/* * 86Box A hypervisor and IBM PC system emulator that specializes in * running old operating systems and software designed for IBM * PC systems and compatibles from 1981 through fairly recent * system designs based on the PCI bus. * * This file is part of the 86Box distribution. * * Implementation of the Iomega ZIP drive with SCSI(-like) * commands, for both ATAPI and SCSI usage. * * Version: @(#)zip.c 1.0.25 2018/10/07 * * Author: Miran Grca, * * Copyright 2018 Miran Grca. */ #include #include #include #include #include #include #define HAVE_STDARG_H #include "../86box.h" #include "../config.h" #include "../timer.h" #include "../device.h" #include "../piix.h" #include "../scsi/scsi_device.h" #include "../nvr.h" #include "../plat.h" #include "../ui.h" #include "hdc.h" #include "hdc_ide.h" #include "zip.h" /* Bits of 'status' */ #define ERR_STAT 0x01 #define DRQ_STAT 0x08 /* Data request */ #define DSC_STAT 0x10 #define SERVICE_STAT 0x10 #define READY_STAT 0x40 #define BUSY_STAT 0x80 /* Bits of 'error' */ #define ABRT_ERR 0x04 /* Command aborted */ #define MCR_ERR 0x08 /* Media change request */ #define zipbufferb dev->buffer zip_t *zip[ZIP_NUM]; zip_drive_t zip_drives[ZIP_NUM]; uint8_t atapi_zip_drives[8] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; uint8_t scsi_zip_drives[16] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; /* Table of all SCSI commands and their flags, needed for the new disc change / not ready handler. */ const uint8_t zip_command_flags[0x100] = { IMPLEMENTED | CHECK_READY | NONDATA, /* 0x00 */ IMPLEMENTED | ALLOW_UA | NONDATA | SCSI_ONLY, /* 0x01 */ 0, IMPLEMENTED | ALLOW_UA, /* 0x03 */ IMPLEMENTED | CHECK_READY | ALLOW_UA | NONDATA | SCSI_ONLY, /* 0x04 */ 0, IMPLEMENTED, /* 0x06 */ 0, IMPLEMENTED | CHECK_READY, /* 0x08 */ 0, IMPLEMENTED | CHECK_READY, /* 0x0A */ IMPLEMENTED | CHECK_READY | NONDATA, /* 0x0B */ IMPLEMENTED, /* 0x0C */ IMPLEMENTED | ATAPI_ONLY, /* 0x0D */ 0, 0, 0, 0, IMPLEMENTED | ALLOW_UA, /* 0x12 */ IMPLEMENTED | CHECK_READY | NONDATA | SCSI_ONLY, /* 0x13 */ 0, IMPLEMENTED, /* 0x15 */ IMPLEMENTED | SCSI_ONLY, /* 0x16 */ IMPLEMENTED | SCSI_ONLY, /* 0x17 */ 0, 0, IMPLEMENTED, /* 0x1A */ IMPLEMENTED | CHECK_READY, /* 0x1B */ 0, IMPLEMENTED, /* 0x1D */ IMPLEMENTED | CHECK_READY, /* 0x1E */ 0, 0, 0, 0, IMPLEMENTED | ATAPI_ONLY, /* 0x23 */ 0, IMPLEMENTED | CHECK_READY, /* 0x25 */ 0, 0, IMPLEMENTED | CHECK_READY, /* 0x28 */ 0, IMPLEMENTED | CHECK_READY, /* 0x2A */ IMPLEMENTED | CHECK_READY | NONDATA, /* 0x2B */ 0, 0, IMPLEMENTED | CHECK_READY, /* 0x2E */ IMPLEMENTED | CHECK_READY | NONDATA | SCSI_ONLY, /* 0x2F */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, IMPLEMENTED | CHECK_READY, /* 0x41 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, IMPLEMENTED, /* 0x55 */ 0, 0, 0, 0, IMPLEMENTED, /* 0x5A */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, IMPLEMENTED | CHECK_READY, /* 0xA8 */ 0, IMPLEMENTED | CHECK_READY, /* 0xAA */ 0, 0, 0, IMPLEMENTED | CHECK_READY, /* 0xAE */ IMPLEMENTED | CHECK_READY | NONDATA | SCSI_ONLY, /* 0xAF */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, IMPLEMENTED, /* 0xBD */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static uint64_t zip_mode_sense_page_flags = (GPMODEP_R_W_ERROR_PAGE | GPMODEP_DISCONNECT_PAGE | GPMODEP_IOMEGA_PAGE | GPMODEP_ALL_PAGES); static uint64_t zip_250_mode_sense_page_flags = (GPMODEP_R_W_ERROR_PAGE | GPMODEP_FLEXIBLE_DISK_PAGE | GPMODEP_CACHING_PAGE | GPMODEP_IOMEGA_PAGE | GPMODEP_ALL_PAGES); static const mode_sense_pages_t zip_mode_sense_pages_default = { { { 0, 0 }, { GPMODE_R_W_ERROR_PAGE, 0x0a, 0xc8, 22, 0, 0, 0, 0, 90, 0, 0x50, 0x20 }, { GPMODE_DISCONNECT_PAGE, 0x0e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { GPMODE_IOMEGA_PAGE, 0x04, 0x5c, 0x0f, 0xff, 0x0f } } }; static const mode_sense_pages_t zip_250_mode_sense_pages_default = { { { 0, 0 }, { GPMODE_R_W_ERROR_PAGE, 0x06, 0xc8, 0x64, 0, 0, 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, {GPMODE_FLEXIBLE_DISK_PAGE, 0x1e, 0x80, 0, 0x40, 0x20, 2, 0, 0, 0xef, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x0b, 0x7d, 0, 0 }, { 0, 0 }, { 0, 0 }, { GPMODE_CACHING_PAGE, 0x0a, 4, 0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0xff, 