii_t *dev = (pii_t *)priv; pii_t *dev = (pii_t *) priv;
free(dev); free(dev);
} }
@@ -100,7 +100,7 @@ pii_init(const device_t *info)
{ {
pii_t *dev; pii_t *dev;
dev = (pii_t *)malloc(sizeof(pii_t)); dev = (pii_t *) malloc(sizeof(pii_t));
memset(dev, 0, sizeof(pii_t)); memset(dev, 0, sizeof(pii_t));
if (BIOS_ADDR != 0) if (BIOS_ADDR != 0)
@@ -111,18 +111,20 @@ pii_init(const device_t *info)
return dev; return dev;
} }
static int pii_151b_available(void) static int
pii_151b_available(void)
{ {
return rom_present(ROM_PII_151B); return rom_present(ROM_PII_151B);
} }
static int pii_158_available(void) static int
pii_158_available(void)
{ {
return rom_present(ROM_PII_158B); return rom_present(ROM_PII_158B);
} }
static const device_config_t pii_config[] = { static const device_config_t pii_config[] = {
// clang-format off // clang-format off
{ {
.name = "bios_addr", .name = "bios_addr",
.description = "BIOS Address:", .description = "BIOS Address:",
@@ -144,29 +146,29 @@ static const device_config_t pii_config[] = {
}; };
const device_t fdc_pii151b_device = { const device_t fdc_pii151b_device = {
.name = "DTK PII-151B (MiniMicro) Floppy Drive Controller", .name = "DTK PII-151B (MiniMicro) Floppy Drive Controller",
.internal_name = "dtk_pii151b", .internal_name = "dtk_pii151b",
.flags = DEVICE_ISA, .flags = DEVICE_ISA,
.local = 151, .local = 151,
.init = pii_init, .init = pii_init,
.close = pii_close, .close = pii_close,
.reset = NULL, .reset = NULL,
{ .available = pii_151b_available }, { .available = pii_151b_available },
.speed_changed = NULL, .speed_changed = NULL,
.force_redraw = NULL, .force_redraw = NULL,
.config = pii_config .config = pii_config
}; };
const device_t fdc_pii158b_device = { const device_t fdc_pii158b_device = {
.name = "DTK PII-158B (MiniMicro4) Floppy Drive Controller", .name = "DTK PII-158B (MiniMicro4) Floppy Drive Controller",
.internal_name = "dtk_pii158b", .internal_name = "dtk_pii158b",
.flags = DEVICE_ISA, .flags = DEVICE_ISA,
.local = 158, .local = 158,
.init = pii_init, .init = pii_init,
.close = pii_close, .close = pii_close,
.reset = NULL, .reset = NULL,
{ .available = pii_158_available }, { .available = pii_158_available },
.speed_changed = NULL, .speed_changed = NULL,
.force_redraw = NULL, .force_redraw = NULL,
.config = pii_config .config = pii_config
}; };

View File

@@ -39,7 +39,6 @@
#include <86box/fdd_td0.h> #include <86box/fdd_td0.h>
#include <86box/fdc.h> #include <86box/fdc.h>
/* Flags: /* Flags:
Bit 0: 300 rpm supported; Bit 0: 300 rpm supported;
Bit 1: 360 rpm supported; Bit 1: 360 rpm supported;
@@ -53,18 +52,17 @@
Bit 9: ignore DENSEL; Bit 9: ignore DENSEL;
Bit 10: drive is a PS/2 drive; Bit 10: drive is a PS/2 drive;
*/ */
#define FLAG_RPM_300 1 #define FLAG_RPM_300 1
#define FLAG_RPM_360 2 #define FLAG_RPM_360 2
#define FLAG_525 4 #define FLAG_525 4
#define FLAG_DS 8 #define FLAG_DS 8
#define FLAG_HOLE0 16 #define FLAG_HOLE0 16
#define FLAG_HOLE1 32 #define FLAG_HOLE1 32
#define FLAG_HOLE2 64 #define FLAG_HOLE2 64
#define FLAG_DOUBLE_STEP 128 #define FLAG_DOUBLE_STEP 128
#define FLAG_INVERT_DENSEL 256 #define FLAG_INVERT_DENSEL 256
#define FLAG_IGNORE_DENSEL 512 #define FLAG_IGNORE_DENSEL 512
#define FLAG_PS2 1024 #define FLAG_PS2 1024
typedef struct { typedef struct {
int type; int type;
@@ -75,28 +73,26 @@ typedef struct {
int check_bpb; int check_bpb;
} fdd_t; } fdd_t;
fdd_t fdd[FDD_NUM];
fdd_t fdd[FDD_NUM]; char floppyfns[FDD_NUM][512];
char floppyfns[FDD_NUM][512]; pc_timer_t fdd_poll_time[FDD_NUM];
pc_timer_t fdd_poll_time[FDD_NUM]; static int fdd_notfound = 0,
driveloaders[FDD_NUM];
static int fdd_notfound = 0, int writeprot[FDD_NUM], fwriteprot[FDD_NUM],
driveloaders[FDD_NUM]; fdd_changed[FDD_NUM], ui_writeprot[FDD_NUM] = { 0, 0, 0, 0 },
drive_empty[FDD_NUM] = { 1, 1, 1, 1 };
int writeprot[FDD_NUM], fwriteprot[FDD_NUM], DRIVE drives[FDD_NUM];
fdd_changed[FDD_NUM], ui_writeprot[FDD_NUM] = {0, 0, 0, 0},
drive_empty[FDD_NUM] = {1, 1, 1, 1};
DRIVE drives[FDD_NUM]; uint64_t motoron[FDD_NUM];
uint64_t motoron[FDD_NUM]; fdc_t *fdd_fdc;
fdc_t *fdd_fdc;
d86f_handler_t d86f_handler[FDD_NUM];
d86f_handler_t d86f_handler[FDD_NUM];
static const struct static const struct
{ {
@@ -104,48 +100,46 @@ static const struct
void (*load)(int drive, char *fn); void (*load)(int drive, char *fn);
void (*close)(int drive); void (*close)(int drive);
int size; int size;
} loaders[]= } loaders[] = {
{ {"001", img_load, img_close, -1},
{"001", img_load, img_close, -1}, { "002", img_load, img_close, -1},
{"002", img_load, img_close, -1}, { "003", img_load, img_close, -1},
{"003", img_load, img_close, -1}, { "004", img_load, img_close, -1},
{"004", img_load, img_close, -1}, { "005", img_load, img_close, -1},
{"005", img_load, img_close, -1}, { "006", img_load, img_close, -1},
{"006", img_load, img_close, -1}, { "007", img_load, img_close, -1},
{"007", img_load, img_close, -1}, { "008", img_load, img_close, -1},
{"008", img_load, img_close, -1}, { "009", img_load, img_close, -1},
{"009", img_load, img_close, -1}, { "010", img_load, img_close, -1},
{"010", img_load, img_close, -1}, { "12", img_load, img_close, -1},
{"12", img_load, img_close, -1}, { "144", img_load, img_close, -1},
{"144", img_load, img_close, -1}, { "360", img_load, img_close, -1},
{"360", img_load, img_close, -1}, { "720", img_load, img_close, -1},
{"720", img_load, img_close, -1}, { "86F", d86f_load, d86f_close, -1},
{"86F", d86f_load, d86f_close, -1}, { "BIN", img_load, img_close, -1},
{"BIN", img_load, img_close, -1}, { "CQ", img_load, img_close, -1},
{"CQ", img_load, img_close, -1}, { "CQM", img_load, img_close, -1},
{"CQM", img_load, img_close, -1}, { "DDI", img_load, img_close, -1},
{"DDI", img_load, img_close, -1}, { "DSK", img_load, img_close, -1},
{"DSK", img_load, img_close, -1}, { "FDI", fdi_load, fdi_close, -1},
{"FDI", fdi_load, fdi_close, -1}, { "FDF", img_load, img_close, -1},
{"FDF", img_load, img_close, -1}, { "FLP", img_load, img_close, -1},
{"FLP", img_load, img_close, -1}, { "HDM", img_load, img_close, -1},
{"HDM", img_load, img_close, -1}, { "IMA", img_load, img_close, -1},
{"IMA", img_load, img_close, -1}, { "IMD", imd_load, imd_close, -1},
{"IMD", imd_load, imd_close, -1}, { "IMG", img_load, img_close, -1},
{"IMG", img_load, img_close, -1}, { "JSON", json_load, json_close, -1},
{"JSON", json_load, json_close, -1}, { "MFM", mfm_load, mfm_close, -1},
{"MFM", mfm_load, mfm_close, -1}, { "TD0", td0_load, td0_close, -1},
{"TD0", td0_load, td0_close, -1}, { "VFD", img_load, img_close, -1},
{"VFD", img_load, img_close, -1}, { "XDF", img_load, img_close, -1},
{"XDF", img_load, img_close, -1}, { 0, 0, 0, 0 }
{0, 0, 0, 0}
}; };
static const struct static const struct
{ {
int max_track; int max_track;
int flags; int flags;
const char *name; const char *name;
const char *internal_name; const char *internal_name;
} drive_types[] = } drive_types[] =
@@ -197,161 +191,148 @@ static const struct
} }
}; };
#ifdef ENABLE_FDD_LOG #ifdef ENABLE_FDD_LOG
int fdd_do_log = ENABLE_FDD_LOG; int fdd_do_log = ENABLE_FDD_LOG;
static void static void
fdd_log(const char *fmt, ...) fdd_log(const char *fmt, ...)
