Move MTRR feature away from master branch

This commit is contained in:
RichardG867
2020-04-18 16:07:28 -03:00
parent a410ffe0ec
commit b9d6050600
12 changed files with 35 additions and 410 deletions

View File

@@ -2855,7 +2855,7 @@ i686_invalid_rdmsr:
void cpu_WRMSR() void cpu_WRMSR()
{ {
uint64_t temp, temp2; uint64_t temp;
cpu_log("WRMSR %08X %08X%08X\n", ECX, EDX, EAX); cpu_log("WRMSR %08X %08X%08X\n", ECX, EDX, EAX);
switch (machines[machine].cpu[cpu_manufacturer].cpus[cpu_effective].cpu_type) switch (machines[machine].cpu[cpu_manufacturer].cpus[cpu_effective].cpu_type)
@@ -2924,23 +2924,10 @@ void cpu_WRMSR()
break; break;
case 0x200: case 0x201: case 0x202: case 0x203: case 0x204: case 0x205: case 0x206: case 0x207: case 0x200: case 0x201: case 0x202: case 0x203: case 0x204: case 0x205: case 0x206: case 0x207:
case 0x208: case 0x209: case 0x20A: case 0x20B: case 0x20C: case 0x20D: case 0x20E: case 0x20F: case 0x208: case 0x209: case 0x20A: case 0x20B: case 0x20C: case 0x20D: case 0x20E: case 0x20F:
temp = EAX | ((uint64_t)EDX << 32); if (ECX & 1)
temp2 = (ECX - 0x200) >> 1; mtrr_physmask_msr[(ECX - 0x200) >> 1] = EAX | ((uint64_t)EDX << 32);
if (ECX & 1) { else
cpu_log("MTRR physmask[%d] = %08llx\n", temp2, temp); mtrr_physbase_msr[(ECX - 0x200) >> 1] = EAX | ((uint64_t)EDX << 32);
if ((mtrr_physmask_msr[temp2] >> 11) & 0x1)
mem_del_mtrr(mtrr_physbase_msr[temp2] & ~(0xFFF), mtrr_physmask_msr[temp2] & ~(0xFFF));
if ((temp >> 11) & 0x1)
mem_add_mtrr(mtrr_physbase_msr[temp2] & ~(0xFFF), temp & ~(0xFFF), mtrr_physbase_msr[temp2] & 0xFF);
mtrr_physmask_msr[temp2] = temp;
} else {
cpu_log("MTRR physbase[%d] = %08llx\n", temp2, temp);
mtrr_physbase_msr[temp2] = temp;
}
break; break;
case 0x250: case 0x250:
mtrr_fix64k_8000_msr = EAX | ((uint64_t)EDX << 32); mtrr_fix64k_8000_msr = EAX | ((uint64_t)EDX << 32);
@@ -3236,24 +3223,11 @@ void cpu_WRMSR()
break; break;
case 0x200: case 0x201: case 0x202: case 0x203: case 0x204: case 0x205: case 0x206: case 0x207: case 0x200: case 0x201: case 0x202: case 0x203: case 0x204: case 0x205: case 0x206: case 0x207:
case 0x208: case 0x209: case 0x20A: case 0x20B: case 0x20C: case 0x20D: case 0x20E: case 0x20F: case 0x208: case 0x209: case 0x20A: case 0x20B: case 0x20C: case 0x20D: case 0x20E: case 0x20F:
temp = EAX | ((uint64_t)EDX << 32); if (ECX & 1)
temp2 = (ECX - 0x200) >> 1; mtrr_physmask_msr[(ECX - 0x200) >> 1] = EAX | ((uint64_t)EDX << 32);
if (ECX & 1) { else
cpu_log("MTRR physmask[%d] = %08llx\n", temp2, temp); mtrr_physbase_msr[(ECX - 0x200) >> 1] = EAX | ((uint64_t)EDX << 32);
break;
if ((mtrr_physmask_msr[temp2] >> 11) & 0x1)
mem_del_mtrr(mtrr_physbase_msr[temp2] & ~(0xFFF), mtrr_physmask_msr[temp2] & ~(0xFFF));
if ((temp >> 11) & 0x1)
mem_add_mtrr(mtrr_physbase_msr[temp2] & ~(0xFFF), temp & ~(0xFFF), mtrr_physbase_msr[temp2] & 0xFF);
mtrr_physmask_msr[temp2] = temp;
} else {
cpu_log("MTRR physbase[%d] = %08llx\n", temp2, temp);
mtrr_physbase_msr[temp2] = temp;
}
break;
case 0x250: case 0x250:
mtrr_fix64k_8000_msr = EAX | ((uint64_t)EDX << 32); mtrr_fix64k_8000_msr = EAX | ((uint64_t)EDX << 32);
break; break;
@@ -3285,11 +3259,6 @@ i686_invalid_wrmsr:
} }
} }
void cpu_INVD(uint8_t wb)
{
mem_invalidate_mtrr(wb);
}
static int cyrix_addr; static int cyrix_addr;
static void cpu_write(uint16_t addr, uint8_t val, void *priv) static void cpu_write(uint16_t addr, uint8_t val, void *priv)

View File

@@ -515,7 +515,6 @@ extern void cpu_set(void);
extern void cpu_CPUID(void); extern void cpu_CPUID(void);
extern void cpu_RDMSR(void); extern void cpu_RDMSR(void);
extern void cpu_WRMSR(void); extern void cpu_WRMSR(void);
extern void cpu_INVD(uint8_t wb);
extern int checkio(int port); extern int checkio(int port);
extern void codegen_block_end(void); extern void codegen_block_end(void);

