More reorganization and finally merged the two makefiles.
This commit is contained in:
383
src/mem/spd.c
Normal file
383
src/mem/spd.c
Normal file
@@ -0,0 +1,383 @@
|
||||
/*
|
||||
* 86Box A hypervisor and IBM PC system emulator that specializes in
|
||||
* running old operating systems and software designed for IBM
|
||||
* PC systems and compatibles from 1981 through fairly recent
|
||||
* system designs based on the PCI bus.
|
||||
*
|
||||
* This file is part of the 86Box distribution.
|
||||
*
|
||||
* Emulation of SPD (Serial Presence Detect) devices.
|
||||
*
|
||||
*
|
||||
*
|
||||
* Authors: RichardG, <richardg867@gmail.com>
|
||||
*
|
||||
* Copyright 2020 RichardG.
|
||||
*/
|
||||
#include <stdarg.h>
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <wchar.h>
|
||||
#define HAVE_STDARG_H
|
||||
#include <86box/86box.h>
|
||||
#include <86box/device.h>
|
||||
#include <86box/smbus.h>
|
||||
#include <86box/spd.h>
|
||||
|
||||
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define SPD_ROLLUP(x) ((x) >= 16 ? ((x) - 15) : (x))
|
||||
|
||||
|
||||
spd_t *spd_devices[SPD_MAX_SLOTS];
|
||||
uint8_t spd_data[SPD_MAX_SLOTS][SPD_DATA_SIZE];
|
||||
|
||||
|
||||
static uint8_t spd_read_byte(uint8_t addr, void *priv);
|
||||
static uint8_t spd_read_byte_cmd(uint8_t addr, uint8_t cmd, void *priv);
|
||||
static void spd_write_byte(uint8_t addr, uint8_t val, void *priv);
|
||||
|
||||
|
||||
#ifdef ENABLE_SPD_LOG
|
||||
int spd_do_log = ENABLE_SPD_LOG;
|
||||
|
||||
|
||||
static void
|
||||
spd_log(const char *fmt, ...)
|
||||
{
|
||||
va_list ap;
|
||||
|
||||
if (spd_do_log) {
|
||||
va_start(ap, fmt);
|
||||
pclog_ex(fmt, ap);
|
||||
va_end(ap);
|
||||
}
|
||||
}
|
||||
#else
|
||||
#define spd_log(fmt, ...)
|
||||
#endif
|
||||
|
||||
|
||||
uint8_t
|
||||
spd_read_byte(uint8_t addr, void *priv)
|
||||
{
|
||||
spd_t *dev = (spd_t *) priv;
|
||||
return spd_read_byte_cmd(addr, dev->addr_register, priv);
|
||||
}
|
||||
|
||||
|
||||
uint8_t
|
||||
spd_read_byte_cmd(uint8_t addr, uint8_t cmd, void *priv)
|
||||
{
|
||||
spd_t *dev = (spd_t *) priv;
|
||||
uint8_t ret = *(spd_data[dev->slot] + cmd);
|
||||
spd_log("SPD: read(%02X, %02X) = %02X\n", addr, cmd, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
uint16_t
|
||||
spd_read_word_cmd(uint8_t addr, uint8_t cmd, void *priv)
|
||||
{
|
||||
return (spd_read_byte_cmd(addr, cmd + 1, priv) << 8) | spd_read_byte_cmd(addr, cmd, priv);
|
||||
}
|
||||
|
||||
|
||||
uint8_t
|
||||
spd_read_block_cmd(uint8_t addr, uint8_t cmd, uint8_t *data, uint8_t len, void *priv)
|
||||
{
|
||||
uint8_t read = 0;
|
||||
for (uint8_t i = cmd; i < len && i < SPD_DATA_SIZE; i++) {
|
||||
data[read++] = spd_read_byte_cmd(addr, i, priv);
|
||||
}
|
||||
return read;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
