/* * 86Box A hypervisor and IBM PC system emulator that specializes in * running old operating systems and software designed for IBM * PC systems and compatibles from 1981 through fairly recent * system designs based on the PCI bus. * * This file is part of the 86Box distribution. * * Implementation of the floppy drive emulation. * * Version: @(#)fdd.c 1.0.15 2019/10/20 * * Authors: Sarah Walker, * Miran Grca, * Fred N. van Kempen, * * Copyright 2008-2019 Sarah Walker. * Copyright 2016-2019 Miran Grca. * Copyright 2018,2019 Fred N. van Kempen. */ #include #include #include #include #include #define HAVE_STDARG_H #include "../86box.h" #include "../timer.h" #include "../plat.h" #include "../ui.h" #include "fdd.h" #include "fdd_86f.h" #include "fdd_fdi.h" #include "fdd_imd.h" #include "fdd_img.h" #include "fdd_json.h" #include "fdd_mfm.h" #include "fdd_td0.h" #include "fdc.h" /* Flags: Bit 0: 300 rpm supported; Bit 1: 360 rpm supported; Bit 2: size (0 = 3.5", 1 = 5.25"); Bit 3: sides (0 = 1, 1 = 2); Bit 4: double density supported; Bit 5: high density supported; Bit 6: extended density supported; Bit 7: double step for 40-track media; Bit 8: invert DENSEL polarity; Bit 9: ignore DENSEL; Bit 10: drive is a PS/2 drive; */ #define FLAG_RPM_300 1 #define FLAG_RPM_360 2 #define FLAG_525 4 #define FLAG_DS 8 #define FLAG_HOLE0 16 #define FLAG_HOLE1 32 #define FLAG_HOLE2 64 #define FLAG_DOUBLE_STEP 128 #define FLAG_INVERT_DENSEL 256 #define FLAG_IGNORE_DENSEL 512 #define FLAG_PS2 1024 typedef struct { int type; int track; int densel; int head; int turbo; int check_bpb; } fdd_t; fdd_t fdd[FDD_NUM]; wchar_t floppyfns[FDD_NUM][512]; pc_timer_t fdd_poll_time[FDD_NUM]; static int fdd_notfound = 0, driveloaders[FDD_NUM]; int writeprot[FDD_NUM], fwriteprot[FDD_NUM], fdd_changed[FDD_NUM], ui_writeprot[FDD_NUM] = {0, 0, 0, 0}, drive_empty[FDD_NUM] = {1, 1, 1, 1}; DRIVE drives[FDD_NUM]; uint64_t motoron[FDD_NUM]; fdc_t *fdd_fdc; d86f_handler_t d86f_handler[FDD_NUM]; static const struct { wchar_t *ext; void (*load)(int drive, wchar_t *fn); void (*close)(int drive); int size; } loaders[]= { {L"001", img_load, img_close, -1}, {L"002", img_load, img_close, -1}, {L"003", img_load, img_close, -1}, {L"004", img_load, img_close, -1}, {L"005", img_load, img_close, -1}, {L"006", img_load, img_close, -1}, {L"007", img_load, img_close, -1}, {L"008", img_load, img_close, -1}, {L"009", img_load, img_close, -1}, {L"010", img_load, img_close, -1}, {L"12", img_load, img_close, -1}, {L"144", img_load, img_close, -1}, {L"360", img_load, img_close, -1}, {L"720", img_load, img_close, -1}, {L"86F", d86f_load, d86f_close, -1}, {L"BIN", img_load, img_close, -1}, {L"CQ", img_load, img_close, -1}, {L"CQM", img_load, img_close, -1}, {L"DDI", img_load, img_close, -1}, {L"DSK", img_load, img_close, -1}, {L"FDI", fdi_load, fdi_close, -1}, {L"FDF", img_load, img_close, -1}, {L"FLP", img_load, img_close, -1}, {L"HDM", img_load, img_close, -1}, {L"IMA", img_load, img_close, -1}, {L"IMD", imd_load, imd_close, -1}, {L"IMG", img_load, img_close, -1}, {L"JSON", json_load, json_close, -1}, {L"MFM", mfm_load, mfm_close, -1}, {L"TD0", td0_load, td0_close, -1}, {L"VFD", img_load, img_close, -1}, {L"XDF", img_load, img_close, -1}, {0, 0, 0, 0} }; static const struct { int max_track; int flags; const char *name; const char *internal_name; } drive_types[] = { { /*None*/ 