View File

@@ -743,14 +743,12 @@ static int opCLTS(uint32_t fetchdat)
static int opINVD(uint32_t fetchdat) static int opINVD(uint32_t fetchdat)
{ {
cpu_INVD(0);
CLOCK_CYCLES(1000); CLOCK_CYCLES(1000);
CPU_BLOCK_END(); CPU_BLOCK_END();
return 0; return 0;
} }
static int opWBINVD(uint32_t fetchdat) static int opWBINVD(uint32_t fetchdat)
{ {
cpu_INVD(1);
CLOCK_CYCLES(10000); CLOCK_CYCLES(10000);
CPU_BLOCK_END(); CPU_BLOCK_END();
return 0; return 0;

View File

@@ -407,13 +407,6 @@ fdd_is_dd(int drive)
} }
int
fdd_is_hd(int drive)
{
return drive_types[fdd[drive].type].flags & FLAG_HOLE1;
}
int int
fdd_is_ed(int drive) fdd_is_ed(int drive)
{ {

View File

@@ -43,7 +43,6 @@ extern int fdd_can_read_medium(int drive);
extern int fdd_doublestep_40(int drive); extern int fdd_doublestep_40(int drive);
extern int fdd_is_525(int drive); extern int fdd_is_525(int drive);
extern int fdd_is_dd(int drive); extern int fdd_is_dd(int drive);
extern int fdd_is_hd(int drive);
extern int fdd_is_ed(int drive); extern int fdd_is_ed(int drive);
extern int fdd_is_double_sided(int drive); extern int fdd_is_double_sided(int drive);
extern void fdd_set_head(int drive, int head); extern void fdd_set_head(int drive, int head);

View File

@@ -39,7 +39,6 @@
#define MACHINE_VIDEO_FIXED 0x004000 /* sys has ONLY int video */ #define MACHINE_VIDEO_FIXED 0x004000 /* sys has ONLY int video */
#define MACHINE_MOUSE 0x008000 /* sys has int mouse */ #define MACHINE_MOUSE 0x008000 /* sys has int mouse */
#define MACHINE_NONMI 0x010000 /* sys does not have NMI's */ #define MACHINE_NONMI 0x010000 /* sys does not have NMI's */
#define MACHINE_COREBOOT 0x020000 /* sys has coreboot BIOS */
#else #else
#define MACHINE_PC 0x000000 /* PC architecture */ #define MACHINE_PC 0x000000 /* PC architecture */
#define MACHINE_AT 0x000001 /* PC/AT architecture */ #define MACHINE_AT 0x000001 /* PC/AT architecture */
@@ -56,7 +55,6 @@
#define MACHINE_VIDEO_FIXED 0x004000 /* sys has ONLY int video */ #define MACHINE_VIDEO_FIXED 0x004000 /* sys has ONLY int video */
#define MACHINE_MOUSE 0x008000 /* sys has int mouse */ #define MACHINE_MOUSE 0x008000 /* sys has int mouse */
#define MACHINE_NONMI 0x010000 /* sys does not have NMI's */ #define MACHINE_NONMI 0x010000 /* sys does not have NMI's */
#define MACHINE_COREBOOT 0x020000 /* sys has coreboot BIOS */
#endif #endif
#define IS_ARCH(m, a) (machines[(m)].flags & (a)) ? 1 : 0; #define IS_ARCH(m, a) (machines[(m)].flags & (a)) ? 1 : 0;

View File

@@ -330,10 +330,6 @@ extern void mem_init(void);
extern void mem_reset(void); extern void mem_reset(void);
extern void mem_remap_top(int kb); extern void mem_remap_top(int kb);
extern void mem_add_mtrr(uint64_t base, uint64_t mask, uint8_t type);
extern void mem_del_mtrr(uint64_t base, uint64_t mask);
extern void mem_invalidate_mtrr(uint8_t wb);
#ifdef EMU_CPU_H #ifdef EMU_CPU_H
static __inline uint32_t get_phys(uint32_t addr) static __inline uint32_t get_phys(uint32_t addr)

View File

@@ -105,12 +105,8 @@ machine_at_p2bls_init(const machine_t *model)
{ {
int ret; int ret;
if (model->flags & MACHINE_COREBOOT) ret = bios_load_linear(L"roms/machines/p2bls/1014ls.003",
ret = bios_load_linear(L"roms/machines/p2bls/coreboot.rom", 0x000c0000, 262144, 0);
0x000c0000, 262144, 0);
else
ret = bios_load_linear(L"roms/machines/p2bls/1014ls.003",
0x000c0000, 262144, 0);
if (bios_only || !ret) if (bios_only || !ret)
return ret; return ret;
@@ -169,12 +165,8 @@ machine_at_p3bf_init(const machine_t *model)
{ {
int ret; int ret;
if (model->flags & MACHINE_COREBOOT) ret = bios_load_linear(L"roms/machines/p3bf/bx3f1006.awd",
ret = bios_load_linear(L"roms/machines/p3bf/coreboot.rom", 0x000c0000, 262144, 0);
0x000c0000, 262144, 0);
else
ret = bios_load_linear(L"roms/machines/p3bf/bx3f1006.awd",
0x000c0000, 262144, 0);
if (bios_only || !ret) if (bios_only || !ret)
return ret; return ret;