{ {
va_list ap; va_list ap;
if (fdd_do_log) if (fdd_do_log) {
{ va_start(ap, fmt);
va_start(ap, fmt); pclog_ex(fmt, ap);
pclog_ex(fmt, ap); va_end(ap);
va_end(ap); }
}
} }
#else #else
#define fdd_log(fmt, ...) # define fdd_log(fmt, ...)
#endif #endif
char * char *
fdd_getname(int type) fdd_getname(int type)
{ {
return (char *)drive_types[type].name; return (char *) drive_types[type].name;
} }
char * char *
fdd_get_internal_name(int type) fdd_get_internal_name(int type)
{ {
return (char *)drive_types[type].internal_name; return (char *) drive_types[type].internal_name;
} }
int int
fdd_get_from_internal_name(char *s) fdd_get_from_internal_name(char *s)
{ {
int c = 0; int c = 0;
while (strlen(drive_types[c].internal_name)) { while (strlen(drive_types[c].internal_name)) {
if (!strcmp((char *)drive_types[c].internal_name, s)) if (!strcmp((char *) drive_types[c].internal_name, s))
return c; return c;
c++; c++;
} }
return 0; return 0;
} }
/* This is needed for the dump as 86F feature. */ /* This is needed for the dump as 86F feature. */
void void
fdd_do_seek(int drive, int track) fdd_do_seek(int drive, int track)
{ {
if (drives[drive].seek) if (drives[drive].seek)
drives[drive].seek(drive, track); drives[drive].seek(drive, track);
} }
void void
fdd_forced_seek(int drive, int track_diff) fdd_forced_seek(int drive, int track_diff)
{ {
fdd[drive].track += track_diff; fdd[drive].track += track_diff;
if (fdd[drive].track < 0) if (fdd[drive].track < 0)
fdd[drive].track = 0; fdd[drive].track = 0;
if (fdd[drive].track > drive_types[fdd[drive].type].max_track) if (fdd[drive].track > drive_types[fdd[drive].type].max_track)
fdd[drive].track = drive_types[fdd[drive].type].max_track; fdd[drive].track = drive_types[fdd[drive].type].max_track;
fdd_do_seek(drive, fdd[drive].track); fdd_do_seek(drive, fdd[drive].track);
} }
void void
fdd_seek(int drive, int track_diff) fdd_seek(int drive, int track_diff)
{ {
if (!track_diff) if (!track_diff)
return; return;
fdd[drive].track += track_diff; fdd[drive].track += track_diff;
if (fdd[drive].track < 0) if (fdd[drive].track < 0)
fdd[drive].track = 0; fdd[drive].track = 0;
if (fdd[drive].track > drive_types[fdd[drive].type].max_track) if (fdd[drive].track > drive_types[fdd[drive].type].max_track)
fdd[drive].track = drive_types[fdd[drive].type].max_track; fdd[drive].track = drive_types[fdd[drive].type].max_track;
fdd_changed[drive] = 0; fdd_changed[drive] = 0;
fdd_do_seek(drive, fdd[drive].track); fdd_do_seek(drive, fdd[drive].track);
} }
int int
fdd_track0(int drive) fdd_track0(int drive)
{ {
/* If drive is disabled, TRK0 never gets set. */ /* If drive is disabled, TRK0 never gets set. */
if (!drive_types[fdd[drive].type].max_track) return 0; if (!drive_types[fdd[drive].type].max_track)
return 0;
return !fdd[drive].track; return !fdd[drive].track;
} }
int int
fdd_current_track(int drive) fdd_current_track(int drive)
{ {
return fdd[drive].track; return fdd[drive].track;
} }
void void
fdd_set_densel(int densel) fdd_set_densel(int densel)
{ {
int i = 0; int i = 0;
for (i = 0; i < FDD_NUM; i++) { for (i = 0; i < FDD_NUM; i++) {
if (drive_types[fdd[i].type].flags & FLAG_INVERT_DENSEL) if (drive_types[fdd[i].type].flags & FLAG_INVERT_DENSEL)
fdd[i].densel = densel ^ 1; fdd[i].densel = densel ^ 1;
else else
fdd[i].densel = densel; fdd[i].densel = densel;
} }
} }
int int
fdd_getrpm(int drive) fdd_getrpm(int drive)
{ {
int densel = 0; int densel = 0;
int hole; int hole;
hole = fdd_hole(drive); hole = fdd_hole(drive);
densel = fdd[drive].densel; densel = fdd[drive].densel;
if (drive_types[fdd[drive].type].flags & FLAG_INVERT_DENSEL) if (drive_types[fdd[drive].type].flags & FLAG_INVERT_DENSEL)
densel ^= 1; densel ^= 1;
if (!(drive_types[fdd[drive].type].flags & FLAG_RPM_360)) if (!(drive_types[fdd[drive].type].flags & FLAG_RPM_360))
return 300; return 300;
if (!(drive_types[fdd[drive].type].flags & FLAG_RPM_300)) if (!(drive_types[fdd[drive].type].flags & FLAG_RPM_300))
return 360; return 360;
if (drive_types[fdd[drive].type].flags & FLAG_525) if (drive_types[fdd[drive].type].flags & FLAG_525)
return densel ? 360 : 300; return densel ? 360 : 300;
else { else {
/* fdd_hole(drive) returns 0 for double density media, 1 for high density, and 2 for extended density. */ /* fdd_hole(drive) returns 0 for double density media, 1 for high density, and 2 for extended density. */
if (hole == 1) if (hole == 1)
return densel ? 300 : 360; return densel ? 300 : 360;
else else
return 300; return 300;
} }
} }
int int
fdd_can_read_medium(int drive) fdd_can_read_medium(int drive)
{ {
@@ -362,351 +343,322 @@ fdd_can_read_medium(int drive)
return !!(drive_types[fdd[drive].type].flags & hole); return !!(drive_types[fdd[drive].type].flags & hole);
} }
int int
fdd_doublestep_40(int drive) fdd_doublestep_40(int drive)
{ {
return !!(drive_types[fdd[drive].type].flags & FLAG_DOUBLE_STEP); return !!(drive_types[fdd[drive].type].flags & FLAG_DOUBLE_STEP);
} }
void void
fdd_set_type(int drive, int type) fdd_set_type(int drive, int type)
{ {
int old_type = fdd[drive].type; int old_type = fdd[drive].type;
fdd[drive].type = type; fdd[drive].type = type;
if ((drive_types[old_type].flags ^ drive_types[type].flags) & FLAG_INVERT_DENSEL) if ((drive_types[old_type].flags ^ drive_types[type].flags) & FLAG_INVERT_DENSEL)
fdd[drive].densel ^= 1; fdd[drive].densel ^= 1;
} }
int int
fdd_get_type(int drive) fdd_get_type(int drive)
{ {
return fdd[drive].type; return fdd[drive].type;
} }
int int
fdd_get_flags(int drive) fdd_get_flags(int drive)
{ {
return drive_types[fdd[drive].type].flags; return drive_types[fdd[drive].type].flags;
} }
int int
fdd_is_525(int drive) fdd_is_525(int drive)
{ {
return drive_types[fdd[drive].type].flags & FLAG_525; return drive_types[fdd[drive].type].flags & FLAG_525;
} }
int int
fdd_is_dd(int drive) fdd_is_dd(int drive)
{ {
return (drive_types[fdd[drive].type].flags & 0x70) == 0x10; return (drive_types[fdd[drive].type].flags & 0x70) == 0x10;
} }
int int
fdd_is_ed(int drive) fdd_is_ed(int drive)
{ {
return drive_types[fdd[drive].type].flags & FLAG_HOLE2; return drive_types[fdd[drive].type].flags & FLAG_HOLE2;
} }
int int
fdd_is_double_sided(int drive) fdd_is_double_sided(int drive)
{ {
return drive_types[fdd[drive].type].flags & FLAG_DS; return drive_types[fdd[drive].type].flags & FLAG_DS;
} }
void void
fdd_set_head(int drive, int head) fdd_set_head(int drive, int head)
{ {
if (head && !fdd_is_double_sided(drive)) if (head && !fdd_is_double_sided(drive))
fdd[drive].head = 0; fdd[drive].head = 0;
else else
fdd[drive].head = head; fdd[drive].head = head;
} }
int int
fdd_get_head(int drive) fdd_get_head(int drive)
{ {
if (!fdd_is_double_sided(drive)) if (!fdd_is_double_sided(drive))
return 0; return 0;
return fdd[drive].head; return fdd[drive].head;
} }
void void
fdd_set_turbo(int drive, int turbo) fdd_set_turbo(int drive, int turbo)
{ {
fdd[drive].turbo = turbo; fdd[drive].turbo = turbo;
} }
int int
fdd_get_turbo(int drive) fdd_get_turbo(int drive)
{ {
return fdd[drive].turbo; return fdd[drive].turbo;
} }
void
void fdd_set_check_bpb(int drive, int check_bpb) fdd_set_check_bpb(int drive, int check_bpb)
{ {
fdd[drive].check_bpb = check_bpb; fdd[drive].check_bpb = check_bpb;
} }
int int
fdd_get_check_bpb(int drive) fdd_get_check_bpb(int drive)
{ {
return fdd[drive].check_bpb; return fdd[drive].check_bpb;
} }
int int
fdd_get_densel(int drive) fdd_get_densel(int drive)
{ {
return fdd[drive].densel; return fdd[drive].densel;