spd_write_byte(uint8_t addr, uint8_t val, void *priv)
|
||||
{
|
||||
spd_t *dev = (spd_t *) priv;
|
||||
dev->addr_register = val;
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
spd_close(void *priv)
|
||||
{
|
||||
spd_t *dev = (spd_t *) priv;
|
||||
|
||||
spd_log("SPD: closing slot %d (SMBus %02Xh)\n", dev->slot, SPD_BASE_ADDR + dev->slot);
|
||||
|
||||
smbus_removehandler(SPD_BASE_ADDR + dev->slot, 1,
|
||||
spd_read_byte, spd_read_byte_cmd, spd_read_word_cmd, spd_read_block_cmd,
|
||||
spd_write_byte, NULL, NULL, NULL,
|
||||
dev);
|
||||
|
||||
free(dev);
|
||||
}
|
||||
|
||||
|
||||
static void *
|
||||
spd_init(const device_t *info)
|
||||
{
|
||||
spd_t *dev = spd_devices[info->local];
|
||||
|
||||
spd_log("SPD: initializing slot %d (SMBus %02Xh)\n", dev->slot, SPD_BASE_ADDR + dev->slot);
|
||||
|
||||
smbus_sethandler(SPD_BASE_ADDR + dev->slot, 1,
|
||||
spd_read_byte, spd_read_byte_cmd, spd_read_word_cmd, spd_read_block_cmd,
|
||||
spd_write_byte, NULL, NULL, NULL,
|
||||
dev);
|
||||
|
||||
return dev;
|
||||
}
|
||||
|
||||
|
||||
uint8_t
|
||||
log2_ui16(uint16_t i)
|
||||
{
|
||||
uint8_t ret = 0;
|
||||
while ((i >>= 1))
|
||||
ret++;
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
comp_ui16_rev(const void *elem1, const void *elem2)
|
||||
{
|
||||
uint16_t a = *((uint16_t *) elem1);
|
||||
uint16_t b = *((uint16_t *) elem2);
|
||||
return ((a > b) ? -1 : ((a < b) ? 1 : 0));
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
spd_register(uint8_t ram_type, uint8_t slot_mask, uint16_t max_module_size)
|
||||
{
|
||||
uint8_t slot, slot_count, vslot, next_empty_vslot, i, split;
|
||||
uint16_t min_module_size, total_size, vslots[SPD_MAX_SLOTS], asym;
|
||||
device_t *info;
|
||||
spd_edo_t *edo_data;
|
||||
spd_sdram_t *sdram_data;
|
||||
|
||||
/* determine the minimum module size for this RAM type */
|
||||
switch (ram_type) {
|
||||
case SPD_TYPE_FPM:
|
||||
case SPD_TYPE_EDO:
|
||||
min_module_size = SPD_MIN_SIZE_EDO;
|
||||
break;
|
||||
|
||||
case SPD_TYPE_SDRAM:
|
||||
min_module_size = SPD_MIN_SIZE_SDRAM;
|
||||
break;
|
||||
|
||||
default:
|
||||
spd_log("SPD: unknown RAM type 0x%02X\n", ram_type);
|
||||
return;
|
||||
}
|
||||
|
||||
/* count how many (real) slots are enabled */
|
||||
slot_count = 0;
|
||||
for (slot = 0; slot < SPD_MAX_SLOTS; slot++) {
|
||||
vslots[slot] = 0;
|
||||
if (slot_mask & (1 << slot)) {
|
||||
slot_count++;
|
||||
}
|
||||
}
|
||||
|
||||
/* populate vslots with modules in power-of-2 capacities */
|
||||
total_size = (mem_size >> 10);
|
||||
for (vslot = 0; vslot < slot_count && total_size; vslot++) {
|
||||
/* populate slot */
|
||||
vslots[vslot] = (1 << log2_ui16(MIN(total_size, max_module_size)));
|
||||
if (total_size >= vslots[vslot]) {
|
||||
spd_log("SPD: initial vslot %d = %d MB\n", vslot, vslots[vslot]);