View File

@@ -270,9 +270,7 @@ const machine_t machines[] = {
{ "[Slot 1 BX] Gigabyte GA-6BXC", "6bxc", {{"Intel", cpus_PentiumII}, {"Intel/PGA370", cpus_Celeron},{"VIA", cpus_Cyrix3},{"", NULL},{"", NULL}}, MACHINE_PCI | MACHINE_ISA | MACHINE_AT | MACHINE_PS2 | MACHINE_HDC, 8, 768, 8, 255, machine_at_6bxc_init, NULL }, { "[Slot 1 BX] Gigabyte GA-6BXC", "6bxc", {{"Intel", cpus_PentiumII}, {"Intel/PGA370", cpus_Celeron},{"VIA", cpus_Cyrix3},{"", NULL},{"", NULL}}, MACHINE_PCI | MACHINE_ISA | MACHINE_AT | MACHINE_PS2 | MACHINE_HDC, 8, 768, 8, 255, machine_at_6bxc_init, NULL },
{ "[Slot 1 BX] ASUS P2B-LS", "p2bls", {{"Intel", cpus_PentiumII}, {"Intel/PGA370", cpus_Celeron},{"VIA", cpus_Cyrix3},{"", NULL},{"", NULL}}, MACHINE_PCI | MACHINE_ISA | MACHINE_AT | MACHINE_PS2 | MACHINE_HDC, 8, 1024, 8, 255, machine_at_p2bls_init, NULL }, { "[Slot 1 BX] ASUS P2B-LS", "p2bls", {{"Intel", cpus_PentiumII}, {"Intel/PGA370", cpus_Celeron},{"VIA", cpus_Cyrix3},{"", NULL},{"", NULL}}, MACHINE_PCI | MACHINE_ISA | MACHINE_AT | MACHINE_PS2 | MACHINE_HDC, 8, 1024, 8, 255, machine_at_p2bls_init, NULL },
{ "[Slot 1 BX] ASUS P2B-LS (coreboot BIOS)","p2bls_cb", {{"Intel", cpus_PentiumII}, {"Intel/PGA370", cpus_Celeron},{"", NULL}, {"", NULL},{"", NULL}}, MACHINE_PCI | MACHINE_ISA | MACHINE_AT | MACHINE_PS2 | MACHINE_HDC | MACHINE_COREBOOT, 8, 1024, 8, 255, machine_at_p2bls_init, NULL },
{ "[Slot 1 BX] ASUS P3B-F", "p3bf", {{"Intel", cpus_PentiumII}, {"Intel/PGA370", cpus_Celeron},{"VIA", cpus_Cyrix3},{"", NULL},{"", NULL}}, MACHINE_PCI | MACHINE_ISA | MACHINE_AT | MACHINE_PS2 | MACHINE_HDC, 8, 1024, 8, 255, machine_at_p3bf_init, NULL }, { "[Slot 1 BX] ASUS P3B-F", "p3bf", {{"Intel", cpus_PentiumII}, {"Intel/PGA370", cpus_Celeron},{"VIA", cpus_Cyrix3},{"", NULL},{"", NULL}}, MACHINE_PCI | MACHINE_ISA | MACHINE_AT | MACHINE_PS2 | MACHINE_HDC, 8, 1024, 8, 255, machine_at_p3bf_init, NULL },
{ "[Slot 1 BX] ASUS P3B-F (coreboot BIOS)", "p3bf_cb", {{"Intel", cpus_PentiumII}, {"Intel/PGA370", cpus_Celeron},{"", NULL}, {"", NULL},{"", NULL}}, MACHINE_PCI | MACHINE_ISA | MACHINE_AT | MACHINE_PS2 | MACHINE_HDC | MACHINE_COREBOOT, 8, 1024, 8, 255, machine_at_p3bf_init, NULL },
{ "[Slot 1 BX] ABit BF6", "bf6", {{"Intel", cpus_PentiumII}, {"Intel/PGA370", cpus_Celeron},{"VIA", cpus_Cyrix3},{"", NULL},{"", NULL}}, MACHINE_PCI | MACHINE_ISA | MACHINE_AT | MACHINE_PS2 | MACHINE_HDC, 8, 768, 8, 255, machine_at_bf6_init, NULL }, { "[Slot 1 BX] ABit BF6", "bf6", {{"Intel", cpus_PentiumII}, {"Intel/PGA370", cpus_Celeron},{"VIA", cpus_Cyrix3},{"", NULL},{"", NULL}}, MACHINE_PCI | MACHINE_ISA | MACHINE_AT | MACHINE_PS2 | MACHINE_HDC, 8, 768, 8, 255, machine_at_bf6_init, NULL },
{ "[Slot 1 ZX] Packard Bell Bora Pro", "borapro", {{"Intel", cpus_PentiumII}, {"Intel/PGA370", cpus_Celeron},{"VIA", cpus_Cyrix3},{"", NULL},{"", NULL}}, MACHINE_PCI | MACHINE_ISA | MACHINE_AT | MACHINE_PS2 | MACHINE_HDC, 8, 512, 8, 255, machine_at_borapro_init, NULL }, { "[Slot 1 ZX] Packard Bell Bora Pro", "borapro", {{"Intel", cpus_PentiumII}, {"Intel/PGA370", cpus_Celeron},{"VIA", cpus_Cyrix3},{"", NULL},{"", NULL}}, MACHINE_PCI | MACHINE_ISA | MACHINE_AT | MACHINE_PS2 | MACHINE_HDC, 8, 512, 8, 255, machine_at_borapro_init, NULL },