} }
void void
fdd_load(int drive, char *fn) fdd_load(int drive, char *fn)
{ {
int c = 0, size; int c = 0, size;
char *p; char *p;
FILE *f; FILE *f;
fdd_log("FDD: loading drive %d with '%s'\n", drive, fn); fdd_log("FDD: loading drive %d with '%s'\n", drive, fn);
if (!fn) if (!fn)
return; return;
p = path_get_extension(fn); p = path_get_extension(fn);
if (!p) if (!p)
return; return;
f = plat_fopen(fn, "rb"); f = plat_fopen(fn, "rb");
if (f) { if (f) {
if (fseek(f, -1, SEEK_END) == -1) if (fseek(f, -1, SEEK_END) == -1)
fatal("fdd_load(): Error seeking to the end of the file\n"); fatal("fdd_load(): Error seeking to the end of the file\n");
size = ftell(f) + 1; size = ftell(f) + 1;
fclose(f); fclose(f);
while (loaders[c].ext) { while (loaders[c].ext) {
if (!strcasecmp(p, (char *) loaders[c].ext) && (size == loaders[c].size || loaders[c].size == -1)) { if (!strcasecmp(p, (char *) loaders[c].ext) && (size == loaders[c].size || loaders[c].size == -1)) {
driveloaders[drive] = c; driveloaders[drive] = c;
if (floppyfns[drive] != fn) strcpy(floppyfns[drive], fn); if (floppyfns[drive] != fn)
d86f_setup(drive); strcpy(floppyfns[drive], fn);
loaders[c].load(drive, floppyfns[drive]); d86f_setup(drive);
drive_empty[drive] = 0; loaders[c].load(drive, floppyfns[drive]);
fdd_forced_seek(drive, 0); drive_empty[drive] = 0;
fdd_changed[drive] = 1; fdd_forced_seek(drive, 0);
return; fdd_changed[drive] = 1;
} return;
c++; }
} c++;
}
} }
fdd_log("FDD: could not load '%s' %s\n",fn,p); fdd_log("FDD: could not load '%s' %s\n", fn, p);
drive_empty[drive] = 1; drive_empty[drive] = 1;
fdd_set_head(drive, 0); fdd_set_head(drive, 0);
memset(floppyfns[drive], 0, sizeof(floppyfns[drive])); memset(floppyfns[drive], 0, sizeof(floppyfns[drive]));
ui_sb_update_icon_state(SB_FLOPPY | drive, 1); ui_sb_update_icon_state(SB_FLOPPY | drive, 1);
} }
void void
fdd_close(int drive) fdd_close(int drive)
{ {
fdd_log("FDD: closing drive %d\n", drive); fdd_log("FDD: closing drive %d\n", drive);
d86f_stop(drive); /* Call this first of all to make sure the 86F poll is back to idle state. */ d86f_stop(drive); /* Call this first of all to make sure the 86F poll is back to idle state. */
if (loaders[driveloaders[drive]].close) if (loaders[driveloaders[drive]].close)
loaders[driveloaders[drive]].close(drive); loaders[driveloaders[drive]].close(drive);
drive_empty[drive] = 1; drive_empty[drive] = 1;
fdd_set_head(drive, 0); fdd_set_head(drive, 0);
floppyfns[drive][0] = 0; floppyfns[drive][0] = 0;
drives[drive].hole = NULL; drives[drive].hole = NULL;
drives[drive].poll = NULL; drives[drive].poll = NULL;
drives[drive].seek = NULL; drives[drive].seek = NULL;
drives[drive].readsector = NULL; drives[drive].readsector = NULL;
drives[drive].writesector = NULL; drives[drive].writesector = NULL;
drives[drive].comparesector = NULL; drives[drive].comparesector = NULL;
drives[drive].readaddress = NULL; drives[drive].readaddress = NULL;
drives[drive].format = NULL; drives[drive].format = NULL;
drives[drive].byteperiod = NULL; drives[drive].byteperiod = NULL;
drives[drive].stop = NULL; drives[drive].stop = NULL;
d86f_destroy(drive); d86f_destroy(drive);
ui_sb_update_icon_state(SB_FLOPPY | drive, 1); ui_sb_update_icon_state(SB_FLOPPY | drive, 1);
} }
int int
fdd_hole(int drive) fdd_hole(int drive)
{ {
if (drives[drive].hole) if (drives[drive].hole)
return drives[drive].hole(drive); return drives[drive].hole(drive);
else else
return 0; return 0;
} }
static __inline uint64_t static __inline uint64_t
fdd_byteperiod(int drive) fdd_byteperiod(int drive)
{ {
if (!fdd_get_turbo(drive) && drives[drive].byteperiod) if (!fdd_get_turbo(drive) && drives[drive].byteperiod)
return drives[drive].byteperiod(drive); return drives[drive].byteperiod(drive);
else else
return 32ULL * TIMER_USEC; return 32ULL * TIMER_USEC;
} }
void void
fdd_set_motor_enable(int drive, int motor_enable) fdd_set_motor_enable(int drive, int motor_enable)
{ {
/* I think here is where spin-up and spin-down should be implemented. */ /* I think here is where spin-up and spin-down should be implemented. */
if (motor_enable && !motoron[drive]) if (motor_enable && !motoron[drive])
timer_set_delay_u64(&fdd_poll_time[drive], fdd_byteperiod(drive)); timer_set_delay_u64(&fdd_poll_time[drive], fdd_byteperiod(drive));
else if (!motor_enable) else if (!motor_enable)
timer_disable(&fdd_poll_time[drive]); timer_disable(&fdd_poll_time[drive]);
motoron[drive] = motor_enable; motoron[drive] = motor_enable;
} }
static void static void
fdd_poll(void *priv) fdd_poll(void *priv)
{ {
int drive; int drive;
DRIVE *drv = (DRIVE *) priv; DRIVE *drv = (DRIVE *) priv;
drive = drv->id; drive = drv->id;
if (drive >= FDD_NUM) if (drive >= FDD_NUM)
fatal("Attempting to poll floppy drive %i that is not supposed to be there\n", drive); fatal("Attempting to poll floppy drive %i that is not supposed to be there\n", drive);
timer_advance_u64(&fdd_poll_time[drive], fdd_byteperiod(drive)); timer_advance_u64(&fdd_poll_time[drive], fdd_byteperiod(drive));
if (drv->poll) if (drv->poll)
drv->poll(drive); drv->poll(drive);
if (fdd_notfound) { if (fdd_notfound) {
fdd_notfound--; fdd_notfound--;
if (!fdd_notfound) if (!fdd_notfound)
fdc_noidam(fdd_fdc); fdc_noidam(fdd_fdc);
} }
} }
int int
fdd_get_bitcell_period(int rate) fdd_get_bitcell_period(int rate)
{ {
int bit_rate = 250; int bit_rate = 250;
switch (rate) { switch (rate) {
case 0: /*High density*/ case 0: /*High density*/
bit_rate = 500; bit_rate = 500;
break; break;
case 1: /*Double density (360 rpm)*/ case 1: /*Double density (360 rpm)*/
bit_rate = 300; bit_rate = 300;
break; break;
case 2: /*Double density*/ case 2: /*Double density*/
bit_rate = 250; bit_rate = 250;
break; break;
case 3: /*Extended density*/ case 3: /*Extended density*/
bit_rate = 1000; bit_rate = 1000;
break; break;
} }
return 1000000 / bit_rate*2; /*Bitcell period in ns*/ return 1000000 / bit_rate * 2; /*Bitcell period in ns*/
} }
void void
fdd_reset(void) fdd_reset(void)
{ {
int i; int i;
for (i = 0; i < FDD_NUM; i++) { for (i = 0; i < FDD_NUM; i++) {
drives[i].id = i; drives[i].id = i;
timer_add(&(fdd_poll_time[i]), fdd_poll, &drives[i], 0); timer_add(&(fdd_poll_time[i]), fdd_poll, &drives[i], 0);
} }
} }
void void
fdd_readsector(int drive, int sector, int track, int side, int density, int sector_size) fdd_readsector(int drive, int sector, int track, int side, int density, int sector_size)
{ {
if (drives[drive].readsector) if (drives[drive].readsector)
drives[drive].readsector(drive, sector, track, side, density, sector_size); drives[drive].readsector(drive, sector, track, side, density, sector_size);
else else
fdd_notfound = 1000; fdd_notfound = 1000;
} }
void void
fdd_writesector(int drive, int sector, int track, int side, int density, int sector_size) fdd_writesector(int drive, int sector, int track, int side, int density, int sector_size)
{ {
if (drives[drive].writesector) if (drives[drive].writesector)
drives[drive].writesector(drive, sector, track, side, density, sector_size); drives[drive].writesector(drive, sector, track, side, density, sector_size);
else else
fdd_notfound = 1000; fdd_notfound = 1000;
} }
void void
fdd_comparesector(int drive, int sector, int track, int side, int density, int sector_size) fdd_comparesector(int drive, int sector, int track, int side, int density, int sector_size)
{ {
if (drives[drive].comparesector) if (drives[drive].comparesector)