|
||||
total_size -= vslots[vslot];
|
||||
} else {
|
||||
vslots[vslot] = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* did we populate all the RAM? */
|
||||
if (total_size) {
|
||||
/* work backwards to add the missing RAM as asymmetric modules */
|
||||
vslot = slot_count - 1;
|
||||
do {
|
||||
asym = (1 << log2_ui16(MIN(total_size, vslots[vslot])));
|
||||
if (vslots[vslot] + asym <= max_module_size) {
|
||||
vslots[vslot] += asym;
|
||||
total_size -= asym;
|
||||
}
|
||||
} while (vslot-- > 0 && total_size);
|
||||
|
||||
if (total_size) /* still not enough */
|
||||
spd_log("SPD: not enough RAM slots (%d) to cover memory (%d MB short)\n", slot_count, total_size);
|
||||
}
|
||||
|
||||
/* populate empty vslots by splitting modules... */
|
||||
split = (total_size == 0); /* ...if possible */
|
||||
while (split) {
|
||||
/* look for a module to split */
|
||||
split = 0;
|
||||
for (vslot = 0; vslot < slot_count; vslot++) {
|
||||
if ((vslots[vslot] < (min_module_size << 1)) || (vslots[vslot] != (1 << log2_ui16(vslots[vslot]))))
|
||||
continue; /* no module here, module is too small to be split, or asymmetric module */
|
||||
|
||||
/* find next empty vslot */
|
||||
next_empty_vslot = 0;
|
||||
for (i = vslot + 1; i < slot_count && !next_empty_vslot; i++) {
|
||||
if (!vslots[i])
|
||||
next_empty_vslot = i;
|
||||
}
|
||||
if (!next_empty_vslot)
|
||||
break; /* no empty vslots left */
|
||||
|
||||
/* split the module into its own vslot and the next empty vslot */
|
||||
spd_log("SPD: splitting vslot %d (%d MB) into %d and %d (%d MB each)\n", vslot, vslots[vslot], vslot, next_empty_vslot, (vslots[vslot] >> 1));
|
||||
vslots[vslot] = vslots[next_empty_vslot] = (vslots[vslot] >> 1);
|
||||
split = 1;
|
||||
}
|
||||
|
||||
/* re-sort vslots by descending capacity if any modules were split */
|
||||
if (split)
|
||||
qsort(vslots, slot_count, sizeof(uint16_t), comp_ui16_rev);
|
||||
}
|
||||
|
||||
/* register SPD devices and populate their data according to the vslots */
|
||||
vslot = 0;
|
||||
for (slot = 0; slot < SPD_MAX_SLOTS && vslots[vslot]; slot++) {
|
||||
if (!(slot_mask & (1 << slot)))
|
||||
continue; /* slot disabled */
|
||||
|
||||
info = (device_t *) malloc(sizeof(device_t));
|
||||
memset(info, 0, sizeof(device_t));
|
||||
info->name = "Serial Presence Detect ROM";
|
||||
info->local = slot;
|
||||
info->init = spd_init;
|
||||
info->close = spd_close;
|
||||
|
||||
spd_devices[slot] = (spd_t *) malloc(sizeof(spd_t));
|
||||
memset(spd_devices[slot], 0, sizeof(spd_t));
|
||||
spd_devices[slot]->info = info;
|
||||
spd_devices[slot]->slot = slot;
|
||||
spd_devices[slot]->size = vslots[vslot];
|
||||
|
||||
/* determine the second row size, from which the first row size can be obtained */
|