306
src/mem.c
View File

@@ -121,8 +121,6 @@ static mem_mapping_t *read_mapping[MEM_MAPPINGS_NO];
static mem_mapping_t *write_mapping[MEM_MAPPINGS_NO]; static mem_mapping_t *write_mapping[MEM_MAPPINGS_NO];
static uint8_t *_mem_exec[MEM_MAPPINGS_NO]; static uint8_t *_mem_exec[MEM_MAPPINGS_NO];
static int _mem_state[MEM_MAPPINGS_NO]; static int _mem_state[MEM_MAPPINGS_NO];
static uint8_t *mtrr_areas[MEM_MAPPINGS_NO];
static uint8_t mtrr_area_refcounts[MEM_MAPPINGS_NO];
#if FIXME #if FIXME
#if (MEM_GRANULARITY_BITS >= 12) #if (MEM_GRANULARITY_BITS >= 12)
@@ -652,8 +650,6 @@ uint8_t
readmembl(uint32_t addr) readmembl(uint32_t addr)
{ {
uint64_t addr64 = (uint64_t) addr; uint64_t addr64 = (uint64_t) addr;
uint32_t page;
uint8_t *mtrr;
mem_mapping_t *map; mem_mapping_t *map;
mem_logical_addr = addr; mem_logical_addr = addr;
@@ -667,12 +663,7 @@ readmembl(uint32_t addr)
} }
addr = (uint32_t) (addr64 & rammask); addr = (uint32_t) (addr64 & rammask);
page = (addr >> MEM_GRANULARITY_BITS); map = read_mapping[addr >> MEM_GRANULARITY_BITS];
mtrr = mtrr_areas[page];
if (mtrr)
return mtrr[addr & MEM_GRANULARITY_MASK];
map = read_mapping[page];
if (map && map->read_b) if (map && map->read_b)
return map->read_b(addr, map->p); return map->read_b(addr, map->p);
@@ -684,8 +675,6 @@ void
writemembl(uint32_t addr, uint8_t val) writemembl(uint32_t addr, uint8_t val)
{ {
uint64_t addr64 = (uint64_t) addr; uint64_t addr64 = (uint64_t) addr;
uint32_t page;
uint8_t *mtrr;
mem_mapping_t *map; mem_mapping_t *map;
mem_logical_addr = addr; mem_logical_addr = addr;
@@ -703,14 +692,7 @@ writemembl(uint32_t addr, uint8_t val)
} }
addr = (uint32_t) (addr64 & rammask); addr = (uint32_t) (addr64 & rammask);
page = (addr >> MEM_GRANULARITY_BITS); map = write_mapping[addr >> MEM_GRANULARITY_BITS];
mtrr = mtrr_areas[page];
if (mtrr) {
mtrr[addr & MEM_GRANULARITY_MASK] = val;
return;
}
map = write_mapping[page];
if (map && map->write_b) if (map && map->write_b)
map->write_b(addr, val, map->p); map->write_b(addr, val, map->p);
} }
@@ -721,8 +703,6 @@ uint16_t
readmemwl(uint32_t addr) readmemwl(uint32_t addr)
{ {
uint64_t addr64 = (uint64_t) addr; uint64_t addr64 = (uint64_t) addr;
uint32_t page;
uint8_t *mtrr;
mem_mapping_t *map; mem_mapping_t *map;
mem_logical_addr = addr; mem_logical_addr = addr;
@@ -751,12 +731,7 @@ readmemwl(uint32_t addr)
addr = (uint32_t) (addr64 & rammask); addr = (uint32_t) (addr64 & rammask);
page = (addr >> MEM_GRANULARITY_BITS); map = read_mapping[addr >> MEM_GRANULARITY_BITS];
mtrr = mtrr_areas[page];
if (mtrr)
return mtrr[addr & MEM_GRANULARITY_MASK] | ((uint16_t) (mtrr[(addr + 1) & MEM_GRANULARITY_MASK]) << 8);
map = read_mapping[page];
if (map && map->read_w) if (map && map->read_w)
return map->read_w(addr, map->p); return map->read_w(addr, map->p);
@@ -772,8 +747,6 @@ void
writememwl(uint32_t addr, uint16_t val) writememwl(uint32_t addr, uint16_t val)
{ {
uint64_t addr64 = (uint64_t) addr; uint64_t addr64 = (uint64_t) addr;
uint32_t page;
uint8_t *mtrr;
mem_mapping_t *map; mem_mapping_t *map;
mem_logical_addr = addr; mem_logical_addr = addr;
@@ -811,15 +784,7 @@ writememwl(uint32_t addr, uint16_t val)
addr = (uint32_t) (addr64 & rammask); addr = (uint32_t) (addr64 & rammask);
page = (addr >> MEM_GRANULARITY_BITS); map = write_mapping[addr >> MEM_GRANULARITY_BITS];
mtrr = mtrr_areas[page];
if (mtrr) {
mtrr[addr & MEM_GRANULARITY_MASK] = val;
mtrr[(addr + 1) & MEM_GRANULARITY_MASK] = val >> 8;
return;
}
map = write_mapping[page];
if (map) { if (map) {
if (map->write_w) if (map->write_w)
map->write_w(addr, val, map->p); map->write_w(addr, val, map->p);
@@ -835,8 +800,6 @@ uint32_t
readmemll(uint32_t addr) readmemll(uint32_t addr)
{ {
uint64_t addr64 = (uint64_t) addr; uint64_t addr64 = (uint64_t) addr;
uint32_t page;
uint8_t *mtrr;
mem_mapping_t *map; mem_mapping_t *map;
mem_logical_addr = addr; mem_logical_addr = addr;
@@ -866,12 +829,7 @@ readmemll(uint32_t addr)
addr = (uint32_t) (addr64 & rammask); addr = (uint32_t) (addr64 & rammask);
page = (addr >> MEM_GRANULARITY_BITS); map = read_mapping[addr >> MEM_GRANULARITY_BITS];
mtrr = mtrr_areas[page];
if (mtrr)
return mtrr[addr & MEM_GRANULARITY_MASK] | ((uint32_t) (mtrr[(addr + 1) & MEM_GRANULARITY_MASK]) << 8) | ((uint32_t) (mtrr[(addr + 2) & MEM_GRANULARITY_MASK]) << 16) | ((uint32_t) (mtrr[(addr + 3) & MEM_GRANULARITY_MASK]) << 24);
map = read_mapping[page];
if (map) { if (map) {
if (map->read_l) if (map->read_l)