drives[drive].comparesector(drive, sector, track, side, density, sector_size); drives[drive].comparesector(drive, sector, track, side, density, sector_size);
else else
fdd_notfound = 1000; fdd_notfound = 1000;
} }
void void
fdd_readaddress(int drive, int side, int density) fdd_readaddress(int drive, int side, int density)
{ {
if (drives[drive].readaddress) if (drives[drive].readaddress)
drives[drive].readaddress(drive, side, density); drives[drive].readaddress(drive, side, density);
} }
void void
fdd_format(int drive, int side, int density, uint8_t fill) fdd_format(int drive, int side, int density, uint8_t fill)
{ {
if (drives[drive].format) if (drives[drive].format)
drives[drive].format(drive, side, density, fill); drives[drive].format(drive, side, density, fill);
else else
fdd_notfound = 1000; fdd_notfound = 1000;
} }
void void
fdd_stop(int drive) fdd_stop(int drive)
{ {
if (drives[drive].stop) if (drives[drive].stop)
drives[drive].stop(drive); drives[drive].stop(drive);
} }
void void
fdd_set_fdc(void *fdc) fdd_set_fdc(void *fdc)
{ {
fdd_fdc = (fdc_t *) fdc; fdd_fdc = (fdc_t *) fdc;
} }
void void
fdd_init(void) fdd_init(void)
{ {
int i; int i;
for (i = 0; i < FDD_NUM; i++) { for (i = 0; i < FDD_NUM; i++) {
drives[i].poll = 0; drives[i].poll = 0;
drives[i].seek = 0; drives[i].seek = 0;
drives[i].readsector = 0; drives[i].readsector = 0;
} }
img_init(); img_init();
@@ -720,7 +672,6 @@ fdd_init(void)
} }
} }
void void
fdd_do_writeback(int drive) fdd_do_writeback(int drive)
{ {

File diff suppressed because it is too large Load Diff

View File

@@ -24,7 +24,6 @@
#include <86box/fdd.h> #include <86box/fdd.h>
#include <86box/fdd_common.h> #include <86box/fdd_common.h>
const uint8_t fdd_holes[6] = { 0, 0, 0, 1, 1, 2 }; const uint8_t fdd_holes[6] = { 0, 0, 0, 1, 1, 2 };
const uint8_t fdd_rates[6] = { 2, 2, 1, 4, 0, 3 }; const uint8_t fdd_rates[6] = { 2, 2, 1, 4, 0, 3 };
@@ -59,11 +58,10 @@ const uint8_t fdd_max_sectors[8][6] = {
{ 0, 0, 0, 0, 0, 1 } /* 16384 */ { 0, 0, 0, 0, 0, 1 } /* 16384 */
}; };
const uint8_t fdd_dmf_r[21] = { const uint8_t fdd_dmf_r[21] = {
12,2,13,3,14,4,15,5,16,6,17,7,18,8,19,9,20,10,21,11,1 12, 2, 13, 3, 14, 4, 15, 5, 16, 6, 17, 7, 18, 8, 19, 9, 20, 10, 21, 11, 1
}; };
static const uint8_t fdd_gap3_sizes[5][8][48] = { static const uint8_t fdd_gap3_sizes[5][8][48] = {
{ { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, { { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* [0][0] */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* [0][0] */
@@ -347,95 +345,90 @@ static const uint8_t fdd_gap3_sizes[5][8][48] = {
} }
}; };
int int
fdd_get_gap3_size(int rate, int size, int sector) fdd_get_gap3_size(int rate, int size, int sector)
{ {
return(fdd_gap3_sizes[rate][size][sector]); return (fdd_gap3_sizes[rate][size][sector]);
} }
uint8_t uint8_t
fdd_sector_size_code(int size) fdd_sector_size_code(int size)
{ {
int ret = 2; int ret = 2;
switch(size) { switch (size) {
case 128: case 128:
ret = 0; ret = 0;
break; break;
case 256: case 256:
ret = 1; ret = 1;
break; break;
case 512: case 512:
ret = 2; ret = 2;
break; break;
case 1024: case 1024:
ret = 3; ret = 3;
break; break;
case 2048: case 2048:
ret = 4; ret = 4;
break; break;
case 4096: case 4096:
ret = 5; ret = 5;
break; break;
case 8192: case 8192:
ret = 6; ret = 6;
break; break;
case 16384: case 16384:
ret = 7; ret = 7;
break; break;
default: default:
break; break;
} }
return(ret); return (ret);
} }
int int
fdd_sector_code_size(uint8_t code) fdd_sector_code_size(uint8_t code)
{ {
return(128 << code); return (128 << code);
} }
int int
fdd_bps_valid(uint16_t bps) fdd_bps_valid(uint16_t bps)
{ {
int i; int i;
for (i=0; i<=8; i++) { for (i = 0; i <= 8; i++) {
if (bps == (128 << i)) { if (bps == (128 << i)) {
return 1; return 1;
} }
} }
return(0); return (0);
} }
int int
fdd_interleave(int sector, int skew, int spt) fdd_interleave(int sector, int skew, int spt)
{ {
uint32_t add = (spt & 1); uint32_t add = (spt & 1);
uint32_t adjust = (spt >> 1); uint32_t adjust = (spt >> 1);
uint32_t adjusted_r; uint32_t adjusted_r;
uint32_t skewed_i; uint32_t skewed_i;
skewed_i = (sector + skew) % spt; skewed_i = (sector + skew) % spt;
adjusted_r = (skewed_i >> 1) + 1; adjusted_r = (skewed_i >> 1) + 1;
if (skewed_i & 1) { if (skewed_i & 1) {
adjusted_r += (adjust + add); adjusted_r += (adjust + add);
} }
return(adjusted_r); return (adjusted_r);
} }

View File

@@ -36,73 +36,67 @@
#include <86box/fdc.h> #include <86box/fdc.h>
#include <fdi2raw.h> #include <fdi2raw.h>
typedef struct { typedef struct {
FILE *f; FILE *f;
FDI *h; FDI *h;
int lasttrack; int lasttrack;
int sides; int sides;
int track; int track;
int tracklen[2][4]; int tracklen[2][4];
int trackindex[2][4]; int trackindex[2][4];
uint8_t track_data[2][4][256*1024]; uint8_t track_data[2][4][256 * 1024];
uint8_t track_timing[2][4][256*1024]; uint8_t track_timing[2][4][256 * 1024];
} fdi_t; } fdi_t;
static fdi_t *fdi[FDD_NUM];
static fdi_t *fdi[FDD_NUM]; static fdc_t *fdi_fdc;
static fdc_t *fdi_fdc;
#ifdef ENABLE_FDI_LOG #ifdef ENABLE_FDI_LOG
int fdi_do_log = ENABLE_FDI_LOG; int fdi_do_log = ENABLE_FDI_LOG;
static void static void
fdi_log(const char *fmt, ...) fdi_log(const char *fmt, ...)
{ {
va_list ap; va_list ap;
if (fdi_do_log) if (fdi_do_log) {
{ va_start(ap, fmt);
va_start(ap, fmt); pclog_ex(fmt, ap);
pclog_ex(fmt, ap); va_end(ap);
va_end(ap); }
}
} }
#else #else
#define fdi_log(fmt, ...) # define fdi_log(fmt, ...)
#endif #endif
static uint16_t static uint16_t
disk_flags(int drive) disk_flags(int drive)
{ {
fdi_t *dev = fdi[drive]; fdi_t *dev = fdi[drive];
uint16_t temp_disk_flags = 0x80; /* We ALWAYS claim to have extra bit cells, even if the actual amount is 0. */ uint16_t temp_disk_flags = 0x80; /* We ALWAYS claim to have extra bit cells, even if the actual amount is 0. */
switch (fdi2raw_get_bit_rate(dev->h)) { switch (fdi2raw_get_bit_rate(dev->h)) {
case 500: case 500:
temp_disk_flags |= 2; temp_disk_flags |= 2;
break; break;
case 300: case 300:
case 250: case 250:
temp_disk_flags |= 0; temp_disk_flags |= 0;
break; break;
case 1000: case 1000:
temp_disk_flags |= 4; temp_disk_flags |= 4;
break; break;
default: default:
temp_disk_flags |= 0; temp_disk_flags |= 0;
} }
if (dev->sides == 2) if (dev->sides == 2)
temp_disk_flags |= 8; temp_disk_flags |= 8;
/* /*
* Tell the 86F handler that we will handle our * Tell the 86F handler that we will handle our
@@ -110,39 +104,38 @@ disk_flags(int drive)
*/ */
temp_disk_flags |= 0x800; temp_disk_flags |= 0x800;
return(temp_disk_flags); return (temp_disk_flags);
} }
static uint16_t static uint16_t
side_flags(int drive) side_flags(int drive)
{ {
fdi_t *dev = fdi[drive]; fdi_t *dev = fdi[drive];
uint16_t temp_side_flags = 0; uint16_t temp_side_flags = 0;
switch (fdi2raw_get_bit_rate(dev->h)) { switch (fdi2raw_get_bit_rate(dev->h)) {
case 500: case 500:
temp_side_flags = 0; temp_side_flags = 0;
break; break;
case 300: case 300:
temp_side_flags = 1; temp_side_flags = 1;
break; break;
case 250: case 250:
temp_side_flags = 2; temp_side_flags = 2;
break; break;
case 1000: case 1000:
temp_side_flags = 3; temp_side_flags = 3;
break; break;
default: default:
temp_side_flags = 2; temp_side_flags = 2;
} }
if (fdi2raw_get_rotation(dev->h) == 360) if (fdi2raw_get_rotation(dev->h) == 360)
temp_side_flags |= 0x20; temp_side_flags |= 0x20;
/* /*
* Set the encoding value to match that provided by the FDC. * Set the encoding value to match that provided by the FDC.
