#include #include #include #include #include #include #include #ifndef INFINITY # define INFINITY (__builtin_inff()) #endif #define HAVE_STDARG_H #include <86box/86box.h> #include "cpu.h" #include <86box/timer.h> #include "x86.h" #include "x87.h" #include <86box/nmi.h> #include <86box/mem.h> #include <86box/pic.h> #include <86box/pit.h> #include <86box/fdd.h> #include <86box/fdc.h> #include "386_common.h" #ifdef USE_NEW_DYNAREC #include "codegen.h" #endif #undef CPU_BLOCK_END #define CPU_BLOCK_END() extern int codegen_flags_changed; int tempc, oldcpl, optype, inttype, oddeven = 0; int timetolive; uint16_t oldcs; uint32_t oldds, oldss, olddslimit, oldsslimit, olddslimitw, oldsslimitw; uint32_t oxpc; uint32_t rmdat32; uint32_t backupregs[16]; x86seg _oldds; #ifdef ENABLE_386_LOG int x386_do_log = ENABLE_386_LOG; void x386_log(const char *fmt, ...) { va_list ap; if (x386_do_log) { va_start(ap, fmt); pclog_ex(fmt, ap); va_end(ap); } } #else #define x386_log(fmt, ...) #endif #undef CPU_BLOCK_END #define CPU_BLOCK_END() static inline void fetch_ea_32_long(uint32_t rmdat) { eal_r = eal_w = NULL; easeg = cpu_state.ea_seg->base; if (cpu_rm == 4) { uint8_t sib = rmdat >> 8; switch (cpu_mod) { case 0: cpu_state.eaaddr = cpu_state.regs[sib & 7].l; cpu_state.pc++; break; case 1: cpu_state.pc++; cpu_state.eaaddr = ((uint32_t)(int8_t)getbyte()) + cpu_state.regs[sib & 7].l; // pc++; break; case 2: cpu_state.eaaddr = (fastreadl(cs + cpu_state.pc + 1)) + cpu_state.regs[sib & 7].l; cpu_state.pc += 5; break; } /*SIB byte present*/ if ((sib & 7) == 5 && !cpu_mod) cpu_state.eaaddr = getlong(); else if ((sib & 6) == 4 && !cpu_state.ssegs) { easeg = ss; cpu_state.ea_seg = &cpu_state.seg_ss; } if (((sib >> 3) & 7) != 4) cpu_state.eaaddr += cpu_state.regs[(sib >> 3) & 7].l << (sib >> 6); } else { cpu_state.eaaddr = cpu_state.regs[cpu_rm].l; if (cpu_mod) { if (cpu_rm == 5 && !cpu_state.ssegs) { easeg = ss; cpu_state.ea_seg = &cpu_state.seg_ss; } if (cpu_mod == 1) { cpu_state.eaaddr += ((uint32_t)(int8_t)(rmdat >> 8)); cpu_state.pc++; } else { cpu_state.eaaddr += getlong(); } } else if (cpu_rm == 5) { cpu_state.eaaddr = getlong(); } } if (easeg != 0xFFFFFFFF && ((easeg + cpu_state.eaaddr) & 0xFFF) <= 0xFFC) { uint32_t addr = easeg + cpu_state.eaaddr; if ( readlookup2[addr >> 12] != -1) eal_r = (uint32_t *)(readlookup2[addr >> 12] + addr); if (writelookup2[addr >> 12] != -1) eal_w = (uint32_t *)(writelookup2[addr >> 12] + addr); } } static inline void fetch_ea_16_long(uint32_t rmdat) { eal_r = eal_w = NULL; easeg = cpu_state.ea_seg->base; if (!cpu_mod && cpu_rm == 6) { cpu_state.eaaddr = getword(); } else { switch (cpu_mod) { case 0: cpu_state.eaaddr = 0; break; case 1: cpu_state.eaaddr = (uint16_t)(int8_t)(rmdat >> 8); cpu_state.pc++; break; case 2: cpu_state.eaaddr = getword(); break; } cpu_state.eaaddr += (*mod1add[0][cpu_rm]) + (*mod1add[1][cpu_rm]); if (mod1seg[cpu_rm] == &ss && !cpu_state.ssegs) { easeg = ss; cpu_state.ea_seg = &cpu_state.seg_ss; } cpu_state.eaaddr &= 0xFFFF; } if (easeg != 0xFFFFFFFF && ((easeg + cpu_state.eaaddr) & 0xFFF) <= 0xFFC) { uint32_t addr = easeg + cpu_state.eaaddr; if ( readlookup2[addr >> 12] != -1) eal_r = (uint32_t *)(readlookup2[addr >> 12] + addr); if (writelookup2[addr >> 12] != -1) eal_w = (uint32_t *)(writelookup2[addr >> 12] + addr); } } #define fetch_ea_16(rmdat) cpu_state.pc++; cpu_mod=(rmdat >> 6) & 3; cpu_reg=(rmdat >> 3) & 7; cpu_rm = rmdat & 7; if (cpu_mod != 3) { fetch_ea_16_long(rmdat); if (cpu_state.abrt) return 0; } #define fetch_ea_32(rmdat) cpu_state.pc++; cpu_mod=(rmdat >> 6) & 3; cpu_reg=(rmdat >> 3) & 7; cpu_rm = rmdat & 7; if (cpu_mod != 3) { fetch_ea_32_long(rmdat); } if (cpu_state.abrt) return 0 #include "x86_flags.h" #define getbytef() ((uint8_t)(fetchdat)); cpu_state.pc++ #define getwordf() ((uint16_t)(fetchdat)); cpu_state.pc+=2 #define getbyte2f() ((uint8_t)(fetchdat>>8)); cpu_state.pc++ #define getword2f() ((uint16_t)(fetchdat>>8)); cpu_state.pc+=2 #define OP_TABLE(name) ops_ ## name #define CLOCK_CYCLES(c) cycles -= (c) #define CLOCK_CYCLES_ALWAYS(c) cycles -= (c) #include "x86_ops.h" void exec386(int cycs) { // uint8_t opcode; int vector, tempi, cycdiff, oldcyc; int cycle_period, ins_cycles; uint32_t addr; cycles += cycs; while (cycles > 0) { cycle_period = (timer_target - (uint32_t)tsc) + 1; x86_was_reset = 0; cycdiff = 0; oldcyc = cycles; while (cycdiff < cycle_period) { ins_cycles = cycles; #ifndef USE_NEW_DYNAREC oldcs=CS; oldcpl=CPL; #endif cpu_state.oldpc = cpu_state.pc; cpu_state.op32 = use32; #ifndef USE_NEW_DYNAREC x86_was_reset = 0; #endif cpu_state.ea_seg = &cpu_state.seg_ds; cpu_state.ssegs = 0; fetchdat = fastreadl(cs + cpu_state.pc); if (!cpu_state.abrt) { opcode = fetchdat & 0xFF; fetchdat >>= 8; trap = cpu_state.flags & T_FLAG; cpu_state.pc++; x86_opcodes[(opcode | cpu_state.op32) & 0x3ff](fetchdat); if (x86_was_reset) break; } #ifndef USE_NEW_DYNAREC if (!use32) cpu_state.pc &= 0xffff; #endif if (cpu_state.abrt) { flags_rebuild(); tempi = cpu_state.abrt; cpu_state.abrt = 0; x86_doabrt(tempi); if (cpu_state.abrt) { cpu_state.abrt = 0; #ifndef USE_NEW_DYNAREC CS = oldcs; #endif cpu_state.pc = cpu_state.oldpc; x386_log("Double fault %i\n", ins); pmodeint(8, 0); if (cpu_state.abrt) { cpu_state.abrt = 0; softresetx86(); cpu_set_edx(); #ifdef ENABLE_386_LOG x386_log("Triple fault - reset\n"); #endif } } } if (!in_smm && smi_line/* && is_pentium*/) { enter_smm(); smi_line = 0; } else if (in_smm && smi_line/* && is_pentium*/) { smi_latched = 1; smi_line = 0; } ins_cycles -= cycles; tsc += ins_cycles; cycdiff = oldcyc - cycles; if (trap) { flags_rebuild(); if (msw&1) pmodeint(1,0); else { writememw(ss, (SP - 2) & 0xFFFF, cpu_state.flags); writememw(ss, (SP - 4) & 0xFFFF, CS); writememw(ss, (SP - 6) & 0xFFFF, cpu_state.pc); SP -= 6; addr = (1 << 2) + idt.base; cpu_state.flags &= ~I_FLAG; cpu_state.flags &= ~T_FLAG; cpu_state.pc = readmemw(0, addr); loadcs(readmemw(0, addr + 2)); } } else if (nmi && nmi_enable && nmi_mask) { cpu_state.oldpc = cpu_state.pc; x86_int(2); nmi_enable = 0; if (nmi_auto_clear) { nmi_auto_clear = 0; nmi = 0; } } else if ((cpu_state.flags & I_FLAG) && pic_intpending) { vector = picinterrupt(); if (vector != -1) { flags_rebuild(); if (msw & 1) pmodeint(vector, 0); else { writememw(ss, (SP - 2) & 0xFFFF, cpu_state.flags); writememw(ss, (SP - 4) & 0xFFFF, CS); writememw(ss, (SP - 6) & 0xFFFF, cpu_state.pc); SP -= 6; addr = (vector << 2) + idt.base; cpu_state.flags &= ~I_FLAG; cpu_state.flags &= ~T_FLAG; cpu_state.pc = readmemw(0, addr); loadcs(readmemw(0, addr + 2)); } } } ins++; if (timetolive) { timetolive--; if (!timetolive) fatal("Life expired\n"); } if (TIMER_VAL_LESS_THAN_VAL(timer_target, (uint32_t) tsc)) timer_process(); } } }