static int opCMPXCHG_b_a16(uint32_t fetchdat) { uint8_t temp, temp2 = AL; fetch_ea_16(fetchdat); SEG_CHECK_WRITE(cpu_state.ea_seg); temp = geteab(); if (cpu_state.abrt) return 1; if (AL == temp) seteab(getr8(cpu_reg)); else AL = temp; if (cpu_state.abrt) return 1; setsub8(temp2, temp); CLOCK_CYCLES((cpu_mod == 3) ? 6 : 10); return 0; } static int opCMPXCHG_b_a32(uint32_t fetchdat) { uint8_t temp, temp2 = AL; fetch_ea_32(fetchdat); SEG_CHECK_WRITE(cpu_state.ea_seg); temp = geteab(); if (cpu_state.abrt) return 1; if (AL == temp) seteab(getr8(cpu_reg)); else AL = temp; if (cpu_state.abrt) return 1; setsub8(temp2, temp); CLOCK_CYCLES((cpu_mod == 3) ? 6 : 10); return 0; } static int opCMPXCHG_w_a16(uint32_t fetchdat) { uint16_t temp, temp2 = AX; fetch_ea_16(fetchdat); SEG_CHECK_WRITE(cpu_state.ea_seg); temp = geteaw(); if (cpu_state.abrt) return 1; if (AX == temp) seteaw(cpu_state.regs[cpu_reg].w); else AX = temp; if (cpu_state.abrt) return 1; setsub16(temp2, temp); CLOCK_CYCLES((cpu_mod == 3) ? 6 : 10); return 0; } static int opCMPXCHG_w_a32(uint32_t fetchdat) { uint16_t temp, temp2 = AX; fetch_ea_32(fetchdat); SEG_CHECK_WRITE(cpu_state.ea_seg); temp = geteaw(); if (cpu_state.abrt) return 1; if (AX == temp) seteaw(cpu_state.regs[cpu_reg].w); else AX = temp; if (cpu_state.abrt) return 1; setsub16(temp2, temp); CLOCK_CYCLES((cpu_mod == 3) ? 6 : 10); return 0; } static int opCMPXCHG_l_a16(uint32_t fetchdat) { uint32_t temp, temp2 = EAX; fetch_ea_16(fetchdat); SEG_CHECK_WRITE(cpu_state.ea_seg); temp = geteal(); if (cpu_state.abrt) return 1; if (EAX == temp) seteal(cpu_state.regs[cpu_reg].l); else EAX = temp; if (cpu_state.abrt) return 1; setsub32(temp2, temp); CLOCK_CYCLES((cpu_mod == 3) ? 6 : 10); return 0; } static int opCMPXCHG_l_a32(uint32_t fetchdat) { uint32_t temp, temp2 = EAX; fetch_ea_32(fetchdat); SEG_CHECK_WRITE(cpu_state.ea_seg); temp = geteal(); if (cpu_state.abrt) return 1; if (EAX == temp) seteal(cpu_state.regs[cpu_reg].l); else EAX = temp; if (cpu_state.abrt) return 1; setsub32(temp2, temp); CLOCK_CYCLES((cpu_mod == 3) ? 6 : 10); return 0; } static int opCMPXCHG8B_a16(uint32_t fetchdat) { uint32_t temp, temp_hi, temp2 = EAX, temp2_hi = EDX; fetch_ea_16(fetchdat); SEG_CHECK_WRITE(cpu_state.ea_seg); temp = geteal(); temp_hi = readmeml(easeg, cpu_state.eaaddr + 4); if (cpu_state.abrt) return 0; if (EAX == temp && EDX == temp_hi) { seteal(EBX); writememl(easeg, cpu_state.eaaddr+4, ECX); } else { EAX = temp; EDX = temp_hi; } if (cpu_state.abrt) return 0; flags_rebuild(); if (temp == temp2 && temp_hi == temp2_hi) cpu_state.flags |= Z_FLAG; else cpu_state.flags &= ~Z_FLAG; cycles -= (cpu_mod == 3) ? 