0, 0, "None", "none" }, { /*5.25" 1DD*/ 43, FLAG_RPM_300 | FLAG_525 | FLAG_HOLE0, "5.25\" 180k", "525_1dd" }, { /*5.25" DD*/ 43, FLAG_RPM_300 | FLAG_525 | FLAG_DS | FLAG_HOLE0, "5.25\" 360k", "525_2dd" }, { /*5.25" QD*/ 86, FLAG_RPM_300 | FLAG_525 | FLAG_DS | FLAG_HOLE0 | FLAG_DOUBLE_STEP, "5.25\" 720k", "525_2qd" }, { /*5.25" HD PS/2*/ 86, FLAG_RPM_360 | FLAG_525 | FLAG_DS | FLAG_HOLE0 | FLAG_HOLE1 | FLAG_DOUBLE_STEP | FLAG_INVERT_DENSEL | FLAG_PS2, "5.25\" 1.2M PS/2", "525_2hd_ps2" }, { /*5.25" HD*/ 86, FLAG_RPM_360 | FLAG_525 | FLAG_DS | FLAG_HOLE0 | FLAG_HOLE1 | FLAG_DOUBLE_STEP, "5.25\" 1.2M", "525_2hd" }, { /*5.25" HD Dual RPM*/ 86, FLAG_RPM_300 | FLAG_RPM_360 | FLAG_525 | FLAG_DS | FLAG_HOLE0 | FLAG_HOLE1 | FLAG_DOUBLE_STEP, "5.25\" 1.2M 300/360 RPM", "525_2hd_dualrpm" }, { /*3.5" 1DD*/ 86, FLAG_RPM_300 | FLAG_HOLE0 | FLAG_DOUBLE_STEP, "3.5\" 360k", "35_1dd" }, { /*3.5" DD*/ 86, FLAG_RPM_300 | FLAG_DS | FLAG_HOLE0 | FLAG_DOUBLE_STEP, "3.5\" 720k", "35_2dd" }, { /*3.5" HD PS/2*/ 86, FLAG_RPM_300 | FLAG_DS | FLAG_HOLE0 | FLAG_HOLE1 | FLAG_DOUBLE_STEP | FLAG_INVERT_DENSEL | FLAG_PS2, "3.5\" 1.44M PS/2", "35_2hd_ps2" }, { /*3.5" HD*/ 86, FLAG_RPM_300 | FLAG_DS | FLAG_HOLE0 | FLAG_HOLE1 | FLAG_DOUBLE_STEP, "3.5\" 1.44M", "35_2hd" }, { /*3.5" HD PC-98*/ 86, FLAG_RPM_300 | FLAG_RPM_360 | FLAG_DS | FLAG_HOLE0 | FLAG_HOLE1 | FLAG_DOUBLE_STEP | FLAG_INVERT_DENSEL, "3.5\" 1.25M PC-98", "35_2hd_nec" }, { /*3.5" HD 3-Mode*/ 86, FLAG_RPM_300 | FLAG_RPM_360 | FLAG_DS | FLAG_HOLE0 | FLAG_HOLE1 | FLAG_DOUBLE_STEP, "3.5\" 1.44M 300/360 RPM", "35_2hd_3mode" }, { /*3.5" ED*/ 86, FLAG_RPM_300 | FLAG_DS | FLAG_HOLE0 | FLAG_HOLE1 | FLAG_HOLE2 | FLAG_DOUBLE_STEP, "3.5\" 2.88M", "35_2ed" }, { /*End of list*/ -1, -1, "", "" } }; #ifdef ENABLE_FDD_LOG int fdd_do_log = ENABLE_FDD_LOG; static void fdd_log(const char *fmt, ...) { va_list ap; if (fdd_do_log) { va_start(ap, fmt); pclog_ex(fmt, ap); va_end(ap); } } #else #define fdd_log(fmt, ...) #endif char * fdd_getname(int type) { return (char *)drive_types[type].name; } char * fdd_get_internal_name(int type) { return (char *)drive_types[type].internal_name; } int fdd_get_from_internal_name(char *s) { int c = 0; while (strlen(drive_types[c].internal_name)) { if (!strcmp((char *)drive_types[c].internal_name, s)) return c; c++; } return 0; } /* This is needed for the dump as 86F feature. */ void fdd_do_seek(int drive, int track) { if (drives[drive].seek) drives[drive].seek(drive, track); } void fdd_forced_seek(int drive, int track_diff) { fdd[drive].track += track_diff; if (fdd[drive].track < 0) fdd[drive].track = 0; if (fdd[drive].track > drive_types[fdd[drive].type].max_track) fdd[drive].track = drive_types[fdd[drive].type].max_track; fdd_do_seek(drive, fdd[drive].track); } void fdd_seek(int drive, int track_diff) { if (!track_diff) return; fdd[drive].track += track_diff; if (fdd[drive].track < 0) fdd[drive].track = 0; if (fdd[drive].track > drive_types[fdd[drive].type].max_track) fdd[drive].track = drive_types[fdd[drive].type].max_track; fdd_changed[drive] = 0; fdd_do_seek(drive, fdd[drive].track); } int fdd_track0(int drive) { /* If drive is disabled, TRK0 never gets set. */ if (!drive_types[fdd[drive].type].max_track) return 0; return !fdd[drive].track; } int fdd_current_track(int drive) { return fdd[drive].track; } void fdd_set_densel(int densel) { int i = 0; for (i = 0; i < 4; i++) { if (drive_types[fdd[i].type].flags & FLAG_INVERT_DENSEL) fdd[i].densel = densel ^ 1; else fdd[i].densel = densel; } } int fdd_getrpm(int drive) { int densel = 0; int hole; hole = fdd_hole(drive); densel = fdd[drive].densel; if (drive_types[fdd[drive].type].flags & FLAG_INVERT_DENSEL) densel ^= 1; if (!