@@ -150,163 +143,158 @@ side_flags(int drive)
*/ */
temp_side_flags |= 0x08; temp_side_flags |= 0x08;
return(temp_side_flags); return (temp_side_flags);
} }
static int static int
fdi_density(void) fdi_density(void)
{ {
if (! fdc_is_mfm(fdi_fdc)) return(0); if (!fdc_is_mfm(fdi_fdc))
return (0);
switch (fdc_get_bit_rate(fdi_fdc)) { switch (fdc_get_bit_rate(fdi_fdc)) {
case 0: case 0:
return(2); return (2);
case 1: case 1:
return(1); return (1);
case 2: case 2:
return(1); return (1);
case 3: case 3:
case 5: case 5:
return(3); return (3);
default: default:
break; break;
} }
return(1); return (1);
} }
static int32_t static int32_t
extra_bit_cells(int drive, int side) extra_bit_cells(int drive, int side)
{ {
fdi_t *dev = fdi[drive]; fdi_t *dev = fdi[drive];
int density = 0; int density = 0;
int raw_size = 0; int raw_size = 0;
int is_300_rpm = 0; int is_300_rpm = 0;
density = fdi_density(); density = fdi_density();
is_300_rpm = (fdd_getrpm(drive) == 300); is_300_rpm = (fdd_getrpm(drive) == 300);
switch (fdc_get_bit_rate(fdi_fdc)) { switch (fdc_get_bit_rate(fdi_fdc)) {
case 0: case 0:
raw_size = is_300_rpm ? 200000 : 166666; raw_size = is_300_rpm ? 200000 : 166666;
break; break;
case 1: case 1:
raw_size = is_300_rpm ? 120000 : 100000; raw_size = is_300_rpm ? 120000 : 100000;
break; break;
case 2: case 2:
raw_size = is_300_rpm ? 100000 : 83333; raw_size = is_300_rpm ? 100000 : 83333;
break; break;
case 3: case 3:
case 5: case 5:
raw_size = is_300_rpm ? 400000 : 333333; raw_size = is_300_rpm ? 400000 : 333333;
break; break;
default: default:
raw_size = is_300_rpm ? 100000 : 83333; raw_size = is_300_rpm ? 100000 : 83333;
} }
return((dev->tracklen[side][density] - raw_size)); return ((dev->tracklen[side][density] - raw_size));
} }
static void static void
read_revolution(int drive) read_revolution(int drive)
{ {
fdi_t *dev = fdi[drive]; fdi_t *dev = fdi[drive];
int c, den, side; int c, den, side;
int track = dev->track; int track = dev->track;
if (track > dev->lasttrack) { if (track > dev->lasttrack) {
for (den = 0; den < 4; den++) { for (den = 0; den < 4; den++) {
memset(dev->track_data[0][den], 0, 106096); memset(dev->track_data[0][den], 0, 106096);
memset(dev->track_data[1][den], 0, 106096); memset(dev->track_data[1][den], 0, 106096);
dev->tracklen[0][den] = dev->tracklen[1][den] = 100000; dev->tracklen[0][den] = dev->tracklen[1][den] = 100000;
} }
return; return;
} }
for (den = 0; den < 4; den++) { for (den = 0; den < 4; den++) {
for (side = 0; side < dev->sides; side++) { for (side = 0; side < dev->sides; side++) {
c = fdi2raw_loadtrack(dev->h, c = fdi2raw_loadtrack(dev->h,
(uint16_t *)dev->track_data[side][den], (uint16_t *) dev->track_data[side][den],
(uint16_t *)dev->track_timing[side][den], (uint16_t *) dev->track_timing[side][den],
(track * dev->sides) + side, (track * dev->sides) + side,
&dev->tracklen[side][den], &dev->tracklen[side][den],
&dev->trackindex[side][den], NULL, den); &dev->trackindex[side][den], NULL, den);
if (! c) if (!c)
memset(dev->track_data[side][den], 0, dev->tracklen[side][den]); memset(dev->track_data[side][den], 0, dev->tracklen[side][den]);
} }
if (dev->sides == 1) { if (dev->sides == 1) {
memset(dev->track_data[1][den], 0, 106096); memset(dev->track_data[1][den], 0, 106096);
dev->tracklen[1][den] = 100000; dev->tracklen[1][den] = 100000;
} }
} }
} }
static uint32_t static uint32_t
index_hole_pos(int drive, int side) index_hole_pos(int drive, int side)
{ {
fdi_t *dev = fdi[drive]; fdi_t *dev = fdi[drive];
int density; int density;
density = fdi_density(); density = fdi_density();
return(dev->trackindex[side][density]); return (dev->trackindex[side][density]);
} }
static uint32_t static uint32_t
get_raw_size(int drive, int side) get_raw_size(int drive, int side)
{ {
fdi_t *dev = fdi[drive]; fdi_t *dev = fdi[drive];
int density; int density;
density = fdi_density(); density = fdi_density();
return(dev->tracklen[side][density]); return (dev->tracklen[side][density]);
} }
static uint16_t * static uint16_t *
encoded_data(int drive, int side) encoded_data(int drive, int side)
{ {
fdi_t *dev = fdi[drive]; fdi_t *dev = fdi[drive];
int density = 0; int density = 0;
density = fdi_density(); density = fdi_density();
return((uint16_t *)dev->track_data[side][density]); return ((uint16_t *) dev->track_data[side][density]);
} }
void void
fdi_seek(int drive, int track) fdi_seek(int drive, int track)
{ {
fdi_t *dev = fdi[drive]; fdi_t *dev = fdi[drive];
if (fdd_doublestep_40(drive)) { if (fdd_doublestep_40(drive)) {
if (fdi2raw_get_tpi(dev->h) < 2) if (fdi2raw_get_tpi(dev->h) < 2)
track /= 2; track /= 2;
} }
d86f_set_cur_track(drive, track); d86f_set_cur_track(drive, track);
if (dev->f == NULL) return; if (dev->f == NULL)
return;
if (track < 0) if (track < 0)
track = 0; track = 0;
#if 0 #if 0
if (track > dev->lasttrack) if (track > dev->lasttrack)
@@ -318,21 +306,20 @@ fdi_seek(int drive, int track)
read_revolution(drive); read_revolution(drive);
} }
void void
fdi_load(int drive, char *fn) fdi_load(int drive, char *fn)
{ {
char header[26]; char header[26];
fdi_t *dev; fdi_t *dev;
writeprot[drive] = fwriteprot[drive] = 1; writeprot[drive] = fwriteprot[drive] = 1;
/* Allocate a drive block. */ /* Allocate a drive block. */
dev = (fdi_t *)malloc(sizeof(fdi_t)); dev = (fdi_t *) malloc(sizeof(fdi_t));
if (dev == NULL) { if (dev == NULL) {
memset(floppyfns[drive], 0, sizeof(floppyfns[drive])); memset(floppyfns[drive], 0, sizeof(floppyfns[drive]));
return; return;
} }
memset(dev, 0x00, sizeof(fdi_t)); memset(dev, 0x00, sizeof(fdi_t));
@@ -341,39 +328,39 @@ fdi_load(int drive, char *fn)
dev->f = plat_fopen(fn, "rb"); dev->f = plat_fopen(fn, "rb");
if (fread(header, 1, 25, dev->f) != 25) if (fread(header, 1, 25, dev->f) != 25)
fatal("fdi_load(): Error reading header\n"); fatal("fdi_load(): Error reading header\n");
if (fseek(dev->f, 0, SEEK_SET) == -1) if (fseek(dev->f, 0, SEEK_SET) == -1)
fatal("fdi_load(): Error seeking to the beginning of the file\n"); fatal("fdi_load(): Error seeking to the beginning of the file\n");
header[25] = 0; header[25] = 0;
if (strcmp(header, "Formatted Disk Image file") != 0) { if (strcmp(header, "Formatted Disk Image file") != 0) {
/* This is a Japanese FDI file. */ /* This is a Japanese FDI file. */
fdi_log("fdi_load(): Japanese FDI file detected, redirecting to IMG loader\n"); fdi_log("fdi_load(): Japanese FDI file detected, redirecting to IMG loader\n");
fclose(dev->f); fclose(dev->f);
free(dev); free(dev);
img_load(drive, fn); img_load(drive, fn);
return; return;
} }
/* Set up the drive unit. */ /* Set up the drive unit. */
fdi[drive] = dev; fdi[drive] = dev;
dev->h = fdi2raw_header(dev->f); dev->h = fdi2raw_header(dev->f);
dev->lasttrack = fdi2raw_get_last_track(dev->h); dev->lasttrack = fdi2raw_get_last_track(dev->h);
dev->sides = fdi2raw_get_last_head(dev->h) + 1; dev->sides = fdi2raw_get_last_head(dev->h) + 1;
/* Attach this format to the D86F engine. */ /* Attach this format to the D86F engine. */
d86f_handler[drive].disk_flags = disk_flags; d86f_handler[drive].disk_flags = disk_flags;
d86f_handler[drive].side_flags = side_flags; d86f_handler[drive].side_flags = side_flags;
