Some clang-formatting in src/cpu

This commit is contained in:
Jasmine Iwanek
2022-09-20 01:00:45 -04:00
parent b2fb6dbeec
commit b4673117fd
6 changed files with 5424 additions and 5271 deletions

View File

@@ -6,7 +6,7 @@
#include <wchar.h>
#include <math.h>
#ifndef INFINITY
# define INFINITY (__builtin_inff())
# define INFINITY (__builtin_inff())
#endif
#define HAVE_STDARG_H
@@ -25,14 +25,12 @@
#include <86box/gdbstub.h>
#include "386_common.h"
#ifdef USE_NEW_DYNAREC
#include "codegen.h"
# include "codegen.h"
#endif
#undef CPU_BLOCK_END
#define CPU_BLOCK_END()
extern int codegen_flags_changed;
int tempc, oldcpl, optype, inttype, oddeven = 0;
@@ -41,225 +39,229 @@ int timetolive;
uint16_t oldcs;
uint32_t oldds, oldss, olddslimit, oldsslimit,
olddslimitw, oldsslimitw;
olddslimitw, oldsslimitw;
uint32_t oxpc;
uint32_t rmdat32;
uint32_t backupregs[16];
x86seg _oldds;
#ifdef ENABLE_386_LOG
int x386_do_log = ENABLE_386_LOG;
void
x386_log(const char *fmt, ...)
{
va_list ap;
if (x386_do_log) {
va_start(ap, fmt);
pclog_ex(fmt, ap);
va_end(ap);
va_start(ap, fmt);
pclog_ex(fmt, ap);
va_end(ap);
}
}
#else
#define x386_log(fmt, ...)
# define x386_log(fmt, ...)
#endif
#undef CPU_BLOCK_END
#define CPU_BLOCK_END()
#include "x86_flags.h"
#define getbytef() ((uint8_t)(fetchdat)); cpu_state.pc++
#define getwordf() ((uint16_t)(fetchdat)); cpu_state.pc+=2
#define getbyte2f() ((uint8_t)(fetchdat>>8)); cpu_state.pc++
#define getword2f() ((uint16_t)(fetchdat>>8)); cpu_state.pc+=2
#define getbytef() \
((uint8_t) (fetchdat)); \
cpu_state.pc++
#define getwordf() \
((uint16_t) (fetchdat)); \
cpu_state.pc += 2
#define getbyte2f() \
((uint8_t) (fetchdat >> 8)); \
cpu_state.pc++
#define getword2f() \
((uint16_t) (fetchdat >> 8)); \
cpu_state.pc += 2
#define OP_TABLE(name) ops_ ## name
#define OP_TABLE(name) ops_##name
#if 0
#define CLOCK_CYCLES(c) \
{\
if (fpu_cycles > 0) {\
fpu_cycles -= (c);\
if (fpu_cycles < 0) {\
cycles += fpu_cycles;\
}\
} else {\
cycles -= (c);\
}\
}
# define CLOCK_CYCLES(c) \
{ \
if (fpu_cycles > 0) { \
fpu_cycles -= (c); \
if (fpu_cycles < 0) { \
cycles += fpu_cycles; \
} \
} else { \
cycles -= (c); \
} \
}
#define CLOCK_CYCLES_FPU(c) cycles -= (c)
#define CONCURRENCY_CYCLES(c) fpu_cycles = (c)
# define CLOCK_CYCLES_FPU(c) cycles -= (c)
# define CONCURRENCY_CYCLES(c) fpu_cycles = (c)
#else
#define CLOCK_CYCLES(c) cycles -= (c)
#define CLOCK_CYCLES_FPU(c) cycles -= (c)
#define CONCURRENCY_CYCLES(c)
# define CLOCK_CYCLES(c) cycles -= (c)
# define CLOCK_CYCLES_FPU(c) cycles -= (c)
# define CONCURRENCY_CYCLES(c)
#endif
#define CLOCK_CYCLES_ALWAYS(c) cycles -= (c)
#include "x86_ops.h"
void
exec386(int cycs)
{
int vector, tempi, cycdiff, oldcyc;