0xff }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { GPMODE_IOMEGA_PAGE, 0x04, 0x5c, 0x0f, 0x3c, 0x0f } } }; static const mode_sense_pages_t zip_mode_sense_pages_default_scsi = { { { 0, 0 }, { GPMODE_R_W_ERROR_PAGE, 0x0a, 0xc8, 22, 0, 0, 0, 0, 90, 0, 0x50, 0x20 }, { GPMODE_DISCONNECT_PAGE, 0x0e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { GPMODE_IOMEGA_PAGE, 0x04, 0x5c, 0x0f, 0xff, 0x0f } } }; static const mode_sense_pages_t zip_250_mode_sense_pages_default_scsi = { { { 0, 0 }, { GPMODE_R_W_ERROR_PAGE, 0x06, 0xc8, 0x64, 0, 0, 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, {GPMODE_FLEXIBLE_DISK_PAGE, 0x1e, 0x80, 0, 0x40, 0x20, 2, 0, 0, 0xef, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x0b, 0x7d, 0, 0 }, { 0, 0 }, { 0, 0 }, { GPMODE_CACHING_PAGE, 0x0a, 4, 0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0xff, 0xff }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { GPMODE_IOMEGA_PAGE, 0x04, 0x5c, 0x0f, 0x3c, 0x0f } } }; static const mode_sense_pages_t zip_mode_sense_pages_changeable = { { { 0, 0 }, { GPMODE_R_W_ERROR_PAGE, 0x0a, 0xFF, 0xFF, 0, 0, 0, 0, 0xFF, 0xFF, 0xFF, 0xFF }, { GPMODE_DISCONNECT_PAGE, 0x0e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { GPMODE_IOMEGA_PAGE, 0x04, 0xff, 0xff, 0xff, 0xff } } }; static const mode_sense_pages_t zip_250_mode_sense_pages_changeable = { { { 0, 0 }, { GPMODE_R_W_ERROR_PAGE, 0x06, 0xFF, 0xFF, 0, 0, 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, {GPMODE_FLEXIBLE_DISK_PAGE, 0x1e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0 }, { 0, 0 }, { 0, 0 }, { GPMODE_CACHING_PAGE, 0x0a, 4, 0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0xff, 0xff }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { GPMODE_IOMEGA_PAGE, 0x04, 0xff, 0xff, 0xff, 0xff } } }; static void zip_command_complete(zip_t *dev); static void zip_init(zip_t *dev); void zip_phase_callback(zip_t *dev); #ifdef ENABLE_ZIP_LOG int zip_do_log = ENABLE_ZIP_LOG; #endif static void zip_log(const char *format, ...) { #ifdef ENABLE_ZIP_LOG va_list ap; if (zip_do_log) { va_start(ap, format); pclog_ex(format, ap); va_end(ap); } #endif } int find_zip_for_channel(uint8_t channel) { uint8_t i = 0; for (i = 0; i < ZIP_NUM; i++) { if ((zip_drives[i].bus_type == ZIP_BUS_ATAPI) && (zip_drives[i].ide_channel == channel)) return i; } return 0xff; } int zip_load(zip_t *dev, wchar_t *fn) { int read_only = dev->drv->ui_writeprot; int size = 0; dev->drv->f = plat_fopen(fn, dev->drv->ui_writeprot ? L"rb" : L"rb+"); if (!dev->drv->ui_writeprot && !dev->drv->f) { dev->drv->f = plat_fopen(fn, L"rb"); read_only = 1; } if (dev->drv->f) { fseek(dev->drv->f, 0, SEEK_END); size = ftell(dev->drv->f); if ((size == ((ZIP_250_SECTORS << 9) + 0x1000)) || (size == ((ZIP_SECTORS << 9) + 0x1000))) { /* This is a ZDI image. */ size -= 0x1000; dev->drv->base = 0x1000; } else dev->drv->base = 0; if (dev->drv->is_250) { if ((size != (ZIP_250_SECTORS << 9)) && (size != (ZIP_SECTORS << 9))) { zip_log("File is incorrect size for a ZIP image\nMust be exactly %i or %i bytes\n", ZIP_250_SECTORS << 9, ZIP_SECTORS << 9); fclose(dev->drv->f); dev->drv->f = NULL; dev->drv->medium_size = 0; zip_eject(dev->id); /* Make sure the host OS knows we've rejected (and ejected) the image. */ return 0; } } else { if (size != (ZIP_SECTORS << 9)) { zip_log("File is incorrect size for a ZIP image\nMust be exactly %i bytes\n", ZIP_SECTORS << 9); fclose(dev->drv->f); dev->drv->f = NULL; dev->drv->medium_size = 0; zip_eject(dev->id); /* Make sure the host OS knows we've rejected (and ejected) the image. */ return 0; } } dev->drv->medium_size = size >> 9; fseek(dev->drv->f, dev->drv->base, SEEK_SET); memcpy(dev->drv->image_path, fn, sizeof(dev->drv->image_path)); dev->drv->read_only = read_only; return 1; } return 0; } void zip_disk_reload(zip_t *dev) { int ret = 0; if (wcslen(dev->drv->prev_image_path) == 0) return; else ret = zip_load(dev, dev->drv->prev_image_path); if (ret) dev->unit_attention = 1; } void zip_disk_close(zip_t *dev) { if (dev->drv->f) { fclose(dev->drv->f); dev->drv->f = NULL; memcpy(dev->drv->prev_image_path, dev->drv->image_path, sizeof(dev->drv->prev_image_path)); memset(dev->drv->image_path, 