||||
asym = (vslots[vslot] - (1 << log2_ui16(vslots[vslot]))); /* separate the powers of 2 */
|
||||
if (!asym) /* is the module asymmetric? */
|
||||
asym = (vslots[vslot] >> 1); /* symmetric, therefore divide by 2 */
|
||||
|
||||
spd_devices[slot]->row1 = (vslots[vslot] - asym);
|
||||
spd_devices[slot]->row2 = asym;
|
||||
|
||||
spd_log("SPD: registering slot %d = vslot %d = %d MB (%d/%d)\n", slot, vslot, vslots[vslot], spd_devices[slot]->row1, spd_devices[slot]->row2);
|
||||
|
||||
switch (ram_type) {
|
||||
case SPD_TYPE_FPM:
|
||||
case SPD_TYPE_EDO:
|
||||
edo_data = (spd_edo_t *) &spd_data[slot];
|
||||
memset(edo_data, 0, sizeof(spd_edo_t));
|
||||
|
||||
/* EDO SPD is specified by JEDEC and present in some modules, but
|
||||
most utilities cannot interpret it correctly. SIV32 at least gets
|
||||
the module capacities right, so it was used as a reference here. */
|
||||
edo_data->bytes_used = 0x80;
|
||||
edo_data->spd_size = 0x08;
|
||||
edo_data->mem_type = ram_type;
|
||||
edo_data->row_bits = SPD_ROLLUP(7 + log2_ui16(spd_devices[slot]->row1)); /* first row */
|
||||
edo_data->col_bits = 9;
|
||||
if (spd_devices[slot]->row1 != spd_devices[slot]->row2) { /* the upper 4 bits of row_bits/col_bits should be 0 on a symmetric module */
|
||||
edo_data->row_bits |= (SPD_ROLLUP(7 + log2_ui16(spd_devices[slot]->row2)) << 4); /* second row, if different from first */
|
||||
edo_data->col_bits |= (9 << 4); /* same as first row, but just in case */
|
||||
}
|
||||
edo_data->banks = 2;
|
||||
edo_data->data_width_lsb = 64;
|
||||
edo_data->signal_level = SPD_SIGNAL_LVTTL;
|
||||
edo_data->trac = 50;
|
||||
edo_data->tcac = 13;
|
||||
edo_data->refresh_rate = SPD_REFRESH_NORMAL;
|
||||
edo_data->dram_width = 8;
|
||||
|
||||
edo_data->spd_rev = 0x12;
|
||||
sprintf(edo_data->part_no, EMU_NAME "-%s-%03dM", (ram_type == SPD_TYPE_FPM) ? "FPM" : "EDO", vslots[vslot]);
|
||||
for (i = strlen(edo_data->part_no); i < sizeof(edo_data->part_no); i++)
|
||||
edo_data->part_no[i] = ' '; /* part number should be space-padded */
|
||||
edo_data->rev_code[0] = EMU_VERSION_MAJ;
|
||||
edo_data->rev_code[1] = (((EMU_VERSION_MIN / 10) << 4) | (EMU_VERSION_MIN % 10));
|
||||
edo_data->mfg_year = 20;
|
||||
edo_data->mfg_week = 17;
|
||||
|
||||
for (i = 0; i < 63; i++)
|
||||
edo_data->checksum += spd_data[slot][i];
|
||||
for (i = 0; i < 129; i++)
|
||||
edo_data->checksum2 += spd_data[slot][i];
|
||||
break;
|
||||
|
||||
case SPD_TYPE_SDRAM:
|
||||
sdram_data = (spd_sdram_t *) &spd_data[slot];
|
||||
memset(sdram_data, 0, sizeof(spd_sdram_t));
|
||||
|
||||
sdram_data->bytes_used = 0x80;
|
||||
sdram_data->spd_size = 0x08;
|
||||
sdram_data->mem_type = ram_type;
|
||||
sdram_data->row_bits = SPD_ROLLUP(6 + log2_ui16(spd_devices[slot]->row1)); /* first row */
|
||||