d86f_handler[drive].writeback = null_writeback; d86f_handler[drive].writeback = null_writeback;
d86f_handler[drive].set_sector = null_set_sector; d86f_handler[drive].set_sector = null_set_sector;
d86f_handler[drive].write_data = null_write_data; d86f_handler[drive].write_data = null_write_data;
d86f_handler[drive].format_conditions = null_format_conditions; d86f_handler[drive].format_conditions = null_format_conditions;
d86f_handler[drive].extra_bit_cells = extra_bit_cells; d86f_handler[drive].extra_bit_cells = extra_bit_cells;
d86f_handler[drive].encoded_data = encoded_data; d86f_handler[drive].encoded_data = encoded_data;
d86f_handler[drive].read_revolution = read_revolution; d86f_handler[drive].read_revolution = read_revolution;
d86f_handler[drive].index_hole_pos = index_hole_pos; d86f_handler[drive].index_hole_pos = index_hole_pos;
d86f_handler[drive].get_raw_size = get_raw_size; d86f_handler[drive].get_raw_size = get_raw_size;
d86f_handler[drive].check_crc = 1; d86f_handler[drive].check_crc = 1;
d86f_set_version(drive, D86FVER); d86f_set_version(drive, D86FVER);
d86f_common_handlers(drive); d86f_common_handlers(drive);
@@ -383,32 +370,31 @@ fdi_load(int drive, char *fn)
fdi_log("Loaded as FDI\n"); fdi_log("Loaded as FDI\n");
} }
void void
fdi_close(int drive) fdi_close(int drive)
{ {
fdi_t *dev = fdi[drive]; fdi_t *dev = fdi[drive];
if (dev == NULL) return; if (dev == NULL)
return;
d86f_unregister(drive); d86f_unregister(drive);
drives[drive].seek = NULL; drives[drive].seek = NULL;
if (dev->h) if (dev->h)
fdi2raw_header_free(dev->h); fdi2raw_header_free(dev->h);
if (dev->f) if (dev->f)
fclose(dev->f); fclose(dev->f);
/* Release the memory. */ /* Release the memory. */
free(dev); free(dev);
fdi[drive] = NULL; fdi[drive] = NULL;
} }
void void
fdi_set_fdc(void *fdc) fdi_set_fdc(void *fdc)
{ {
fdi_fdc = (fdc_t *)fdc; fdi_fdc = (fdc_t *) fdc;
} }

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -31,177 +31,165 @@
#include <86box/fdd_mfm.h> #include <86box/fdd_mfm.h>
#include <86box/fdc.h> #include <86box/fdc.h>
#pragma pack(push, 1)
#pragma pack(push,1)
typedef struct { typedef struct {
uint8_t hdr_name[7]; uint8_t hdr_name[7];
uint16_t tracks_no; uint16_t tracks_no;
uint8_t sides_no; uint8_t sides_no;
uint16_t rpm; uint16_t rpm;
uint16_t bit_rate; uint16_t bit_rate;
uint8_t if_type; uint8_t if_type;
uint32_t track_list_offset; uint32_t track_list_offset;
} mfm_header_t; } mfm_header_t;
typedef struct { typedef struct {
uint16_t track_no; uint16_t track_no;
uint8_t side_no; uint8_t side_no;
uint32_t track_size; uint32_t track_size;
uint32_t track_offset; uint32_t track_offset;
} mfm_track_t; } mfm_track_t;
typedef struct { typedef struct {
uint16_t track_no; uint16_t track_no;
uint8_t side_no; uint8_t side_no;
uint16_t rpm; uint16_t rpm;
uint16_t bit_rate; uint16_t bit_rate;
uint32_t track_size; uint32_t track_size;
uint32_t track_offset; uint32_t track_offset;
} mfm_adv_track_t; } mfm_adv_track_t;
#pragma pack(pop) #pragma pack(pop)
typedef struct { typedef struct {
FILE *f; FILE *f;
mfm_header_t hdr; mfm_header_t hdr;
mfm_track_t *tracks; mfm_track_t *tracks;
mfm_adv_track_t *adv_tracks; mfm_adv_track_t *adv_tracks;
uint16_t disk_flags, pad; uint16_t disk_flags, pad;
uint16_t side_flags[2]; uint16_t side_flags[2];
int br_rounded, rpm_rounded, int br_rounded, rpm_rounded,
total_tracks, cur_track; total_tracks, cur_track;
uint8_t track_data[2][256*1024]; uint8_t track_data[2][256 * 1024];
} mfm_t; } mfm_t;
static mfm_t *mfm[FDD_NUM];
static mfm_t *mfm[FDD_NUM]; static fdc_t *mfm_fdc;
static fdc_t *mfm_fdc;
#ifdef ENABLE_MFM_LOG #ifdef ENABLE_MFM_LOG
int mfm_do_log = ENABLE_MFM_LOG; int mfm_do_log = ENABLE_MFM_LOG;
static void static void
mfm_log(const char *fmt, ...) mfm_log(const char *fmt, ...)
{ {
va_list ap; va_list ap;
if (mfm_do_log) if (mfm_do_log) {
{ va_start(ap, fmt);
va_start(ap, fmt); pclog_ex(fmt, ap);
pclog_ex(fmt, ap); va_end(ap);
va_end(ap); }
}
} }
#else #else
#define mfm_log(fmt, ...) # define mfm_log(fmt, ...)
#endif #endif
static int static int
get_track_index(int drive, int side, int track) get_track_index(int drive, int side, int track)
{ {
mfm_t *dev = mfm[drive]; mfm_t *dev = mfm[drive];
int i, ret = -1; int i, ret = -1;
for (i = 0; i < dev->total_tracks; i++) { for (i = 0; i < dev->total_tracks; i++) {
if ((dev->tracks[i].track_no == track) && if ((dev->tracks[i].track_no == track) && (dev->tracks[i].side_no == side)) {
(dev->tracks[i].side_no == side)) { ret = i;
ret = i; break;
break; }
}
} }
return ret; return ret;
} }
static int static int
get_adv_track_index(int drive, int side, int track) get_adv_track_index(int drive, int side, int track)
{ {
mfm_t *dev = mfm[drive]; mfm_t *dev = mfm[drive];
int i, ret = -1; int i, ret = -1;
for (i = 0; i < dev->total_tracks; i++) { for (i = 0; i < dev->total_tracks; i++) {
if ((dev->adv_tracks[i].track_no == track) && if ((dev->adv_tracks[i].track_no == track) && (dev->adv_tracks[i].side_no == side)) {
(dev->adv_tracks[i].side_no == side)) { ret = i;
ret = i; break;
break; }
}
} }
return ret; return ret;
} }
static void static void
get_adv_track_bitrate(int drive, int side, int track, int *br, int *rpm) get_adv_track_bitrate(int drive, int side, int track, int *br, int *rpm)
{ {
mfm_t *dev = mfm[drive]; mfm_t *dev = mfm[drive];
int track_index; int track_index;
double dbr; double dbr;
track_index = get_adv_track_index(drive, side, track); track_index = get_adv_track_index(drive, side, track);
if (track_index == -1) { if (track_index == -1) {
*br = 250; *br = 250;
*rpm = 300; *rpm = 300;
} else { } else {
dbr = round(((double) dev->adv_tracks[track_index].bit_rate) / 50.0) * 50.0; dbr = round(((double) dev->adv_tracks[track_index].bit_rate) / 50.0) * 50.0;
*br = ((int) dbr); *br = ((int) dbr);
dbr = round(((double) dev->adv_tracks[track_index].rpm) / 60.0) * 60.0; dbr = round(((double) dev->adv_tracks[track_index].rpm) / 60.0) * 60.0;
*rpm = ((int) dbr); *rpm = ((int) dbr);
} }
} }
static void static void
set_disk_flags(int drive) set_disk_flags(int drive)
{ {
int br = 250, rpm = 300; int br = 250, rpm = 300;
mfm_t *dev = mfm[drive]; mfm_t *dev = mfm[drive];
uint16_t temp_disk_flags = 0x1080; /* We ALWAYS claim to have extra bit cells, even if the actual amount is 0; uint16_t temp_disk_flags = 0x1080; /* We ALWAYS claim to have extra bit cells, even if the actual amount is 0;
Bit 12 = 1, bits 6, 5 = 0 - extra bit cells field specifies the entire Bit 12 = 1, bits 6, 5 = 0 - extra bit cells field specifies the entire
amount of bit cells per track. */ amount of bit cells per track. */
/* If this is the modified MFM format, get bit rate (and RPM) from track 0 instead. */ /* If this is the modified MFM format, get bit rate (and RPM) from track 0 instead. */
if (dev->hdr.if_type & 0x80) if (dev->hdr.if_type & 0x80)
get_adv_track_bitrate(drive, 0, 0, &br, &rpm); get_adv_track_bitrate(drive, 0, 0, &br, &rpm);
else { else {
br = dev->br_rounded; br = dev->br_rounded;
rpm = dev->rpm_rounded; rpm = dev->rpm_rounded;
} }
switch (br) { switch (br) {
case 500: case 500:
temp_disk_flags |= 2; temp_disk_flags |= 2;
break; break;
case 300: case 300:
case 250: case 250:
default: default:
temp_disk_flags |= 0; temp_disk_flags |= 0;
break; break;
case 1000: case 1000:
temp_disk_flags |= 4; temp_disk_flags |= 4;
break; break;
} }
if (dev->hdr.sides_no == 2) if (dev->hdr.sides_no == 2)
temp_disk_flags |= 8; temp_disk_flags |= 8;
dev->disk_flags = temp_disk_flags; dev->disk_flags = temp_disk_flags;
} }
static uint16_t static uint16_t
disk_flags(int drive) disk_flags(int drive)
{ {
@@ -210,48 +198,47 @@ disk_flags(int drive)
return dev->disk_flags; return dev->disk_flags;
} }
static void static void
set_side_flags(int drive, int side) set_side_flags(int drive, int side)
{ {
mfm_t *dev = mfm[drive]; mfm_t *dev = mfm[drive];
uint16_t temp_side_flags = 0; uint16_t temp_side_flags = 0;
int br = 250, rpm = 300; int br = 250, rpm = 300;
if (dev->hdr.if_type & 0x80) if (dev->hdr.if_type & 0x80)
get_adv_track_bitrate(drive, side, dev->cur_track, &br, &rpm); get_adv_track_bitrate(drive, side, dev->cur_track, &br, &rpm);
else { else {
br = dev->br_rounded; br = dev->br_rounded;
rpm = dev->rpm_rounded; rpm = dev->rpm_rounded;
} }
/* 300 kbps @ 360 rpm = 250 kbps @ 200 rpm */ /* 300 kbps @ 360 rpm = 250 kbps @ 200 rpm */
if ((br == 300) && (rpm == 360)) { if ((br == 300) && (rpm == 360)) {
br = 250; br = 250;
rpm = 300; rpm = 300;
} }
switch (br) { switch (br) {
case 500: case 500:
temp_side_flags = 0; temp_side_flags = 0;
break; break;
case 300: case 300:
temp_side_flags = 1; temp_side_flags = 1;
break; break;
case 250: case 250:
default: default:
temp_side_flags = 2; temp_side_flags = 2;
break; break;
case 1000: case 1000:
temp_side_flags = 3; temp_side_flags = 3;
break; break;
} }
if (rpm == 360) if (rpm == 360)
temp_side_flags |= 0x20; temp_side_flags |= 0x20;
/* /*
* Set the encoding value to match that provided by the FDC. * Set the encoding value to match that provided by the FDC.
@@ -262,112 +249,106 @@ set_side_flags(int drive, int side)
dev->side_flags[side] = temp_side_flags; dev->side_flags[side] = temp_side_flags;
} }
static uint16_t static uint16_t
side_flags(int drive) side_flags(int drive)
{ {
mfm_t *dev = mfm[drive]; mfm_t *dev = mfm[drive];
int side; int side;
side = fdd_get_head(drive); side = fdd_get_head(drive);
return dev->side_flags[side]; return dev->side_flags[side];
} }
static uint32_t static uint32_t
get_raw_size(int drive, int side) get_raw_size(int drive, int side)
{ {
mfm_t *dev = mfm[drive]; mfm_t *dev = mfm[drive];
int track_index, is_300_rpm; int track_index, is_300_rpm;
int br = 250, rpm = 300; int br = 250, rpm = 300;
if (dev->hdr.if_type & 0x80) { if (dev->hdr.if_type & 0x80) {
track_index = get_adv_track_index(drive, side, dev->cur_track); track_index = get_adv_track_index(drive, side, dev->cur_track);
get_adv_track_bitrate(drive, 0, 0, &br, &rpm); get_adv_track_bitrate(drive, 0, 0, &br, &rpm);
} else { } else {
track_index = get_track_index(drive, side, dev->cur_track); track_index = get_track_index(drive, side, dev->cur_track);
br = dev->br_rounded; br = dev->br_rounded;
rpm = dev->rpm_rounded; rpm = dev->rpm_rounded;
} }
is_300_rpm = (rpm == 300); is_300_rpm = (rpm == 300);
if (track_index == -1) { if (track_index == -1) {
mfm_log("MFM: Unable to find track (%i, %i)\n", dev->cur_track, side); mfm_log("MFM: Unable to find track (%i, %i)\n", dev->cur_track, side);
switch (br) { switch (br) {
case 250: case 250:
default: default:
return is_300_rpm ? 100000 : 83333; return is_300_rpm ? 100000 : 83333;
case 300: case 300:
return is_300_rpm ? 120000 : 100000; return is_300_rpm ? 120000 : 100000;
case 500: case 500:
return is_300_rpm ? 200000 : 166666; return is_300_rpm ? 200000 : 166666;
case 1000: case 1000:
return is_300_rpm ? 400000 : 333333; return is_300_rpm ? 400000 : 333333;
} }
} }
/* Bit 7 on - my extension of the HxC MFM format to output exact bitcell counts /* Bit 7 on - my extension of the HxC MFM format to output exact bitcell counts
for each track instead of rounded byte counts. */ for each track instead of rounded byte counts. */
if (dev->hdr.if_type & 0x80) if (dev->hdr.if_type & 0x80)
return dev->adv_tracks[track_index].track_size; return dev->adv_tracks[track_index].track_size;
else else
return dev->tracks[track_index].track_size * 8; return dev->tracks[track_index].track_size * 8;
} }
static int32_t static int32_t
extra_bit_cells(int drive, int side) extra_bit_cells(int drive, int side)
{ {
return (int32_t) get_raw_size(drive, side); return (int32_t) get_raw_size(drive, side);
} }
static uint16_t * static uint16_t *
encoded_data(int drive, int side) encoded_data(int drive, int side)
{ {
mfm_t *dev = mfm[drive]; mfm_t *dev = mfm[drive];
return((uint16_t *)dev->track_data[side]); return ((uint16_t *) dev->track_data[side]);
} }
void void
mfm_read_side(int drive, int side) mfm_read_side(int drive, int side)
{ {
mfm_t *dev = mfm[drive]; mfm_t *dev = mfm[drive];
int track_index, track_size; int track_index, track_size;
int track_bytes, ret; int track_bytes, ret;
if (dev->hdr.if_type & 0x80) if (dev->hdr.if_type & 0x80)
track_index = get_adv_track_index(drive, side, dev->cur_track); track_index = get_adv_track_index(drive, side, dev->cur_track);
else else
track_index = get_track_index(drive, side, dev->cur_track); track_index = get_track_index(drive, side, dev->cur_track);
track_size = get_raw_size(drive, side); track_size = get_raw_size(drive, side);
track_bytes = track_size >> 3; track_bytes = track_size >> 3;
if (track_size & 0x07) if (track_size & 0x07)
track_bytes++; track_bytes++;
if (track_index == -1) if (track_index == -1)
memset(dev->track_data[side], 0x00, track_bytes); memset(dev->track_data[side], 0x00, track_bytes);
else { else {
if (dev->hdr.if_type & 0x80) if (dev->hdr.if_type & 0x80)
ret = fseek(dev->f, dev->adv_tracks[track_index].track_offset, SEEK_SET); ret = fseek(dev->f, dev->adv_tracks[track_index].track_offset, SEEK_SET);
else else
ret = fseek(dev->f, dev->tracks[track_index].track_offset, SEEK_SET); ret = fseek(dev->f, dev->tracks[track_index].track_offset, SEEK_SET);
if (ret == -1) if (ret == -1)
fatal("mfm_read_side(): Error seeking to the beginning of the file\n"); fatal("mfm_read_side(): Error seeking to the beginning of the file\n");
if (fread(dev->track_data[side], 1, track_bytes, dev->f) != track_bytes) if (fread(dev->track_data[side], 1, track_bytes, dev->f) != track_bytes)
fatal("mfm_read_side(): Error reading track bytes\n"); fatal("mfm_read_side(): Error reading track bytes\n");
} }
mfm_log("drive = %i, side = %i, dev->cur_track = %i, track_index = %i, track_size = %i\n", mfm_log("drive = %i, side = %i, dev->cur_track = %i, track_index = %i, track_size = %i\n",
drive, side, dev->cur_track, track_index, track_size); drive, side, dev->cur_track, track_index, track_size);
} }
void void
mfm_seek(int drive, int track) mfm_seek(int drive, int track)
{ {
@@ -376,18 +357,18 @@ mfm_seek(int drive, int track)
mfm_log("mfm_seek(%i, %i)\n", drive, track); mfm_log("mfm_seek(%i, %i)\n", drive, track);
if (fdd_doublestep_40(drive)) { if (fdd_doublestep_40(drive)) {
if (dev->hdr.tracks_no <= 43) if (dev->hdr.tracks_no <= 43)
track /= 2; track /= 2;
} }
dev->cur_track = track; dev->cur_track = track;
d86f_set_cur_track(drive, track); d86f_set_cur_track(drive, track);
