Increased the remaining sound timer counters and latches to 64-bit;

Applied mainline PCem commit;
Intel Flash fixes.
This commit is contained in:
OBattler
2016-08-15 23:33:51 +02:00
parent 3b00a90f28
commit e9c97afb0b
7 changed files with 171 additions and 202 deletions

244
src/rtc.c
View File

@@ -1,6 +1,3 @@
/* Copyright holders: Mahod, Tenshi
see COPYING for more details
*/
/* Emulation of:
Dallas Semiconductor DS12C887 Real Time Clock
@@ -19,7 +16,7 @@
int enable_sync;
typedef struct
struct
{
int sec;
int min;
@@ -27,16 +24,13 @@ typedef struct
int mday;
int mon;
int year;
}
internal_clock_t;
internal_clock_t internal_clock;
} internal_clock;
/* When the RTC was last updated */
time_t rtc_set_time = 0;
static time_t rtc_set_time = 0;
/* Table for days in each month */
int rtc_days_in_month[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
static int rtc_days_in_month[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
/* Called to determine whether the year is leap or not */
static int rtc_is_leap(int org_year)
@@ -51,13 +45,9 @@ static int rtc_is_leap(int org_year)
static int rtc_get_days(int org_month, int org_year)
{
if (org_month != 2)
{
return rtc_days_in_month[org_month];
}
else
{
return rtc_is_leap(org_year) ? 29 : 28;
}
}
/* Called when the internal clock gets updated */
@@ -104,59 +94,36 @@ void time_update(char *nvrram, int reg)
switch(reg)
{
case RTCSECONDS:
internal_clock.sec = (nvrram[RTCREGB] & RTCDM) ? nvrram[RTCSECONDS] : DCB(nvrram[RTCSECONDS]);
break;
case RTCMINUTES:
internal_clock.min = (nvrram[RTCREGB] & RTCDM) ? nvrram[RTCMINUTES] : DCB(nvrram[RTCMINUTES]);
break;
case RTCHOURS:
temp = (nvrram[RTCREGB] & RTCDM) ? nvrram[RTCHOURS] : DCB(nvrram[RTCHOURS]);
case RTC_SECONDS:
internal_clock.sec = (nvrram[RTC_REGB] & RTC_DM) ? nvrram[RTC_SECONDS] : DCB(nvrram[RTC_SECONDS]);
break;
case RTC_MINUTES:
internal_clock.min = (nvrram[RTC_REGB] & RTC_DM) ? nvrram[RTC_MINUTES] : DCB(nvrram[RTC_MINUTES]);
break;
case RTC_HOURS:
temp = (nvrram[RTC_REGB] & RTC_DM) ? nvrram[RTC_HOURS] : DCB(nvrram[RTC_HOURS]);
if (nvrram[RTCREGB] & RTC2412)
{
internal_clock.hour = temp;
}
else
{
internal_clock.hour = ((temp & ~RTCAMPM) % 12) + ((temp & RTCAMPM) ? 12 : 0);
}
break;
case RTCDOM:
internal_clock.mday = (nvrram[RTCREGB] & RTCDM) ? nvrram[RTCDOM] : DCB(nvrram[RTCDOM]);
break;
case RTCMONTH:
internal_clock.mon = (nvrram[RTCREGB] & RTCDM) ? nvrram[RTCMONTH] : DCB(nvrram[RTCMONTH]);
break;
case RTCYEAR:
internal_clock.year = (nvrram[RTCREGB] & RTCDM) ? nvrram[RTCYEAR] : DCB(nvrram[RTCYEAR]);
internal_clock.year += (nvrram[RTCREGB] & RTCDM) ? 1900 : (DCB(nvrram[RTCCENTURY]) * 100);
break;
case RTCCENTURY:
if (nvrram[RTCREGB] & RTCDM) return;
internal_clock.year %= 100;
internal_clock.year += (DCB(nvrram[RTCCENTURY]) * 100);
break;
case 0xFF: /* Load the entire internal clock state from the NVR. */
internal_clock.sec = (nvrram[RTCREGB] & RTCDM) ? nvrram[RTCSECONDS] : DCB(nvrram[RTCSECONDS]);
internal_clock.min = (nvrram[RTCREGB] & RTCDM) ? nvrram[RTCMINUTES] : DCB(nvrram[RTCMINUTES]);
temp = (nvrram[RTCREGB] & RTCDM) ? nvrram[RTCHOURS] : DCB(nvrram[RTCHOURS]);