return map->read_l(addr, map->p); return map->read_l(addr, map->p);
@@ -892,8 +850,6 @@ void
writememll(uint32_t addr, uint32_t val) writememll(uint32_t addr, uint32_t val)
{ {
uint64_t addr64 = (uint64_t) addr; uint64_t addr64 = (uint64_t) addr;
uint32_t page;
uint8_t *mtrr;
mem_mapping_t *map; mem_mapping_t *map;
mem_logical_addr = addr; mem_logical_addr = addr;
@@ -930,17 +886,7 @@ writememll(uint32_t addr, uint32_t val)
addr = (uint32_t) (addr64 & rammask); addr = (uint32_t) (addr64 & rammask);
page = (addr >> MEM_GRANULARITY_BITS); map = write_mapping[addr >> MEM_GRANULARITY_BITS];
mtrr = mtrr_areas[page];
if (mtrr) {
mtrr[addr & MEM_GRANULARITY_MASK] = val;
mtrr[(addr + 1) & MEM_GRANULARITY_MASK] = val >> 8;
mtrr[(addr + 2) & MEM_GRANULARITY_MASK] = val >> 16;
mtrr[(addr + 3) & MEM_GRANULARITY_MASK] = val >> 24;
return;
}
map = write_mapping[page];
if (map) { if (map) {
if (map->write_l) if (map->write_l)
map->write_l(addr, val, map->p); map->write_l(addr, val, map->p);
@@ -961,8 +907,6 @@ uint64_t
readmemql(uint32_t addr) readmemql(uint32_t addr)
{ {
uint64_t addr64 = (uint64_t) addr; uint64_t addr64 = (uint64_t) addr;
uint32_t page;
uint8_t *mtrr;
mem_mapping_t *map; mem_mapping_t *map;
mem_logical_addr = addr; mem_logical_addr = addr;
@@ -991,12 +935,7 @@ readmemql(uint32_t addr)
addr = (uint32_t) (addr64 & rammask); addr = (uint32_t) (addr64 & rammask);
page = (addr >> MEM_GRANULARITY_BITS); map = read_mapping[addr >> MEM_GRANULARITY_BITS];
mtrr = mtrr_areas[page];
if (mtrr)
return readmemll(addr) | ((uint64_t)readmemll(addr+4)<<32);
map = read_mapping[page];
if (map && map->read_l) if (map && map->read_l)
return map->read_l(addr, map->p) | ((uint64_t)map->read_l(addr + 4, map->p) << 32); return map->read_l(addr, map->p) | ((uint64_t)map->read_l(addr + 4, map->p) << 32);
@@ -1008,8 +947,6 @@ void
writememql(uint32_t addr, uint64_t val) writememql(uint32_t addr, uint64_t val)
{ {
uint64_t addr64 = (uint64_t) addr; uint64_t addr64 = (uint64_t) addr;
uint32_t page;
uint8_t *mtrr;
mem_mapping_t *map; mem_mapping_t *map;
mem_logical_addr = addr; mem_logical_addr = addr;
@@ -1046,21 +983,7 @@ writememql(uint32_t addr, uint64_t val)
addr = (uint32_t) (addr64 & rammask); addr = (uint32_t) (addr64 & rammask);
page = (addr >> MEM_GRANULARITY_BITS); map = write_mapping[addr >> MEM_GRANULARITY_BITS];
mtrr = mtrr_areas[page];
if (mtrr) {
mtrr[addr & MEM_GRANULARITY_MASK] = val;
mtrr[(addr + 1) & MEM_GRANULARITY_MASK] = val >> 8;
mtrr[(addr + 2) & MEM_GRANULARITY_MASK] = val >> 16;
mtrr[(addr + 3) & MEM_GRANULARITY_MASK] = val >> 24;
mtrr[(addr + 4) & MEM_GRANULARITY_MASK] = val >> 32;
mtrr[(addr + 5) & MEM_GRANULARITY_MASK] = val >> 40;
mtrr[(addr + 6) & MEM_GRANULARITY_MASK] = val >> 48;
mtrr[(addr + 7) & MEM_GRANULARITY_MASK] = val >> 56;
return;
}
map = write_mapping[page];
if (map) { if (map) {
if (map->write_l) { if (map->write_l) {
map->write_l(addr, val, map->p); map->write_l(addr, val, map->p);
@@ -1101,8 +1024,6 @@ uint16_t
readmemwl(uint32_t seg, uint32_t addr) readmemwl(uint32_t seg, uint32_t addr)
{ {
uint64_t addr64 = (uint64_t) addr; uint64_t addr64 = (uint64_t) addr;
uint32_t page;
uint8_t *mtrr;
mem_mapping_t *map; mem_mapping_t *map;
uint32_t addr2 = mem_logical_addr = seg + addr; uint32_t addr2 = mem_logical_addr = seg + addr;
@@ -1134,12 +1055,7 @@ readmemwl(uint32_t seg, uint32_t addr)
addr2 = (uint32_t) (addr64 & rammask); addr2 = (uint32_t) (addr64 & rammask);
page = (addr2 >> MEM_GRANULARITY_BITS); map = read_mapping[addr2 >> MEM_GRANULARITY_BITS];
mtrr = mtrr_areas[page];
if (mtrr)
return mtrr[addr2 & MEM_GRANULARITY_MASK] | ((uint16_t) (mtrr[(addr2 + 1) & MEM_GRANULARITY_MASK]) << 8);
map = read_mapping[page];
if (map && map->read_w) if (map && map->read_w)
return map->read_w(addr2, map->p); return map->read_w(addr2, map->p);
@@ -1161,8 +1077,6 @@ void
writememwl(uint32_t seg, uint32_t addr, uint16_t val) writememwl(uint32_t seg, uint32_t addr, uint16_t val)
{ {
uint64_t addr64 = (uint64_t) addr; uint64_t addr64 = (uint64_t) addr;
uint32_t page;
uint8_t *mtrr;
mem_mapping_t *map; mem_mapping_t *map;
uint32_t addr2 = mem_logical_addr = seg + addr; uint32_t addr2 = mem_logical_addr = seg + addr;
@@ -1204,15 +1118,7 @@ writememwl(uint32_t seg, uint32_t addr, uint16_t val)
addr2 = (uint32_t) (addr64 & rammask); addr2 = (uint32_t) (addr64 & rammask);
page = (addr2 >> MEM_GRANULARITY_BITS); map = write_mapping[addr2 >> MEM_GRANULARITY_BITS];
mtrr = mtrr_areas[page];