0, sizeof(dev->drv->image_path)); dev->drv->medium_size = 0; } } void build_atapi_zip_map() { uint8_t i = 0; memset(atapi_zip_drives, 0xff, 8); for (i = 0; i < 8; i++) atapi_zip_drives[i] = find_zip_for_channel(i); } int find_zip_for_scsi_id(uint8_t scsi_id) { uint8_t i = 0; for (i = 0; i < ZIP_NUM; i++) { if ((zip_drives[i].bus_type == ZIP_BUS_SCSI) && (zip_drives[i].scsi_device_id == scsi_id)) return i; } return 0xff; } void build_scsi_zip_map() { uint8_t i = 0; memset(scsi_zip_drives, 0xff, 16); for (i = 0; i < 16; i++) scsi_zip_drives[i] = find_zip_for_scsi_id(i); } static void zip_set_callback(zip_t *dev) { if (dev->drv->bus_type != ZIP_BUS_SCSI) ide_set_callback(dev->drv->ide_channel >> 1, dev->callback); } void zip_set_signature(zip_t *dev) { if (dev->id >= ZIP_NUM) return; dev->phase = 1; dev->request_length = 0xEB14; } static void zip_init(zip_t *dev) { if (dev->id >= ZIP_NUM) return; dev->requested_blocks = 1; dev->sense[0] = 0xf0; dev->sense[7] = 10; dev->drv->bus_mode = 0; if (dev->drv->bus_type >= ZIP_BUS_ATAPI) dev->drv->bus_mode |= 2; if (dev->drv->bus_type < ZIP_BUS_SCSI) dev->drv->bus_mode |= 1; zip_log("ZIP %i: Bus type %i, bus mode %i\n", dev->id, dev->drv->bus_type, dev->drv->bus_mode); if (dev->drv->bus_type < ZIP_BUS_SCSI) zip_set_signature(dev); dev->status = READY_STAT | DSC_STAT; dev->pos = 0; dev->packet_status = 0xff; zip_sense_key = zip_asc = zip_ascq = dev->unit_attention = 0; } static int zip_supports_pio(zip_t *dev) { return (dev->drv->bus_mode & 1); } static int zip_supports_dma(zip_t *dev) { return (dev->drv->bus_mode & 2); } /* Returns: 0 for none, 1 for PIO, 2 for DMA. */ static int zip_current_mode(zip_t *dev) { if (!zip_supports_pio(dev) && !zip_supports_dma(dev)) return 0; if (zip_supports_pio(dev) && !zip_supports_dma(dev)) { zip_log("ZIP %i: Drive does not support DMA, setting to PIO\n", dev->id); return 1; } if (!zip_supports_pio(dev) && zip_supports_dma(dev)) return 2; if (zip_supports_pio(dev) && zip_supports_dma(dev)) { zip_log("ZIP %i: Drive supports both, setting to %s\n", dev->id, (dev->features & 1) ? "DMA" : "PIO"); return (dev->features & 1) ? 2 : 1; } return 0; } /* Translates ATAPI status (ERR_STAT flag) to SCSI status. */ int zip_ZIP_PHASE_to_scsi(zip_t *dev) { if (dev->status & ERR_STAT) return SCSI_STATUS_CHECK_CONDITION; else return SCSI_STATUS_OK; } /* Translates ATAPI phase (DRQ, I/O, C/D) to SCSI phase (MSG, C/D, I/O). */ int zip_atapi_phase_to_scsi(zip_t *dev) { if (dev->status & 8) { switch (dev->phase & 3) { case 0: return 0; case 1: return 2; case 2: return 1; case 3: return 7; } } else { if ((dev->phase & 3) == 3) return 3; else return 4; } return 0; } static void zip_mode_sense_load(zip_t *dev) { FILE *f; wchar_t file_name[512]; int i; memset(&dev->ms_pages_saved, 0, sizeof(mode_sense_pages_t)); for (i = 0; i < 0x3f; i++) { if (dev->drv->is_250) { if (zip_250_mode_sense_pages_default.pages[i][1] != 0) { if (zip_drives[dev->id].bus_type == ZIP_BUS_SCSI) { memcpy(dev->ms_pages_saved.pages[i], zip_250_mode_sense_pages_default_scsi.pages[i], zip_250_mode_sense_pages_default_scsi.pages[i][1] + 2); } else { memcpy(dev->ms_pages_saved.pages[i], zip_250_mode_sense_pages_default.pages[i], zip_250_mode_sense_pages_default.pages[i][1] + 2); } } } else { if (zip_mode_sense_pages_default.pages[i][1] != 0) { if (dev->drv->bus_type == ZIP_BUS_SCSI) { memcpy(dev->ms_pages_saved.pages[i], zip_mode_sense_pages_default_scsi.pages[i], zip_mode_sense_pages_default_scsi.pages[i][1] + 2); } else { memcpy(dev->ms_pages_saved.pages[i], zip_mode_sense_pages_default.pages[i], zip_mode_sense_pages_default.pages[i][1] + 2); } } } } memset(file_name, 0, 512 * sizeof(wchar_t)); if (dev->drv->bus_type == ZIP_BUS_SCSI) swprintf(file_name, 512, L"scsi_zip_%02i_mode_sense_bin", dev->id); else swprintf(file_name, 512, L"zip_%02i_mode_sense_bin", dev->id); f = plat_fopen(nvr_path(file_name), L"rb"); if (f) fclose(f); } static void zip_mode_sense_save(zip_t *dev) { FILE *f; wchar_t file_name[512]; memset(file_name, 0, 512 * sizeof(wchar_t)); if (dev->drv->bus_type == ZIP_BUS_SCSI) swprintf(file_name, 512, L"scsi_zip_%02i_mode_sense_bin", dev->id); else swprintf(file_name, 