if (dev->f == NULL) if (dev->f == NULL)
return; return;
if (track < 0) if (track < 0)
track = 0; track = 0;
mfm_read_side(drive, 0); mfm_read_side(drive, 0);
mfm_read_side(drive, 1); mfm_read_side(drive, 1);
@@ -396,25 +377,24 @@ mfm_seek(int drive, int track)
set_side_flags(drive, 1); set_side_flags(drive, 1);
} }
void void
mfm_load(int drive, char *fn) mfm_load(int drive, char *fn)
{ {
mfm_t *dev; mfm_t *dev;
double dbr; double dbr;
int i, size; int i, size;
writeprot[drive] = fwriteprot[drive] = 1; writeprot[drive] = fwriteprot[drive] = 1;
/* Allocate a drive block. */ /* Allocate a drive block. */
dev = (mfm_t *)malloc(sizeof(mfm_t)); dev = (mfm_t *) malloc(sizeof(mfm_t));
memset(dev, 0x00, sizeof(mfm_t)); memset(dev, 0x00, sizeof(mfm_t));
dev->f = plat_fopen(fn, "rb"); dev->f = plat_fopen(fn, "rb");
if (dev->f == NULL) { if (dev->f == NULL) {
free(dev); free(dev);
memset(floppyfns[drive], 0, sizeof(floppyfns[drive])); memset(floppyfns[drive], 0, sizeof(floppyfns[drive]));
return; return;
} }
d86f_unregister(drive); d86f_unregister(drive);
@@ -422,20 +402,20 @@ mfm_load(int drive, char *fn)
/* Read the header. */ /* Read the header. */
size = sizeof(mfm_header_t); size = sizeof(mfm_header_t);
if (fread(&dev->hdr, 1, size, dev->f) != size) if (fread(&dev->hdr, 1, size, dev->f) != size)
fatal("mfm_load(): Error reading header\n"); fatal("mfm_load(): Error reading header\n");
/* Calculate tracks * sides, allocate the tracks array, and read it. */ /* Calculate tracks * sides, allocate the tracks array, and read it. */
dev->total_tracks = dev->hdr.tracks_no * dev->hdr.sides_no; dev->total_tracks = dev->hdr.tracks_no * dev->hdr.sides_no;
if (dev->hdr.if_type & 0x80) { if (dev->hdr.if_type & 0x80) {
dev->adv_tracks = (mfm_adv_track_t *) malloc(dev->total_tracks * sizeof(mfm_adv_track_t)); dev->adv_tracks = (mfm_adv_track_t *) malloc(dev->total_tracks * sizeof(mfm_adv_track_t));
size = dev->total_tracks * sizeof(mfm_adv_track_t); size = dev->total_tracks * sizeof(mfm_adv_track_t);
if (fread(dev->adv_tracks, 1, size, dev->f) != size) if (fread(dev->adv_tracks, 1, size, dev->f) != size)
fatal("mfm_load(): Error reading advanced tracks\n"); fatal("mfm_load(): Error reading advanced tracks\n");
} else { } else {
dev->tracks = (mfm_track_t *) malloc(dev->total_tracks * sizeof(mfm_track_t)); dev->tracks = (mfm_track_t *) malloc(dev->total_tracks * sizeof(mfm_track_t));
size = dev->total_tracks * sizeof(mfm_track_t); size = dev->total_tracks * sizeof(mfm_track_t);
if (fread(dev->tracks, 1, size, dev->f) != size) if (fread(dev->tracks, 1, size, dev->f) != size)
fatal("mfm_load(): Error reading tracks\n"); fatal("mfm_load(): Error reading tracks\n");
} }
/* The chances of finding a HxC MFM image of a single-sided thin track /* The chances of finding a HxC MFM image of a single-sided thin track
@@ -444,30 +424,30 @@ mfm_load(int drive, char *fn)
side and 80+ tracks instead of 2 sides and <= 43 tracks, so if we side and 80+ tracks instead of 2 sides and <= 43 tracks, so if we
have detected such an image, convert the track numbers. */ have detected such an image, convert the track numbers. */
if ((dev->hdr.tracks_no > 43) && (dev->hdr.sides_no == 1)) { if ((dev->hdr.tracks_no > 43) && (dev->hdr.sides_no == 1)) {
dev->hdr.tracks_no >>= 1; dev->hdr.tracks_no >>= 1;
dev->hdr.sides_no <<= 1; dev->hdr.sides_no <<= 1;
for (i = 0; i < dev->total_tracks; i++) { for (i = 0; i < dev->total_tracks; i++) {
if (dev->hdr.if_type & 0x80) { if (dev->hdr.if_type & 0x80) {
dev->adv_tracks[i].side_no <<= 1; dev->adv_tracks[i].side_no <<= 1;
dev->adv_tracks[i].side_no |= (dev->adv_tracks[i].track_no & 1); dev->adv_tracks[i].side_no |= (dev->adv_tracks[i].track_no & 1);
dev->adv_tracks[i].track_no >>= 1; dev->adv_tracks[i].track_no >>= 1;
} else { } else {
dev->tracks[i].side_no <<= 1; dev->tracks[i].side_no <<= 1;
dev->tracks[i].side_no |= (dev->tracks[i].track_no & 1); dev->tracks[i].side_no |= (dev->tracks[i].track_no & 1);
dev->tracks[i].track_no >>= 1; dev->tracks[i].track_no >>= 1;
} }
} }
} }
if (!(dev->hdr.if_type & 0x80)) { if (!(dev->hdr.if_type & 0x80)) {
dbr = round(((double) dev->hdr.bit_rate) / 50.0) * 50.0; dbr = round(((double) dev->hdr.bit_rate) / 50.0) * 50.0;
dev->br_rounded = (int) dbr; dev->br_rounded = (int) dbr;
mfm_log("Rounded bit rate: %i kbps\n", dev->br_rounded); mfm_log("Rounded bit rate: %i kbps\n", dev->br_rounded);
dbr = round(((double) dev->hdr.rpm) / 60.0) * 60.0; dbr = round(((double) dev->hdr.rpm) / 60.0) * 60.0;
dev->rpm_rounded = (int) dbr; dev->rpm_rounded = (int) dbr;
mfm_log("Rounded RPM: %i kbps\n", dev->rpm_rounded); mfm_log("Rounded RPM: %i kbps\n", dev->rpm_rounded);
} }
/* Set up the drive unit. */ /* Set up the drive unit. */
@@ -476,18 +456,18 @@ mfm_load(int drive, char *fn)
set_disk_flags(drive); set_disk_flags(drive);
/* Attach this format to the D86F engine. */ /* Attach this format to the D86F engine. */
d86f_handler[drive].disk_flags = disk_flags; d86f_handler[drive].disk_flags = disk_flags;
d86f_handler[drive].side_flags = side_flags; d86f_handler[drive].side_flags = side_flags;
d86f_handler[drive].writeback = null_writeback; d86f_handler[drive].writeback = null_writeback;
d86f_handler[drive].set_sector = null_set_sector; d86f_handler[drive].set_sector = null_set_sector;
d86f_handler[drive].write_data = null_write_data; d86f_handler[drive].write_data = null_write_data;
d86f_handler[drive].format_conditions = null_format_conditions; d86f_handler[drive].format_conditions = null_format_conditions;
d86f_handler[drive].extra_bit_cells = extra_bit_cells; d86f_handler[drive].extra_bit_cells = extra_bit_cells;
d86f_handler[drive].encoded_data = encoded_data; d86f_handler[drive].encoded_data = encoded_data;
d86f_handler[drive].read_revolution = common_read_revolution; d86f_handler[drive].read_revolution = common_read_revolution;
d86f_handler[drive].index_hole_pos = null_index_hole_pos; d86f_handler[drive].index_hole_pos = null_index_hole_pos;
d86f_handler[drive].get_raw_size = get_raw_size; d86f_handler[drive].get_raw_size = get_raw_size;
d86f_handler[drive].check_crc = 1; d86f_handler[drive].check_crc = 1;
d86f_set_version(drive, D86FVER); d86f_set_version(drive, D86FVER);
d86f_common_handlers(drive); d86f_common_handlers(drive);
@@ -497,35 +477,34 @@ mfm_load(int drive, char *fn)
mfm_log("Loaded as MFM\n"); mfm_log("Loaded as MFM\n");
} }
void void
mfm_close(int drive) mfm_close(int drive)
{ {
mfm_t *dev = mfm[drive]; mfm_t *dev = mfm[drive];
if (dev == NULL) return; if (dev == NULL)
return;
d86f_unregister(drive); d86f_unregister(drive);
drives[drive].seek = NULL; drives[drive].seek = NULL;
if (dev->tracks) if (dev->tracks)
free(dev->tracks); free(dev->tracks);
if (dev->adv_tracks) if (dev->adv_tracks)
free(dev->adv_tracks); free(dev->adv_tracks);
if (dev->f) if (dev->f)
fclose(dev->f); fclose(dev->f);
/* Release the memory. */ /* Release the memory. */
free(dev); free(dev);
mfm[drive] = NULL; mfm[drive] = NULL;
} }
void void
mfm_set_fdc(void *fdc) mfm_set_fdc(void *fdc)
{ {
mfm_fdc = (fdc_t *)fdc; mfm_fdc = (fdc_t *) fdc;
} }

File diff suppressed because it is too large Load Diff