if (mtrr) {
mtrr[addr2 & MEM_GRANULARITY_MASK] = val;
mtrr[(addr2 + 1) & MEM_GRANULARITY_MASK] = val >> 8;
return;
}
map = write_mapping[page];
if (map && map->write_w) { if (map && map->write_w) {
map->write_w(addr2, val, map->p); map->write_w(addr2, val, map->p);
@@ -1231,8 +1137,6 @@ uint32_t
readmemll(uint32_t seg, uint32_t addr) readmemll(uint32_t seg, uint32_t addr)
{ {
uint64_t addr64 = (uint64_t) addr; uint64_t addr64 = (uint64_t) addr;
uint32_t page;
uint8_t *mtrr;
mem_mapping_t *map; mem_mapping_t *map;
uint32_t addr2 = mem_logical_addr = seg + addr; uint32_t addr2 = mem_logical_addr = seg + addr;
@@ -1260,12 +1164,7 @@ readmemll(uint32_t seg, uint32_t addr)
addr2 = (uint32_t) (addr64 & rammask); addr2 = (uint32_t) (addr64 & rammask);
page = (addr2 >> MEM_GRANULARITY_BITS); map = read_mapping[addr2 >> MEM_GRANULARITY_BITS];
mtrr = mtrr_areas[page];
if (mtrr)
return mtrr[addr2 & MEM_GRANULARITY_MASK] | ((uint32_t) (mtrr[(addr2 + 1) & MEM_GRANULARITY_MASK]) << 8) | ((uint32_t) (mtrr[(addr2 + 2) & MEM_GRANULARITY_MASK]) << 16) | ((uint32_t) (mtrr[(addr2 + 3) & MEM_GRANULARITY_MASK]) << 24);
map = read_mapping[page];
if (map && map->read_l) if (map && map->read_l)
return map->read_l(addr2, map->p); return map->read_l(addr2, map->p);
@@ -1288,8 +1187,6 @@ void
writememll(uint32_t seg, uint32_t addr, uint32_t val) writememll(uint32_t seg, uint32_t addr, uint32_t val)
{ {
uint64_t addr64 = (uint64_t) addr; uint64_t addr64 = (uint64_t) addr;
uint32_t page;
uint8_t *mtrr;
mem_mapping_t *map; mem_mapping_t *map;
uint32_t addr2 = mem_logical_addr = seg + addr; uint32_t addr2 = mem_logical_addr = seg + addr;
@@ -1326,17 +1223,7 @@ writememll(uint32_t seg, uint32_t addr, uint32_t val)
addr2 = (uint32_t) (addr64 & rammask); addr2 = (uint32_t) (addr64 & rammask);
page = (addr2 >> MEM_GRANULARITY_BITS); map = write_mapping[addr2 >> MEM_GRANULARITY_BITS];
mtrr = mtrr_areas[page];
if (mtrr) {
mtrr[addr2 & MEM_GRANULARITY_MASK] = val;
mtrr[(addr2 + 1) & MEM_GRANULARITY_MASK] = val >> 8;
mtrr[(addr2 + 2) & MEM_GRANULARITY_MASK] = val >> 16;
mtrr[(addr2 + 3) & MEM_GRANULARITY_MASK] = val >> 24;
return;
}
map = write_mapping[page];
if (map && map->write_l) { if (map && map->write_l) {
map->write_l(addr2, val, map->p); map->write_l(addr2, val, map->p);
@@ -1361,8 +1248,6 @@ uint64_t
readmemql(uint32_t seg, uint32_t addr) readmemql(uint32_t seg, uint32_t addr)
{ {
uint64_t addr64 = (uint64_t) addr; uint64_t addr64 = (uint64_t) addr;
uint32_t page;
uint8_t *mtrr;
mem_mapping_t *map; mem_mapping_t *map;
uint32_t addr2 = mem_logical_addr = seg + addr; uint32_t addr2 = mem_logical_addr = seg + addr;
@@ -1389,12 +1274,7 @@ readmemql(uint32_t seg, uint32_t addr)
addr2 = (uint32_t) (addr64 & rammask); addr2 = (uint32_t) (addr64 & rammask);
page = (addr2 >> MEM_GRANULARITY_BITS); map = read_mapping[addr2 >> MEM_GRANULARITY_BITS];
mtrr = mtrr_areas[page];
if (mtrr)
return readmemll(seg,addr) | ((uint64_t)readmemll(seg,addr+4)<<32);
map = read_mapping[page];
if (map && map->read_l) if (map && map->read_l)
return map->read_l(addr2, map->p) | ((uint64_t)map->read_l(addr2 + 4, map->p) << 32); return map->read_l(addr2, map->p) | ((uint64_t)map->read_l(addr2 + 4, map->p) << 32);
@@ -1406,8 +1286,6 @@ void
writememql(uint32_t seg, uint32_t addr, uint64_t val) writememql(uint32_t seg, uint32_t addr, uint64_t val)
{ {
uint64_t addr64 = (uint64_t) addr; uint64_t addr64 = (uint64_t) addr;
uint32_t page;
uint8_t *mtrr;
mem_mapping_t *map; mem_mapping_t *map;
uint32_t addr2 = mem_logical_addr = seg + addr; uint32_t addr2 = mem_logical_addr = seg + addr;
@@ -1444,21 +1322,7 @@ writememql(uint32_t seg, uint32_t addr, uint64_t val)
addr2 = (uint32_t) (addr64 & rammask); addr2 = (uint32_t) (addr64 & rammask);
page = (addr2 >> MEM_GRANULARITY_BITS); map = write_mapping[addr2 >> MEM_GRANULARITY_BITS];
mtrr = mtrr_areas[page];
if (mtrr) {
mtrr[addr2 & MEM_GRANULARITY_MASK] = val;
mtrr[(addr2 + 1) & MEM_GRANULARITY_MASK] = val >> 8;
mtrr[(addr2 + 2) & MEM_GRANULARITY_MASK] = val >> 16;
mtrr[(addr2 + 3) & MEM_GRANULARITY_MASK] = val >> 24;
mtrr[(addr2 + 4) & MEM_GRANULARITY_MASK] = val >> 32;
mtrr[(addr2 + 5) & MEM_GRANULARITY_MASK] = val >> 40;
mtrr[(addr2 + 6) & MEM_GRANULARITY_MASK] = val >> 48;
mtrr[(addr2 + 7) & MEM_GRANULARITY_MASK] = val >> 56;
return;
}
map = write_mapping[page];
if (map && map->write_l) { if (map && map->write_l) {
map->write_l(addr2, val, map->p); map->write_l(addr2, val, map->p);