512, L"zip_%02i_mode_sense_bin", dev->id); f = plat_fopen(nvr_path(file_name), L"wb"); if (f) fclose(f); } int zip_read_capacity(zip_t *dev, uint8_t *cdb, uint8_t *buffer, uint32_t *len) { int size = 0; if (dev->drv->is_250) size = dev->drv->medium_size - 1; /* IMPORTANT: What's returned is the last LBA block. */ else size = ZIP_SECTORS - 1; /* IMPORTANT: What's returned is the last LBA block. */ memset(buffer, 0, 8); buffer[0] = (size >> 24) & 0xff; buffer[1] = (size >> 16) & 0xff; buffer[2] = (size >> 8) & 0xff; buffer[3] = size & 0xff; buffer[6] = 2; /* 512 = 0x0200 */ *len = 8; return 1; } /*SCSI Mode Sense 6/10*/ static uint8_t zip_mode_sense_read(zip_t *dev, uint8_t page_control, uint8_t page, uint8_t pos) { switch (page_control) { case 0: case 3: if (dev->drv->is_250 && (page == 5) && (pos == 9) && (dev->drv->medium_size == ZIP_SECTORS)) return 0x60; return dev->ms_pages_saved.pages[page][pos]; break; case 1: if (dev->drv->is_250) return zip_250_mode_sense_pages_changeable.pages[page][pos]; else return zip_mode_sense_pages_changeable.pages[page][pos]; break; case 2: if (dev->drv->is_250) { if ((page == 5) && (pos == 9) && (dev->drv->medium_size == ZIP_SECTORS)) return 0x60; if (dev->drv->bus_type == ZIP_BUS_SCSI) return zip_250_mode_sense_pages_default_scsi.pages[page][pos]; else return zip_250_mode_sense_pages_default.pages[page][pos]; } else { if (dev->drv->bus_type == ZIP_BUS_SCSI) return zip_mode_sense_pages_default_scsi.pages[page][pos]; else return zip_mode_sense_pages_default.pages[page][pos]; } break; } return 0; } static uint32_t zip_mode_sense(zip_t *dev, uint8_t *buf, uint32_t pos, uint8_t type, uint8_t block_descriptor_len) { uint64_t pf; uint8_t page_control = (type >> 6) & 3; if (dev->drv->is_250) pf = zip_250_mode_sense_page_flags; else pf = zip_mode_sense_page_flags; int i = 0; int j = 0; uint8_t msplen; type &= 0x3f; if (block_descriptor_len) { if (dev->drv->is_250) { buf[pos++] = ((dev->drv->medium_size >> 24) & 0xff); buf[pos++] = ((dev->drv->medium_size >> 16) & 0xff); buf[pos++] = ((dev->drv->medium_size >> 8) & 0xff); buf[pos++] = ( dev->drv->medium_size & 0xff); } else { buf[pos++] = ((ZIP_SECTORS >> 24) & 0xff); buf[pos++] = ((ZIP_SECTORS >> 16) & 0xff); buf[pos++] = ((ZIP_SECTORS >> 8) & 0xff); buf[pos++] = ( ZIP_SECTORS & 0xff); } buf[pos++] = 0; /* Reserved. */ buf[pos++] = 0; /* Block length (0x200 = 512 bytes). */ buf[pos++] = 2; buf[pos++] = 0; } for (i = 0; i < 0x40; i++) { if ((type == GPMODE_ALL_PAGES) || (type == i)) { if (pf & (1LL << dev->current_page_code)) { buf[pos++] = zip_mode_sense_read(dev, page_control, i, 0); msplen = zip_mode_sense_read(dev, page_control, i, 1); buf[pos++] = msplen; zip_log("ZIP %i: MODE SENSE: Page [%02X] length %i\n", dev->id, i, msplen); for (j = 0; j < msplen; j++) buf[pos++] = zip_mode_sense_read(dev, page_control, i, 2 + j); } } } return pos; } static void zip_update_request_length(zip_t *dev, int len, int block_len) { int bt, min_len = 0; dev->max_transfer_len = dev->request_length; /* For media access commands, make sure the requested DRQ length matches the block length. */ switch (dev->current_cdb[0]) { case 0x08: case 0x28: case 0xa8: /* Make sure total length is not bigger than sum of the lengths of all the requested blocks. */ bt = (dev->requested_blocks * block_len); if (len > bt) len = bt; min_len = block_len; if (len <= block_len) { /* Total length is less or equal to block length. */ if (dev->max_transfer_len < block_len) { /* Transfer a minimum of (block size) bytes. */ dev->max_transfer_len = block_len; dev->packet_len = block_len; break; } } default: dev->packet_len = len; break; } /* If the DRQ length is odd, and the total remaining length is bigger, make sure it's even. */ if ((dev->max_transfer_len & 1) && (dev->max_transfer_len < len)) dev->max_transfer_len &= 0xfffe; /* If the DRQ length is smaller or equal in size to the total remaining length, set it to that. */ if (!dev->max_transfer_len) dev->max_transfer_len = 65534; if ((len <= dev->max_transfer_len) && (len >= min_len)) dev->request_length = dev->max_transfer_len = len; else if (len > dev->max_transfer_len) dev->request_length = dev->max_transfer_len; return; } static void zip_command_bus(zip_t *dev) { dev->status = BUSY_STAT; dev->phase = 1; dev->pos = 0; dev->callback = 1LL * ZIP_TIME; zip_set_callback(dev); } static void zip_command_common(zip_t *dev) { double bytes_per_second, period; double dusec; dev->status = BUSY_STAT; dev->phase = 1; dev->pos = 0; if (dev->packet_status == ZIP_PHASE_COMPLETE) { zip_phase_callback(dev); dev->callback = 0LL; } else { if (dev->drv->bus_type == ZIP_BUS_SCSI) { dev->callback = -1LL; /* Speed depends on SCSI controller */ return; } else { if (zip_current_mode(dev) == 2) bytes_per_second = 66666666.666666666666666; /* 66 MB/s MDMA-2 speed */ else bytes_per_second = 8333333.333333333333333; /* 8.3 MB/s PIO-2 speed */ } period = 1000000.0 / bytes_per_second; dusec = (double) TIMER_USEC; dusec = dusec * period * (double) (dev->packet_len); dev->callback = ((int64_t) dusec); } zip_set_callback(dev); } static void zip_command_complete(zip_t *dev) { dev->packet_status = ZIP_PHASE_COMPLETE; zip_command_common(dev); } static void zip_command_read(zip_t *dev) { dev->packet_status = ZIP_PHASE_DATA_IN; zip_command_common(dev); dev->total_read = 0; } static void zip_command_read_dma(zip_t *dev) { dev->packet_status = ZIP_PHASE_DATA_IN_DMA; zip_command_common(dev); dev->total_read = 0; } static void zip_command_write(zip_t *dev) { dev->packet_status = ZIP_PHASE_DATA_OUT; zip_command_common(dev); } static void zip_command_write_dma(zip_t *dev) { dev->packet_status = ZIP_PHASE_DATA_OUT_DMA; zip_command_common(dev); } /* id = Current ZIP device ID; len = Total transfer length; block_len = Length of a single block (why does it matter?!); alloc_len = Allocated transfer length; direction = Transfer direction (0 = read from host, 1 = write to host). */ static void zip_data_command_finish(zip_t *dev, int len, int block_len, int alloc_len, int direction) { zip_log("ZIP %i: Finishing command (%02X): %i, %i, %i, %i, %i\n", dev->id, dev->current_cdb[0], len, block_len, alloc_len, direction, dev->request_length); dev->pos = 0; if (alloc_len >= 0) { if (alloc_len < len) len = alloc_len; } if ((len == 0) || (zip_current_mode(dev) == 0)) { if (dev->drv->bus_type != ZIP_BUS_SCSI) dev->packet_len = 0; zip_command_complete(dev); } else { if (zip_current_mode(dev) == 2) { if (dev->drv->bus_type != ZIP_BUS_SCSI) dev->packet_len = alloc_len; if (direction == 0) zip_command_read_dma(dev); else zip_command_write_dma(dev); } else { zip_update_request_length(dev, len, block_len); if (direction == 0) zip_command_read(dev); else zip_command_write(dev); } } zip_log("ZIP %i: Status: %i, cylinder %i, packet length: %i, position: %i, phase: %i\n", dev->id, dev->packet_status, dev->request_length, dev->packet_len, dev->pos, dev->phase); } static void zip_sense_clear(zip_t *dev, int command) { dev->previous_command = command; zip_sense_key = zip_asc = zip_ascq = 0; } static void zip_set_phase(zip_t *dev, uint8_t phase) { uint8_t scsi_id = dev->drv->scsi_device_id; if (dev->drv->bus_type != ZIP_BUS_SCSI) return; SCSIDevices[scsi_id].Phase = phase; } static void zip_cmd_error(zip_t *dev) { zip_set_phase(dev, SCSI_PHASE_STATUS); dev->error = ((zip_sense_key & 0xf) << 4) | ABRT_ERR; if (dev->unit_attention) dev->error |= MCR_ERR; dev->status = READY_STAT | ERR_STAT; dev->phase = 3; dev->pos = 0; dev->packet_status = 0x80; dev->callback = 50LL * ZIP_TIME; zip_set_callback(dev); zip_log("ZIP %i: [%02X] ERROR: %02X/%02X/%02X\n", dev->id, dev->current_cdb[0], zip_sense_key, zip_asc, zip_ascq); } static void zip_unit_attention(zip_t *dev) { zip_set_phase(dev, SCSI_PHASE_STATUS); dev->error = (SENSE_UNIT_ATTENTION << 4) | ABRT_ERR; if (dev->unit_attention) dev->error |= MCR_ERR; dev->status = READY_STAT | ERR_STAT; dev->phase = 3; dev->pos = 0; dev->packet_status = 0x80; dev->callback = 50LL * ZIP_TIME; zip_set_callback(dev); zip_log("ZIP %i: UNIT ATTENTION\n", dev->id); } static void zip_bus_master_error(zip_t *dev) { zip_sense_key = zip_asc = zip_ascq = 0; zip_cmd_error(dev); } static void zip_not_ready(zip_t *dev) { zip_sense_key = SENSE_NOT_READY; zip_asc = ASC_MEDIUM_NOT_PRESENT; zip_ascq = 0; zip_cmd_error(dev); } static void zip_write_protected(zip_t *dev) { zip_sense_key = SENSE_UNIT_ATTENTION; zip_asc = ASC_WRITE_PROTECTED; zip_ascq = 0; zip_cmd_error(dev); } static void zip_invalid_lun(zip_t *dev) { zip_sense_key = SENSE_ILLEGAL_REQUEST; zip_asc = ASC_INV_LUN; zip_ascq = 0; zip_cmd_error(dev); } static void zip_illegal_opcode(zip_t *dev) { zip_sense_key = SENSE_ILLEGAL_REQUEST; zip_asc = ASC_ILLEGAL_OPCODE; zip_ascq = 0; zip_cmd_error(dev); } static void zip_lba_out_of_range(zip_t *dev) { zip_sense_key = SENSE_ILLEGAL_REQUEST; zip_asc = ASC_LBA_OUT_OF_RANGE; zip_ascq = 0; zip_cmd_error(dev); } static void zip_invalid_field(zip_t *dev) { zip_sense_key = SENSE_ILLEGAL_REQUEST; zip_asc = ASC_INV_FIELD_IN_CMD_PACKET; zip_ascq = 0; zip_cmd_error(dev); dev->status = 0x53; } static void zip_invalid_field_pl(zip_t *dev) { zip_sense_key = SENSE_ILLEGAL_REQUEST; zip_asc = ASC_INV_FIELD_IN_PARAMETER_LIST; zip_ascq = 0; zip_cmd_error(dev); dev->status = 0x53; } static void zip_data_phase_error(zip_t *dev) { zip_sense_key = SENSE_ILLEGAL_REQUEST; zip_asc = ASC_DATA_PHASE_ERROR; zip_ascq = 0; zip_cmd_error(dev); } static int zip_blocks(zip_t *dev, int32_t *len, int first_batch, int out) { dev->data_pos = 0; *len = 0; if (!dev->sector_len) { zip_command_complete(dev); return -1; } zip_log("%sing %i blocks starting from %i...\n", out ? "Writ" : "Read", dev->requested_blocks, dev->sector_pos); if (dev->sector_pos >= dev->drv->medium_size) { zip_log("ZIP %i: Trying to %s beyond the end of disk\n", dev->id, out ? "write" : "read"); zip_lba_out_of_range(dev); return 0; } *len = dev->requested_blocks << 9; fseek(dev->drv->f, dev->drv->base + (dev->sector_pos << 9), SEEK_SET); if (out) fwrite(zipbufferb, 1, *len, dev->drv->f); else fread(zipbufferb, 1, *len, dev->drv->f); zip_log("%s %i bytes of blocks...\n", out ? "Written" : "Read", *len); dev->sector_pos += dev->requested_blocks; dev->sector_len -= dev->requested_blocks; return 1; } void zip_insert(zip_t *dev) { dev->unit_attention = 1; } /*SCSI Sense Initialization*/ void zip_sense_code_ok(zip_t *dev) { zip_sense_key = SENSE_NONE; zip_asc = 0; zip_ascq = 0; } static int zip_pre_execution_check(zip_t *dev, uint8_t *cdb) { int ready = 0; if (dev->drv->bus_type == ZIP_BUS_SCSI) { if ((cdb[0] != GPCMD_REQUEST_SENSE) && (cdb[1] & 0xe0)) { zip_log("ZIP %i: Attempting to execute a unknown command targeted at SCSI LUN %i\n", dev->id, ((dev->request_length >> 5) & 7)); zip_invalid_lun(dev); return 0; } } if (!(zip_command_flags[cdb[0]] & IMPLEMENTED)) { zip_log("ZIP %i: Attempting to execute unknown command %02X over %s\n", dev->id, cdb[0], (dev->drv->bus_type == ZIP_BUS_SCSI) ? "SCSI" : "ATAPI"); zip_illegal_opcode(dev); return 0; } if ((dev->drv->bus_type < ZIP_BUS_SCSI) && (zip_command_flags[cdb[0]] & SCSI_ONLY)) { zip_log("ZIP %i: Attempting to execute SCSI-only command %02X over ATAPI\n", dev->id, cdb[0]); zip_illegal_opcode(dev); return 0; } if ((dev->drv->bus_type == ZIP_BUS_SCSI) && (zip_command_flags[cdb[0]] & ATAPI_ONLY)) { zip_log("ZIP %i: Attempting to execute ATAPI-only command %02X over SCSI\n", dev->id, cdb[0]); zip_illegal_opcode(dev); return 0; } ready = (dev->drv->f != NULL); /* If the drive is not ready, there is no reason to keep the UNIT ATTENTION condition present, as we only use it to mark disc changes. */ if (!ready && dev->unit_attention) dev->unit_attention = 0; /* If the UNIT ATTENTION condition is set and the command does not allow execution under it, error out and report the condition. */ if (dev->unit_attention == 1) { /* Only increment the unit attention phase if the command can not pass through it. */ if (!(zip_command_flags[cdb[0]] & ALLOW_UA)) { /* zip_log("ZIP %i: Unit attention now 2\n", dev->id); */ dev->unit_attention = 2; zip_log("ZIP %i: UNIT ATTENTION: Command %02X not allowed to pass through\n", dev->id, cdb[0]); zip_unit_attention(dev); return 0; } } else if (dev->unit_attention == 2) { if (cdb[0] != GPCMD_REQUEST_SENSE) { /* zip_log("ZIP %i: Unit attention now 0\n", dev->id); */ dev->unit_attention = 0; } } /* Unless the command is REQUEST SENSE, clear the sense. This will *NOT* the UNIT ATTENTION condition if it's set. */ if (cdb[0] != GPCMD_REQUEST_SENSE) zip_sense_clear(dev, cdb[0]); /* Next it's time for NOT READY. */ if (!ready) dev->media_status = MEC_MEDIA_REMOVAL; else dev->media_status = (dev->unit_attention) ? MEC_NEW_MEDIA : MEC_NO_CHANGE; if ((zip_command_flags[cdb[0]] & CHECK_READY) && !ready) { zip_log("ZIP %i: Not ready (%02X)\n", dev->id, cdb[0]); zip_not_ready(dev); return 0; } zip_log("ZIP %i: Continuing with command %02X\n", dev->id, cdb[0]); return 1; } static void zip_seek(zip_t *dev, uint32_t pos) { /* zip_log("ZIP %i: Seek %08X\n", dev->id, pos); */ dev->sector_pos = pos; } static void zip_rezero(zip_t *dev) { dev->sector_pos = dev->sector_len = 0; zip_seek(dev, 0); } void zip_reset(zip_t *dev) { zip_rezero(dev); dev->status = 0; dev->callback = 0LL; zip_set_callback(dev); dev->packet_status = 0xff; dev->unit_attention = 0; } static void zip_request_sense(zip_t *dev, uint8_t *buffer, uint8_t alloc_length, int desc) { /*Will return 18 bytes of 0*/ if (alloc_length != 0) { memset(buffer, 0, alloc_length); if (!desc) memcpy(buffer, dev->sense, alloc_length); else { buffer[1] = zip_sense_key; buffer[2] = zip_asc; buffer[3] = zip_ascq; } } buffer[0] = desc ? 0x72 : 0x70; if (dev->unit_attention && (zip_sense_key == 0)) { buffer[desc ? 1 : 2] = SENSE_UNIT_ATTENTION; buffer[desc ? 2 : 12] = ASC_MEDIUM_MAY_HAVE_CHANGED; buffer[desc ? 3 : 13] = 0; } zip_log("ZIP %i: Reporting sense: %02X %02X %02X\n", dev->id, buffer[2], buffer[12], buffer[13]); if (buffer[desc ? 1 : 2] == SENSE_UNIT_ATTENTION) { /* If the last remaining sense is unit attention, clear that condition. */ dev->unit_attention = 0; } /* Clear the sense stuff as per the spec. */ zip_sense_clear(dev, GPCMD_REQUEST_SENSE); } void zip_request_sense_for_scsi(zip_t *dev, uint8_t *buffer, uint8_t alloc_length) { int ready = 0; ready = (dev->drv->f != NULL); if (!ready && dev->unit_attention) { /* If the drive is not ready, there is no reason to keep the UNIT ATTENTION condition present, as we only use it to mark disc changes. */ dev->unit_attention = 0; } /* Do *NOT* advance the unit attention phase. */ zip_request_sense(dev, buffer, alloc_length, 0); } static void zip_set_buf_len(zip_t *dev, int32_t *BufLen, int32_t *src_len) { if (dev->drv->bus_type == ZIP_BUS_SCSI) { if (*BufLen == -1) *BufLen = *src_len; else { *BufLen = MIN(*src_len, *BufLen); *src_len = *BufLen; } zip_log("ZIP %i: Actual transfer length: %i\n", dev->id, *BufLen); } } static void zip_buf_alloc(zip_t *dev, uint32_t len) { zip_log("ZIP %i: Allocated buffer length: %i\n", dev->id, len); zipbufferb = (uint8_t *) malloc(len); } static void zip_buf_free(zip_t *dev) { if (zipbufferb) { zip_log("ZIP %i: Freeing buffer...\n", dev->id); free(zipbufferb); zipbufferb = NULL; } } void zip_command(zip_t *dev, uint8_t *cdb) { int pos = 0, block_desc = 0; int ret; int32_t len, max_len; int32_t alloc_length; uint32_t i = 0; int size_idx, idx = 0; unsigned preamble_len; int32_t blen = 0; int32_t *BufLen; if (dev->drv->bus_type == ZIP_BUS_SCSI) { BufLen = &SCSIDevices[dev->drv->scsi_device_id].BufferLength; dev->status &= ~ERR_STAT; } else { BufLen = &blen; dev->error = 0; } dev->packet_len = 0; dev->request_pos = 0; dev->data_pos = 0; memcpy(dev->current_cdb, cdb, 12); if (cdb[0] != 0) { zip_log("ZIP %i: Command 0x%02X, Sense Key %02X, Asc %02X, Ascq %02X, Unit attention: %i\n", dev->id, cdb[0], zip_sense_key, zip_asc, zip_ascq, dev->unit_attention); zip_log("ZIP %i: Request length: %04X\n", dev->id, dev->request_length); zip_log("ZIP %i: CDB: %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X\n", dev->id, cdb[0], cdb[1], cdb[2], cdb[3], cdb[4], cdb[5], cdb[6], cdb[7], cdb[8], cdb[9], cdb[10], cdb[11]); } dev->sector_len = 0; zip_set_phase(dev, SCSI_PHASE_STATUS); /* This handles the Not Ready/Unit Attention check if it has to be handled at this point. */ if (zip_pre_execution_check(dev, cdb) == 0) return; switch (cdb[0]) { case GPCMD_SEND_DIAGNOSTIC: if (!