if (nvrram[RTCREGB] & RTC2412)
{
internal_clock.hour = temp;
}
else
{
internal_clock.hour = ((temp & ~RTCAMPM) % 12) + ((temp & RTCAMPM) ? 12 : 0);
}
internal_clock.mday = (nvrram[RTCREGB] & RTCDM) ? nvrram[RTCDOM] : DCB(nvrram[RTCDOM]);
internal_clock.mon = (nvrram[RTCREGB] & RTCDM) ? nvrram[RTCMONTH] : DCB(nvrram[RTCMONTH]);
internal_clock.year = (nvrram[RTCREGB] & RTCDM) ? nvrram[RTCYEAR] : DCB(nvrram[RTCYEAR]);
internal_clock.year += (nvrram[RTCREGB] & RTCDM) ? 1900 : (DCB(nvrram[RTCCENTURY]) * 100);
break;
if (nvrram[RTC_REGB] & RTC_2412)
internal_clock.hour = temp;
else
internal_clock.hour = ((temp & ~RTC_AMPM) % 12) + ((temp & RTC_AMPM) ? 12 : 0);
break;
case RTC_DOM:
internal_clock.mday = (nvrram[RTC_REGB] & RTC_DM) ? nvrram[RTC_DOM] : DCB(nvrram[RTC_DOM]);
break;
case RTC_MONTH:
internal_clock.mon = (nvrram[RTC_REGB] & RTC_DM) ? nvrram[RTC_MONTH] : DCB(nvrram[RTC_MONTH]);
break;
case RTC_YEAR:
internal_clock.year = (nvrram[RTC_REGB] & RTC_DM) ? nvrram[RTC_YEAR] : DCB(nvrram[RTC_YEAR]);
internal_clock.year += (nvrram[RTC_REGB] & RTC_DM) ? 1900 : (DCB(nvrram[RTC_CENTURY]) * 100);
break;
case RTC_CENTURY:
if (nvrram[RTC_REGB] & RTC_DM)
return;
internal_clock.year %= 100;
internal_clock.year += (DCB(nvrram[RTC_CENTURY]) * 100);
break;
}
}
@@ -174,91 +141,112 @@ static int time_week_day()
}
/* Called to get time into the internal clock */
static void time_internal(struct tm **time_var)
static void time_internal_get(struct tm *time_var)
{
if (*time_var == NULL) *time_var = (struct tm *) malloc(sizeof(struct tm));
(*time_var)->tm_sec = internal_clock.sec;
(*time_var)->tm_min = internal_clock.min;
(*time_var)->tm_hour = internal_clock.hour;
(*time_var)->tm_wday = time_week_day();
(*time_var)->tm_mday = internal_clock.mday;
(*time_var)->tm_mon = internal_clock.mon - 1;
(*time_var)->tm_year = internal_clock.year - 1900;
time_var->tm_sec = internal_clock.sec;
time_var->tm_min = internal_clock.min;
time_var->tm_hour = internal_clock.hour;
time_var->tm_wday = time_week_day();
time_var->tm_mday = internal_clock.mday;
time_var->tm_mon = internal_clock.mon - 1;
time_var->tm_year = internal_clock.year - 1900;
}
time_t cur_time;
struct tm* cur_time_tm;
static void time_internal_set(struct tm *time_var)
{
internal_clock.sec = time_var->tm_sec;
internal_clock.min = time_var->tm_min;
internal_clock.hour = time_var->tm_hour;
internal_clock.mday = time_var->tm_mday;
internal_clock.mon = time_var->tm_mon + 1;
internal_clock.year = time_var->tm_year + 1900;
}
/* Periodic RTC update function
See also: nvr_onesec() in nvr.c
*/
void time_get(char *nvrram)
static void time_set_nvrram(char *nvrram, struct tm *cur_time_tm)
{
int dow, mon, year;
if (enable_sync)
if (nvrram[RTC_REGB] & RTC_DM)
{
time(&cur_time);
nvrram[RTC_SECONDS] = cur_time_tm->tm_sec;
nvrram[RTC_MINUTES] = cur_time_tm->tm_min;
nvrram[RTC_DOW] = cur_time_tm->tm_wday + 1;
nvrram[RTC_DOM] = cur_time_tm->tm_mday;
nvrram[RTC_MONTH] = cur_time_tm->tm_mon + 1;
nvrram[RTC_YEAR] = cur_time_tm->tm_year % 100;
/* Mingw doesn't support localtime_r */
#if __MINGW32__
cur_time_tm = localtime(&cur_time);
#else
#if __MINGW64__