int cycle_period, ins_cycles;
int vector, tempi, cycdiff, oldcyc;
int cycle_period, ins_cycles;
uint32_t addr;
cycles += cycs;
while (cycles > 0) {
cycle_period = (timer_target - (uint32_t)tsc) + 1;
cycle_period = (timer_target - (uint32_t) tsc) + 1;
x86_was_reset = 0;
cycdiff = 0;
oldcyc = cycles;
while (cycdiff < cycle_period) {
ins_cycles = cycles;
x86_was_reset = 0;
cycdiff = 0;
oldcyc = cycles;
while (cycdiff < cycle_period) {
ins_cycles = cycles;
#ifndef USE_NEW_DYNAREC
oldcs=CS;
oldcpl=CPL;
oldcs = CS;
oldcpl = CPL;
#endif
cpu_state.oldpc = cpu_state.pc;
cpu_state.op32 = use32;
cpu_state.oldpc = cpu_state.pc;
cpu_state.op32 = use32;
#ifndef USE_NEW_DYNAREC
x86_was_reset = 0;
x86_was_reset = 0;
#endif
cpu_state.ea_seg = &cpu_state.seg_ds;
cpu_state.ssegs = 0;
cpu_state.ea_seg = &cpu_state.seg_ds;
cpu_state.ssegs = 0;
fetchdat = fastreadl(cs + cpu_state.pc);
fetchdat = fastreadl(cs + cpu_state.pc);
if (!cpu_state.abrt) {
if (!cpu_state.abrt) {
#ifdef ENABLE_386_LOG
if (in_smm)
x386_log("[%04X:%08X] %08X\n", CS, cpu_state.pc, fetchdat);
if (in_smm)
x386_log("[%04X:%08X] %08X\n", CS, cpu_state.pc, fetchdat);
#endif
opcode = fetchdat & 0xFF;
fetchdat >>= 8;
trap = cpu_state.flags & T_FLAG;
opcode = fetchdat & 0xFF;
fetchdat >>= 8;
trap = cpu_state.flags & T_FLAG;
cpu_state.pc++;
x86_opcodes[(opcode | cpu_state.op32) & 0x3ff](fetchdat);
if (x86_was_reset)
break;
}
cpu_state.pc++;
x86_opcodes[(opcode | cpu_state.op32) & 0x3ff](fetchdat);
if (x86_was_reset)
break;
}
#ifdef ENABLE_386_LOG
else if (in_smm)
x386_log("[%04X:%08X] ABRT\n", CS, cpu_state.pc);
else if (in_smm)
x386_log("[%04X:%08X] ABRT\n", CS, cpu_state.pc);
#endif
#ifndef USE_NEW_DYNAREC
if (!use32) cpu_state.pc &= 0xffff;
if (!use32)
cpu_state.pc &= 0xffff;
#endif
if (cpu_end_block_after_ins)
cpu_end_block_after_ins--;
if (cpu_end_block_after_ins)
cpu_end_block_after_ins--;
if (cpu_state.abrt) {
flags_rebuild();
tempi = cpu_state.abrt & ABRT_MASK;
cpu_state.abrt = 0;
x86_doabrt(tempi);
if (cpu_state.abrt) {
cpu_state.abrt = 0;
if (cpu_state.abrt) {
flags_rebuild();
tempi = cpu_state.abrt & ABRT_MASK;
cpu_state.abrt = 0;
x86_doabrt(tempi);
if (cpu_state.abrt) {
cpu_state.abrt = 0;
#ifndef USE_NEW_DYNAREC
CS = oldcs;
CS = oldcs;
#endif
cpu_state.pc = cpu_state.oldpc;
x386_log("Double fault\n");
pmodeint(8, 0);
if (cpu_state.abrt) {
cpu_state.abrt = 0;
softresetx86();
cpu_set_edx();
cpu_state.pc = cpu_state.oldpc;
x386_log("Double fault\n");
pmodeint(8, 0);
if (cpu_state.abrt) {
cpu_state.abrt = 0;
softresetx86();
cpu_set_edx();
#ifdef ENABLE_386_LOG
x386_log("Triple fault - reset\n");
x386_log("Triple fault - reset\n");
#endif
}
}
}
}
}
}
if (smi_line)
enter_smm_check(0);
else if (trap) {