@@ -2456,37 +2320,20 @@ mem_log("MEM: reset: new pages=%08lx, pages_sz=%i\n", pages, pages_sz);
memset(pages, 0x00, pages_sz*sizeof(page_t)); memset(pages, 0x00, pages_sz*sizeof(page_t));
for (c = 0; c < MEM_MAPPINGS_NO; c++) {
if (mtrr_areas[c]) {
free(mtrr_areas[c]);
mtrr_areas[c] = 0;
}
mtrr_area_refcounts[c] = 0;
}
#ifdef USE_NEW_DYNAREC #ifdef USE_NEW_DYNAREC
if (machines[machine].flags & MACHINE_COREBOOT) {
/* coreboot executes code from the BIOS area, thus
requiring byte_*_mask for the entire address space,
which significantly increases memory usage. */
c = ((uint64_t) (pages_sz) * MEM_GRANULARITY_SIZE) / 8;
} else {
c = (mem_size * 1024) / 8;
}
if (byte_dirty_mask) { if (byte_dirty_mask) {
free(byte_dirty_mask); free(byte_dirty_mask);
byte_dirty_mask = NULL; byte_dirty_mask = NULL;
} }
byte_dirty_mask = malloc(c); byte_dirty_mask = malloc((mem_size * 1024) / 8);
memset(byte_dirty_mask, 0, c); memset(byte_dirty_mask, 0, (mem_size * 1024) / 8);
if (byte_code_present_mask) { if (byte_code_present_mask) {
free(byte_code_present_mask); free(byte_code_present_mask);
byte_code_present_mask = NULL; byte_code_present_mask = NULL;
} }
byte_code_present_mask = malloc(c); byte_code_present_mask = malloc((mem_size * 1024) / 8);
memset(byte_code_present_mask, 0, c); memset(byte_code_present_mask, 0, (mem_size * 1024) / 8);
#endif #endif
for (c = 0; c < pages_sz; c++) { for (c = 0; c < pages_sz; c++) {
@@ -2589,8 +2436,6 @@ mem_init(void)
writelookup2 = malloc((1<<20)*sizeof(uintptr_t)); writelookup2 = malloc((1<<20)*sizeof(uintptr_t));
#endif #endif
memset(mtrr_areas, 0x00, MEM_MAPPINGS_NO*sizeof(uint8_t *));
#if FIXME #if FIXME
memset(ff_array, 0xff, sizeof(ff_array)); memset(ff_array, 0xff, sizeof(ff_array));
#endif #endif
@@ -2688,118 +2533,3 @@ mem_a20_recalc(void)
mem_a20_state = state; mem_a20_state = state;
} }
void
mem_add_mtrr(uint64_t base, uint64_t mask, uint8_t type)
{
uint64_t size = ((~mask) & 0xffffffff) + 1;
uint64_t page_base, page, addr;
uint8_t *mtrr;
mem_log("Adding MTRR base=%08llx mask=%08llx size=%08llx type=%d\n", base, mask, size, type);
if (size > 0x8000) {
mem_log("Ignoring MTRR, size too big\n");
return;
}
if (mem_addr_is_ram(base)) {
mem_log("Ignoring MTRR, base is in RAM\n");
return;
}
for (page_base = base; page_base < base + size; page_base += MEM_GRANULARITY_SIZE) {
page = (page_base >> MEM_GRANULARITY_BITS);
if (mtrr_areas[page]) {
/* area already allocated, increase refcount and don't allocate it again */
mtrr_area_refcounts[page]++;
continue;
}
/* allocate area */
mtrr = malloc(MEM_GRANULARITY_SIZE);
if (!mtrr)
fatal("Failed to allocate page for MTRR page %08llx (errno=%d)\n", page_base, errno);
/* populate area with data from RAM */
for (addr = 0; addr < MEM_GRANULARITY_SIZE; addr++) {
mtrr[addr] = readmembl(page_base | addr);
}
/* enable area */
mtrr_areas[page] = mtrr;
}
}
void
mem_del_mtrr(uint64_t base, uint64_t mask)
{
uint64_t size = ((~mask) & 0xffffffff) + 1;
uint64_t page_base, page;
mem_log("Deleting MTRR base=%08llx mask=%08llx size=%08llx\n", base, mask, size);
if (size > 0x8000) {
mem_log("Ignoring MTRR, size too big\n");
return;
}
if (mem_addr_is_ram(base)) {
mem_log("Ignoring MTRR, base is in RAM\n");
return;
}
for (page_base = base; page_base < base + size; page_base += MEM_GRANULARITY_SIZE) {
page = (page_base >> MEM_GRANULARITY_BITS);
if (mtrr_areas[page]) {
/* decrease reference count */
if (mtrr_area_refcounts[page] > 0)
mtrr_area_refcounts[page]--;
/* if no references are left, de-allocate area */
if (mtrr_area_refcounts[page] == 0) {
free(mtrr_areas[page]);
mtrr_areas[page] = 0;
}
}
}
}
void
mem_invalidate_mtrr(uint8_t wb)
{
uint64_t page, page_base, addr;
uint8_t *mtrr;
mem_log("Invalidating cache (writeback=%d)\n", wb);
for (page = 0; page < MEM_MAPPINGS_NO; page++) {
mtrr = mtrr_areas[page];
if (mtrr) {
page_base = (page << MEM_GRANULARITY_BITS);
if (!mem_addr_is_ram(page_base))
continue; /* don't invalidate pages not backed by RAM */
/* temporarily set area aside */
mtrr_areas[page] = 0;
/* write data back to memory if requested */
if (wb && write_mapping[page]) { /* don't write back to a page which can't be written to */
for (addr = 0; addr < MEM_GRANULARITY_SIZE; addr++) {
writemembl(page_base | addr, mtrr[addr]);
}
}
/* re-populate area with data from memory */
for (addr = 0; addr < MEM_GRANULARITY_SIZE; addr++) {
mtrr[addr] = readmembl(page_base | addr);
}
/* re-enable area */
mtrr_areas[page] = mtrr;
}
}
}