(drive_types[fdd[drive].type].flags & FLAG_RPM_360)) return 300; if (!(drive_types[fdd[drive].type].flags & FLAG_RPM_300)) return 360; if (drive_types[fdd[drive].type].flags & FLAG_525) return densel ? 360 : 300; else { /* fdd_hole(drive) returns 0 for double density media, 1 for high density, and 2 for extended density. */ if (hole == 1) return densel ? 300 : 360; else return 300; } } int fdd_can_read_medium(int drive) { int hole = fdd_hole(drive); hole = 1 << (hole + 4); return !!(drive_types[fdd[drive].type].flags & hole); } int fdd_doublestep_40(int drive) { return !!(drive_types[fdd[drive].type].flags & FLAG_DOUBLE_STEP); } void fdd_set_type(int drive, int type) { int old_type = fdd[drive].type; fdd[drive].type = type; if ((drive_types[old_type].flags ^ drive_types[type].flags) & FLAG_INVERT_DENSEL) fdd[drive].densel ^= 1; } int fdd_get_type(int drive) { return fdd[drive].type; } int fdd_get_flags(int drive) { return drive_types[fdd[drive].type].flags; } int fdd_is_525(int drive) { return drive_types[fdd[drive].type].flags & FLAG_525; } int fdd_is_dd(int drive) { return (drive_types[fdd[drive].type].flags & 0x70) == 0x10; } int fdd_is_ed(int drive) { return drive_types[fdd[drive].type].flags & FLAG_HOLE2; } int fdd_is_double_sided(int drive) { return drive_types[fdd[drive].type].flags & FLAG_DS; } void fdd_set_head(int drive, int head) { if (head && !fdd_is_double_sided(drive)) fdd[drive].head = 0; else fdd[drive].head = head; } int fdd_get_head(int drive) { if (!fdd_is_double_sided(drive)) return 0; return fdd[drive].head; } void fdd_set_turbo(int drive, int turbo) { fdd[drive].turbo = turbo; } int fdd_get_turbo(int drive) { return fdd[drive].turbo; } void fdd_set_check_bpb(int drive, int check_bpb) { fdd[drive].check_bpb = check_bpb; } int fdd_get_check_bpb(int drive) { return fdd[drive].check_bpb; } int fdd_get_densel(int drive) { return fdd[drive].densel; } void fdd_load(int drive, wchar_t *fn) { int c = 0, size; wchar_t *p; FILE *f; fdd_log("FDD: loading drive %d with '%ls'\n", drive, fn); if (!fn) return; p = plat_get_extension(fn); if (!p) return; f = plat_fopen(fn, L"rb"); if (!f) return; if (fseek(f, -1, SEEK_END) == -1) fatal("fdd_load(): Error seeking to the end of the file\n"); size = ftell(f) + 1; fclose(f); while (loaders[c].ext) { if (!wcscasecmp(p, (wchar_t *) loaders[c].ext) && (size == loaders[c].size || loaders[c].size == -1)) { driveloaders[drive] = c; memcpy(floppyfns[drive], fn, (wcslen(fn) << 1) + 2); d86f_setup(drive); loaders[c].load(drive, floppyfns[drive]); drive_empty[drive] = 0; fdd_forced_seek(drive, 0); fdd_changed[drive] = 1; return; } c++; } fdd_log("FDD: could not load '%ls' %s\n",fn,p); drive_empty[drive] = 1; fdd_set_head(drive, 0); memset(floppyfns[drive], 0, sizeof(floppyfns[drive])); ui_sb_update_icon_state(drive, 1); } void fdd_close(int drive) { fdd_log("FDD: closing drive %d\n", drive); d86f_stop(drive); /* Call this first of all to make sure the 86F poll is back to idle state. */ if (loaders[driveloaders[drive]].close) loaders[driveloaders[drive]].close(drive); drive_empty[drive] = 