sdram_data->col_bits = 9;
|
||||
if (spd_devices[slot]->row1 != spd_devices[slot]->row2) { /* the upper 4 bits of row_bits/col_bits should be 0 on a symmetric module */
|
||||
sdram_data->row_bits |= (SPD_ROLLUP(6 + log2_ui16(spd_devices[slot]->row2)) << 4); /* second row, if different from first */
|
||||
sdram_data->col_bits |= (9 << 4); /* same as first row, but just in case */
|
||||
}
|
||||
sdram_data->rows = 2;
|
||||
sdram_data->data_width_lsb = 64;
|
||||
sdram_data->signal_level = SPD_SIGNAL_LVTTL;
|
||||
sdram_data->tclk = 0x75; /* 7.5 ns = 133.3 MHz */
|
||||
sdram_data->tac = 0x10;
|
||||
sdram_data->refresh_rate = SPD_SDR_REFRESH_SELF | SPD_REFRESH_NORMAL;
|
||||
sdram_data->sdram_width = 8;
|
||||
sdram_data->tccd = 1;
|
||||
sdram_data->burst = SPD_SDR_BURST_PAGE | 1 | 2 | 4 | 8;
|
||||
sdram_data->banks = 4;
|
||||
sdram_data->cas = 0x1c; /* CAS 5/4/3 supported */
|
||||
sdram_data->cslat = sdram_data->we = 0x7f;
|
||||
sdram_data->dev_attr = SPD_SDR_ATTR_EARLY_RAS | SPD_SDR_ATTR_AUTO_PC | SPD_SDR_ATTR_PC_ALL | SPD_SDR_ATTR_W1R_BURST;
|
||||
sdram_data->tclk2 = 0xA0; /* 10 ns = 100 MHz */
|
||||
sdram_data->tclk3 = 0xF0; /* 15 ns = 66.7 MHz */
|
||||
sdram_data->tac2 = sdram_data->tac3 = 0x10;
|
||||
sdram_data->trp = sdram_data->trrd = sdram_data->trcd = sdram_data->tras = 1;
|
||||
if (spd_devices[slot]->row1 != spd_devices[slot]->row2) {
|
||||
/* Utilities interpret bank_density a bit differently on asymmetric modules. */
|
||||
sdram_data->bank_density = (1 << (log2_ui16(spd_devices[slot]->row1 >> 1) - 2)); /* first row */
|
||||
sdram_data->bank_density |= (1 << (log2_ui16(spd_devices[slot]->row2 >> 1) - 2)); /* second row */
|
||||
} else {
|
||||
sdram_data->bank_density = (1 << (log2_ui16(spd_devices[slot]->row1 >> 1) - 1)); /* symmetric module = only one bit is set */
|
||||
}
|
||||
sdram_data->ca_setup = sdram_data->data_setup = 0x15;
|
||||
sdram_data->ca_hold = sdram_data->data_hold = 0x08;
|
||||
|
||||
sdram_data->spd_rev = 0x12;
|
||||
sprintf(sdram_data->part_no, EMU_NAME "-SDR-%03dM", vslots[vslot]);
|
||||
for (i = strlen(sdram_data->part_no); i < sizeof(sdram_data->part_no); i++)
|
||||
sdram_data->part_no[i] = ' '; /* part number should be space-padded */
|
||||
sdram_data->rev_code[0] = EMU_VERSION_MAJ;
|
||||
sdram_data->rev_code[1] = (((EMU_VERSION_MIN / 10) << 4) | (EMU_VERSION_MIN % 10));
|
||||
sdram_data->mfg_year = 20;
|
||||
sdram_data->mfg_week = 13;
|
||||
|
||||
sdram_data->freq = 100;
|
||||
sdram_data->features = 0xFF;
|
||||
|
||||
for (i = 0; i < 63; i++)
|
||||
sdram_data->checksum += spd_data[slot][i];
|
||||
for (i = 0; i < 129; i++)
|
||||
sdram_data->checksum2 += spd_data[slot][i];
|
||||
break;
|
||||
}
|
||||
|
||||
device_add(info);
|
||||
vslot++;
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user