View File

@@ -237,7 +237,6 @@
#include <86box/rom.h> #include <86box/rom.h>
#include <86box/device.h> #include <86box/device.h>
#include <86box/nvr.h> #include <86box/nvr.h>
#include <86box/fdd.h>
/* RTC registers and bit definitions. */ /* RTC registers and bit definitions. */
@@ -280,8 +279,6 @@
# define REGC_UF 0x10 # define REGC_UF 0x10
#define RTC_REGD 13 #define RTC_REGD 13
# define REGD_VRT 0x80 # define REGD_VRT 0x80
#define RTC_FDD_TYPES 0x10
#define RTC_INST_EQUIP 0x14
#define RTC_CENTURY_AT 0x32 /* century register for AT etc */ #define RTC_CENTURY_AT 0x32 /* century register for AT etc */
#define RTC_CENTURY_PS 0x37 /* century register for PS/1 PS/2 */ #define RTC_CENTURY_PS 0x37 /* century register for PS/1 PS/2 */
#define RTC_ALDAY 0x7D /* VIA VT82C586B - alarm day */ #define RTC_ALDAY 0x7D /* VIA VT82C586B - alarm day */
@@ -756,7 +753,7 @@ nvr_reset(nvr_t *nvr)
static void static void
nvr_start(nvr_t *nvr) nvr_start(nvr_t *nvr)
{ {
int i, fdd; int i;
local_t *local = (local_t *) nvr->data; local_t *local = (local_t *) nvr->data;
struct tm tm; struct tm tm;
@@ -771,50 +768,6 @@ nvr_start(nvr_t *nvr)
nvr->regs[0x0e] = 0xff; /* If load failed or it loaded an uninitialized NVR, nvr->regs[0x0e] = 0xff; /* If load failed or it loaded an uninitialized NVR,
mark everything as bad. */ mark everything as bad. */
if (machines[machine].flags & MACHINE_COREBOOT) {
/* Sync floppy drive types on coreboot machines, as SeaBIOS lacks a setup
utility and just leaves these untouched. */
nvr->regs[RTC_FDD_TYPES] = 0x00;
nvr->regs[RTC_INST_EQUIP] |= 0xc0;
for (i = 0; i <= 1; i++) {
fdd = fdd_get_type(i);
if (fdd) {
if (fdd_is_525(i)) {
if (fdd_is_hd(i))
fdd = 2;
else if (fdd_doublestep_40(i))
fdd = 3;
else
fdd = 1;
} else {
if (fdd_is_hd(i))
fdd = 4;
else if (fdd_is_double_sided(i))
fdd = 3;
else
fdd = 1;
}
nvr->regs[RTC_FDD_TYPES] |= (fdd << ((1 - i) * 4));
nvr->regs[RTC_INST_EQUIP] &= 0x3f; /* At least one drive installed. */
}
}
if ((nvr->regs[RTC_FDD_TYPES] >> 4) && (nvr->regs[RTC_FDD_TYPES] & 0xf))
nvr->regs[RTC_INST_EQUIP] |= 0x40; /* Two drives installed. */
/* Re-compute CMOS checksum. SeaBIOS also doesn't care about the checksum,
but Windows does. */
uint16_t checksum = 0;
for (i = 0x10; i <= 0x2d; i++) {
checksum += nvr->regs[i];
}
nvr->regs[0x2e] = checksum >> 8;
nvr->regs[0x2f] = checksum;
}
/* Initialize the internal and chip times. */ /* Initialize the internal and chip times. */
if (time_sync & TIME_SYNC_ENABLED) { if (time_sync & TIME_SYNC_ENABLED) {
/* Use the internal clock's time. */ /* Use the internal clock's time. */

View File

@@ -271,8 +271,8 @@ spd_register(uint8_t ram_type, uint8_t slot_mask, uint16_t max_module_size)
sprintf(sdram_data->part_no, "86Box-SDR-%03dM", vslots[vslot]); sprintf(sdram_data->part_no, "86Box-SDR-%03dM", vslots[vslot]);
for (i = strlen(sdram_data->part_no); i < sizeof(sdram_data->part_no); i++) for (i = strlen(sdram_data->part_no); i < sizeof(sdram_data->part_no); i++)
sdram_data->part_no[i] = ' '; sdram_data->part_no[i] = ' ';
sdram_data->mfg_year = 20; sdram_data->mfg_year = 0x20;
sdram_data->mfg_week = 13; sdram_data->mfg_week = 0x13;
sdram_data->freq = 100; sdram_data->freq = 100;
sdram_data->features = 0xFF; sdram_data->features = 0xFF;