6 : 10; return 0; } static int opCMPXCHG8B_a32(uint32_t fetchdat) { uint32_t temp, temp_hi, temp2 = EAX, temp2_hi = EDX; fetch_ea_32(fetchdat); SEG_CHECK_WRITE(cpu_state.ea_seg); temp = geteal(); temp_hi = readmeml(easeg, cpu_state.eaaddr + 4); if (cpu_state.abrt) return 0; if (EAX == temp && EDX == temp_hi) { seteal(EBX); writememl(easeg, cpu_state.eaaddr+4, ECX); } else { EAX = temp; EDX = temp_hi; } if (cpu_state.abrt) return 0; flags_rebuild(); if (temp == temp2 && temp_hi == temp2_hi) cpu_state.flags |= Z_FLAG; else cpu_state.flags &= ~Z_FLAG; cycles -= (cpu_mod == 3) ? 6 : 10; return 0; } /* dest = eab, src = r8 */ static int opXADD_b_a16(uint32_t fetchdat) { uint8_t temp; uint8_t src, dest; fetch_ea_16(fetchdat); SEG_CHECK_WRITE(cpu_state.ea_seg); src = getr8(cpu_reg); dest = geteab(); if (cpu_state.abrt) return 1; temp = src + dest; seteab(temp); if (cpu_state.abrt) return 1; setadd8(src, dest); setr8(cpu_reg, dest); CLOCK_CYCLES((cpu_mod == 3) ? 3 : 4); return 0; } static int opXADD_b_a32(uint32_t fetchdat) { uint8_t temp; uint8_t src, dest; fetch_ea_32(fetchdat); SEG_CHECK_WRITE(cpu_state.ea_seg); src = getr8(cpu_reg); dest = geteab(); if (cpu_state.abrt) return 1; temp = src + dest; seteab(temp); if (cpu_state.abrt) return 1; setadd8(src, dest); setr8(cpu_reg, dest); CLOCK_CYCLES((cpu_mod == 3) ? 3 : 4); return 0; } static int opXADD_w_a16(uint32_t fetchdat) { uint16_t temp; uint16_t src, dest; fetch_ea_16(fetchdat); SEG_CHECK_WRITE(cpu_state.ea_seg); src = cpu_state.regs[cpu_reg].w; dest = geteaw(); if (cpu_state.abrt) return 1; temp = src + dest; seteaw(temp); if (cpu_state.abrt) return 1; setadd16(src, dest); cpu_state.regs[cpu_reg].w = dest; CLOCK_CYCLES((cpu_mod == 3) ? 3 : 4); return 0; } static int opXADD_w_a32(uint32_t fetchdat) { uint16_t temp; uint16_t src, dest; fetch_ea_32(fetchdat); SEG_CHECK_WRITE(cpu_state.ea_seg); src = cpu_state.regs[cpu_reg].w; dest = geteaw(); if (cpu_state.abrt) return 1; temp = src + dest; seteaw(temp); if (cpu_state.abrt) return 1; setadd16(src, dest); cpu_state.regs[cpu_reg].w = dest; CLOCK_CYCLES((cpu_mod == 3) ? 3 : 4); return 0; } static int opXADD_l_a16(uint32_t fetchdat) { uint32_t temp; uint32_t src, dest; fetch_ea_16(fetchdat); SEG_CHECK_WRITE(cpu_state.ea_seg); src = cpu_state.regs[cpu_reg].l; dest = geteal(); if (cpu_state.abrt) return 1; temp = src + dest; seteal(temp); if (cpu_state.abrt) return 1; setadd32(src, dest); cpu_state.regs[cpu_reg].l = dest; CLOCK_CYCLES((cpu_mod == 3) ? 3 : 4); return 0; } static int opXADD_l_a32(uint32_t fetchdat) { uint32_t temp; uint32_t src, dest; fetch_ea_32(fetchdat); SEG_CHECK_WRITE(cpu_state.ea_seg); src = cpu_state.regs[cpu_reg].l; dest = geteal(); if (cpu_state.abrt) return 1; temp = src + dest; seteal(temp); if (cpu_state.abrt) return 1; setadd32(src, dest); cpu_state.regs[cpu_reg].l = dest; CLOCK_CYCLES((cpu_mod == 3) ? 3 : 4); return 0; }