1; fdd_set_head(drive, 0); floppyfns[drive][0] = 0; drives[drive].hole = NULL; drives[drive].poll = NULL; drives[drive].seek = NULL; drives[drive].readsector = NULL; drives[drive].writesector = NULL; drives[drive].comparesector = NULL; drives[drive].readaddress = NULL; drives[drive].format = NULL; drives[drive].byteperiod = NULL; drives[drive].stop = NULL; d86f_destroy(drive); ui_sb_update_icon_state(drive, 1); } int fdd_hole(int drive) { if (drives[drive].hole) return drives[drive].hole(drive); else return 0; } uint64_t fdd_byteperiod(int drive) { if (!fdd_get_turbo(drive) && drives[drive].byteperiod) return drives[drive].byteperiod(drive); else return 32ULL * TIMER_USEC; } void fdd_set_motor_enable(int drive, int motor_enable) { /* I think here is where spin-up and spin-down should be implemented. */ if (motor_enable && !motoron[drive]) timer_set_delay_u64(&fdd_poll_time[drive], fdd_byteperiod(drive)); else if (!motor_enable) timer_disable(&fdd_poll_time[drive]); motoron[drive] = motor_enable; } static void fdd_poll(void *priv) { int drive; DRIVE *drv = (DRIVE *) priv; drive = drv->id; if (drive >= FDD_NUM) fatal("Attempting to poll floppy drive %i that is not supposed to be there\n", drive); timer_advance_u64(&fdd_poll_time[drive], fdd_byteperiod(drive)); if (drv->poll) drv->poll(drive); if (fdd_notfound) { fdd_notfound--; if (!fdd_notfound) fdc_noidam(fdd_fdc); } } int fdd_get_bitcell_period(int rate) { int bit_rate = 250; switch (rate) { case 0: /*High density*/ bit_rate = 500; break; case 1: /*Double density (360 rpm)*/ bit_rate = 300; break; case 2: /*Double density*/ bit_rate = 250; break; case 3: /*Extended density*/ bit_rate = 1000; break; } return 1000000 / bit_rate*2; /*Bitcell period in ns*/ } void fdd_reset(void) { int i; for (i = 0; i < 4; i++) { drives[i].id = i; timer_add(&(fdd_poll_time[i]), fdd_poll, &drives[i], 0); } } void fdd_readsector(int drive, int sector, int track, int side, int density, int sector_size) { if (drives[drive].readsector) drives[drive].readsector(drive, sector, track, side, density, sector_size); else fdd_notfound = 1000; } void fdd_writesector(int drive, int sector, int track, int side, int density, int sector_size) { if (drives[drive].writesector) drives[drive].writesector(drive, sector, track, side, density, sector_size); else fdd_notfound = 1000; } void fdd_comparesector(int drive, int sector, int track, int side, int density, int sector_size) { if (drives[drive].comparesector) drives[drive].comparesector(drive, sector, track, side, density, sector_size); else fdd_notfound = 1000; } void fdd_readaddress(int drive, int side, int density) { if (drives[drive].readaddress) drives[drive].readaddress(drive, side, density); } void fdd_format(int drive, int side, int density, uint8_t fill) { if (drives[drive].format) drives[drive].format(drive, side, density, fill); else fdd_notfound = 1000; } void fdd_stop(int drive) { if (drives[drive].stop) drives[drive].stop(drive); } void fdd_set_fdc(void *fdc) { fdd_fdc = (fdc_t *) fdc; } void fdd_init(void) { int i; for (i = 0; i < 4; i++) { drives[i].poll = 0; drives[i].seek = 0; drives[i].readsector = 0; } img_init(); d86f_init(); td0_init(); imd_init(); json_init(); fdd_load(0, floppyfns[0]); fdd_load(1, floppyfns[1]); fdd_load(2, floppyfns[2]); fdd_load(3, floppyfns[3]); }