cur_time_tm = localtime(&cur_time);
#else
localtime_r(&cur_time, &cur_time_tm);
#endif
#endif
}
else
{
time_internal(&cur_time_tm);
}
if (nvrram[RTCREGB] & RTCDM)
{
nvrram[RTCSECONDS] = cur_time_tm->tm_sec;
nvrram[RTCMINUTES] = cur_time_tm->tm_min;
nvrram[RTCDOW] = cur_time_tm->tm_wday + 1;
nvrram[RTCDOM] = cur_time_tm->tm_mday;
nvrram[RTCMONTH] = cur_time_tm->tm_mon + 1;
nvrram[RTCYEAR] = cur_time_tm->tm_year % 100;
if (nvrram[RTCREGB] & RTC2412)
if (nvrram[RTC_REGB] & RTC_2412)
{
nvrram[RTCHOURS] = cur_time_tm->tm_hour;
nvrram[RTC_HOURS] = cur_time_tm->tm_hour;
}
else
{
nvrram[RTCHOURS] = (cur_time_tm->tm_hour % 12) ? (cur_time_tm->tm_hour % 12) : 12;
nvrram[RTC_HOURS] = (cur_time_tm->tm_hour % 12) ? (cur_time_tm->tm_hour % 12) : 12;
if (cur_time_tm->tm_hour > 11)
{
nvrram[RTCHOURS] |= RTCAMPM;
}
nvrram[RTC_HOURS] |= RTC_AMPM;
}
}
else
{
nvrram[RTCSECONDS] = BCD(cur_time_tm->tm_sec);
nvrram[RTCMINUTES] = BCD(cur_time_tm->tm_min);
nvrram[RTCDOW] = BCD(cur_time_tm->tm_wday + 1);
nvrram[RTCDOM] = BCD(cur_time_tm->tm_mday);
nvrram[RTCMONTH] = BCD(cur_time_tm->tm_mon + 1);
nvrram[RTCYEAR] = BCD(cur_time_tm->tm_year % 100);
nvrram[RTC_SECONDS] = BCD(cur_time_tm->tm_sec);
nvrram[RTC_MINUTES] = BCD(cur_time_tm->tm_min);
nvrram[RTC_DOW] = BCD(cur_time_tm->tm_wday + 1);
nvrram[RTC_DOM] = BCD(cur_time_tm->tm_mday);
nvrram[RTC_MONTH] = BCD(cur_time_tm->tm_mon + 1);
nvrram[RTC_YEAR] = BCD(cur_time_tm->tm_year % 100);
if (nvrram[RTCREGB] & RTC2412)
if (nvrram[RTC_REGB] & RTC_2412)
{
nvrram[RTCHOURS] = BCD(cur_time_tm->tm_hour);
nvrram[RTC_HOURS] = BCD(cur_time_tm->tm_hour);
}
else
{
nvrram[RTCHOURS] = (cur_time_tm->tm_hour % 12) ? BCD(cur_time_tm->tm_hour % 12) : BCD(12);
nvrram[RTC_HOURS] = (cur_time_tm->tm_hour % 12) ? BCD(cur_time_tm->tm_hour % 12) : BCD(12);
if (cur_time_tm->tm_hour > 11)
{
nvrram[RTCHOURS] |= RTCAMPM;
}
nvrram[RTC_HOURS] |= RTC_AMPM;
}
}
}
}
void time_internal_set_nvrram(char *nvrram)
{
int temp;
/* Load the entire internal clock state from the NVR. */
internal_clock.sec = (nvrram[RTC_REGB] & RTC_DM) ? nvrram[RTC_SECONDS] : DCB(nvrram[RTC_SECONDS]);
internal_clock.min = (nvrram[RTC_REGB] & RTC_DM) ? nvrram[RTC_MINUTES] : DCB(nvrram[RTC_MINUTES]);
temp = (nvrram[RTC_REGB] & RTC_DM) ? nvrram[RTC_HOURS] : DCB(nvrram[RTC_HOURS]);
if (nvrram[RTC_REGB] & RTC_2412)
internal_clock.hour = temp;
else
internal_clock.hour = ((temp & ~RTC_AMPM) % 12) + ((temp & RTC_AMPM) ? 12 : 0);
internal_clock.mday = (nvrram[RTC_REGB] & RTC_DM) ? nvrram[RTC_DOM] : DCB(nvrram[RTC_DOM]);
internal_clock.mon = (nvrram[RTC_REGB] & RTC_DM) ? nvrram[RTC_MONTH] : DCB(nvrram[RTC_MONTH]);
internal_clock.year = (nvrram[RTC_REGB] & RTC_DM) ? nvrram[RTC_YEAR] : DCB(nvrram[RTC_YEAR]);
internal_clock.year += (nvrram[RTC_REGB] & RTC_DM) ? 1900 : (DCB(nvrram[RTC_CENTURY]) * 100);
}
void time_internal_sync(char *nvrram)
{
struct tm *cur_time_tm;
time_t cur_time;
time(&cur_time);
cur_time_tm = localtime(&cur_time);
time_internal_set(cur_time_tm);
time_set_nvrram(nvrram, cur_time_tm);
}
void time_get(char *nvrram)
{
struct tm cur_time_tm;
time_internal_get(&cur_time_tm);
time_set_nvrram(nvrram, &cur_time_tm);
}