flags_rebuild();
dr[6] |= 0x4000;
if (msw&1)
pmodeint(1,0);
else {
writememw(ss, (SP - 2) & 0xFFFF, cpu_state.flags);
writememw(ss, (SP - 4) & 0xFFFF, CS);
writememw(ss, (SP - 6) & 0xFFFF, cpu_state.pc);
SP -= 6;
addr = (1 << 2) + idt.base;
cpu_state.flags &= ~I_FLAG;
cpu_state.flags &= ~T_FLAG;
cpu_state.pc = readmemw(0, addr);
loadcs(readmemw(0, addr + 2));
}
} else if (nmi && nmi_enable && nmi_mask) {
cpu_state.oldpc = cpu_state.pc;
x86_int(2);
nmi_enable = 0;
if (smi_line)
enter_smm_check(0);
else if (trap) {
flags_rebuild();
dr[6] |= 0x4000;
if (msw & 1)
pmodeint(1, 0);
else {
writememw(ss, (SP - 2) & 0xFFFF, cpu_state.flags);
writememw(ss, (SP - 4) & 0xFFFF, CS);
writememw(ss, (SP - 6) & 0xFFFF, cpu_state.pc);
SP -= 6;
addr = (1 << 2) + idt.base;
cpu_state.flags &= ~I_FLAG;
cpu_state.flags &= ~T_FLAG;
cpu_state.pc = readmemw(0, addr);
loadcs(readmemw(0, addr + 2));
}
} else if (nmi && nmi_enable && nmi_mask) {
cpu_state.oldpc = cpu_state.pc;
x86_int(2);
nmi_enable = 0;
#ifdef OLD_NMI_BEHAVIOR
if (nmi_auto_clear) {
nmi_auto_clear = 0;
nmi = 0;
}
if (nmi_auto_clear) {
nmi_auto_clear = 0;
nmi = 0;
}
#else
nmi = 0;
nmi = 0;
#endif
} else if ((cpu_state.flags & I_FLAG) && pic.int_pending && !cpu_end_block_after_ins) {
vector = picinterrupt();
if (vector != -1) {
flags_rebuild();
if (msw & 1)
pmodeint(vector, 0);
else {
writememw(ss, (SP - 2) & 0xFFFF, cpu_state.flags);
writememw(ss, (SP - 4) & 0xFFFF, CS);
writememw(ss, (SP - 6) & 0xFFFF, cpu_state.pc);
SP -= 6;
addr = (vector << 2) + idt.base;
cpu_state.flags &= ~I_FLAG;
cpu_state.flags &= ~T_FLAG;
cpu_state.pc = readmemw(0, addr);
loadcs(readmemw(0, addr + 2));
}
}
}
} else if ((cpu_state.flags & I_FLAG) && pic.int_pending && !cpu_end_block_after_ins) {
vector = picinterrupt();
if (vector != -1) {
flags_rebuild();
if (msw & 1)
pmodeint(vector, 0);
else {
writememw(ss, (SP - 2) & 0xFFFF, cpu_state.flags);
writememw(ss, (SP - 4) & 0xFFFF, CS);
writememw(ss, (SP - 6) & 0xFFFF, cpu_state.pc);
SP -= 6;
addr = (vector << 2) + idt.base;
cpu_state.flags &= ~I_FLAG;
cpu_state.flags &= ~T_FLAG;
cpu_state.pc = readmemw(0, addr);
loadcs(readmemw(0, addr + 2));
}
}
}
ins_cycles -= cycles;
tsc += ins_cycles;
ins_cycles -= cycles;
tsc += ins_cycles;
cycdiff = oldcyc - cycles;
cycdiff = oldcyc - cycles;
if (timetolive) {
timetolive--;
if (!timetolive)
fatal("Life expired\n");
}
if (timetolive) {
timetolive--;
if (!timetolive)
fatal("Life expired\n");
}
if (TIMER_VAL_LESS_THAN_VAL(timer_target, (uint32_t) tsc))
timer_process_inline();
if (TIMER_VAL_LESS_THAN_VAL(timer_target, (uint32_t) tsc))
timer_process_inline();
#ifdef USE_GDBSTUB
if (gdbstub_instruction())
return;
if (gdbstub_instruction())
return;
#endif
}
}
}
}