(cdb[1] & (1 << 2))) { zip_invalid_field(dev); return; } case GPCMD_SCSI_RESERVE: case GPCMD_SCSI_RELEASE: case GPCMD_TEST_UNIT_READY: zip_set_phase(dev, SCSI_PHASE_STATUS); zip_command_complete(dev); break; case GPCMD_FORMAT_UNIT: if ((dev->drv->bus_type == ZIP_BUS_SCSI) && dev->drv->read_only) { zip_write_protected(dev); return; } zip_set_phase(dev, SCSI_PHASE_STATUS); zip_command_complete(dev); break; case GPCMD_IOMEGA_SENSE: zip_set_phase(dev, SCSI_PHASE_DATA_IN); max_len = cdb[4]; zip_buf_alloc(dev, 256); zip_set_buf_len(dev, BufLen, &max_len); memset(zipbufferb, 0, 256); if (cdb[2] == 1) { /* This page is related to disk health status - setting this page to 0 makes disk health read as "marginal". */ zipbufferb[0] = 0x58; zipbufferb[1] = 0x00; for (i = 0x00; i < 0x58; i++) zipbufferb[i + 0x02] = 0xff; } else if (cdb[2] == 2) { zipbufferb[0] = 0x3d; zipbufferb[1] = 0x00; for (i = 0x00; i < 0x13; i++) zipbufferb[i + 0x02] = 0x00; zipbufferb[0x15] = 0x00; if (dev->drv->read_only) zipbufferb[0x15] |= 0x02; for (i = 0x00; i < 0x27; i++) zipbufferb[i + 0x16] = 0x00; } else { zip_invalid_field(dev); zip_buf_free(dev); return; } zip_data_command_finish(dev, 18, 18, cdb[4], 0); break; case GPCMD_REZERO_UNIT: dev->sector_pos = dev->sector_len = 0; zip_seek(dev, 0); zip_set_phase(dev, SCSI_PHASE_STATUS); break; case GPCMD_REQUEST_SENSE: /* If there's a unit attention condition and there's a buffered not ready, a standalone REQUEST SENSE should forget about the not ready, and report unit attention straight away. */ zip_set_phase(dev, SCSI_PHASE_DATA_IN); max_len = cdb[4]; zip_buf_alloc(dev, 256); zip_set_buf_len(dev, BufLen, &max_len); len = (cdb[1] & 1) ? 8 : 18; zip_request_sense(dev, zipbufferb, max_len, cdb[1] & 1); zip_data_command_finish(dev, len, len, cdb[4], 0); break; case GPCMD_MECHANISM_STATUS: zip_set_phase(dev, SCSI_PHASE_DATA_IN); len = (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; zip_buf_alloc(dev, 8); zip_set_buf_len(dev, BufLen, &len); memset(zipbufferb, 0, 8); zipbufferb[5] = 1; zip_data_command_finish(dev, 8, 8, len, 0); break; case GPCMD_READ_6: case GPCMD_READ_10: case GPCMD_READ_12: zip_set_phase(dev, SCSI_PHASE_DATA_IN); alloc_length = 512; switch(cdb[0]) { case GPCMD_READ_6: dev->sector_len = cdb[4]; dev->sector_pos = ((((uint32_t) cdb[1]) & 0x1f) << 16) | (((uint32_t) cdb[2]) << 8) | ((uint32_t) cdb[3]); zip_log("ZIP %i: Length: %i, LBA: %i\n", dev->id, dev->sector_len, dev->sector_pos); break; case GPCMD_READ_10: dev->sector_len = (cdb[7] << 8) | cdb[8]; dev->sector_pos = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5]; zip_log("ZIP %i: Length: %i, LBA: %i\n", dev->id, dev->sector_len, dev->sector_pos); break; case GPCMD_READ_12: dev->sector_len = (((uint32_t) cdb[6]) << 24) | (((uint32_t) cdb[7]) << 16) | (((uint32_t) cdb[8]) << 8) | ((uint32_t) cdb[9]); dev->sector_pos = (((uint32_t) cdb[2]) << 24) | (((uint32_t) cdb[3]) << 16) | (((uint32_t) cdb[4]) << 8) | ((uint32_t) cdb[5]); break; } if (!dev->sector_len) { zip_set_phase(dev, SCSI_PHASE_STATUS); /* zip_log("ZIP %i: All done - callback set\n", dev->id); */ dev->packet_status = ZIP_PHASE_COMPLETE; dev->callback = 20LL * ZIP_TIME; zip_set_callback(dev); break; } max_len = dev->sector_len; dev->requested_blocks = max_len; /* If we're reading all blocks in one go for DMA, why not also for PIO, it should NOT matter anyway, this step should be identical and only the way the read dat is transferred to the host should be different. */ dev->packet_len = max_len * alloc_length; zip_buf_alloc(dev, dev->packet_len); ret = zip_blocks(dev, &alloc_length, 1, 0); if (ret <= 0) { zip_buf_free(dev); return; } dev->requested_blocks = max_len; dev->packet_len = alloc_length; zip_set_buf_len(dev, BufLen, (int32_t *) &dev->packet_len); zip_data_command_finish(dev, alloc_length, 512, alloc_length, 0); dev->all_blocks_total = dev->block_total; if (dev->packet_status != ZIP_PHASE_COMPLETE) ui_sb_update_icon(SB_ZIP | dev->id, 1); else ui_sb_update_icon(SB_ZIP | dev->id, 0); return; case GPCMD_VERIFY_6: case GPCMD_VERIFY_10: case GPCMD_VERIFY_12: if (!(cdb[1] & 2)) { zip_set_phase(dev, SCSI_PHASE_STATUS); zip_command_complete(dev); break; } case GPCMD_WRITE_6: case GPCMD_WRITE_10: case GPCMD_WRITE_AND_VERIFY_10: case GPCMD_WRITE_12: case GPCMD_WRITE_AND_VERIFY_12: zip_set_phase(dev, SCSI_PHASE_DATA_OUT); alloc_length = 512; if ((dev->drv->bus_type == ZIP_BUS_SCSI) && dev->drv->read_only) { zip_write_protected(dev); return; } switch(cdb[0]) { case GPCMD_VERIFY_6: case GPCMD_WRITE_6: dev->sector_len = cdb[4]; dev->sector_pos = ((((uint32_t) cdb[1]) & 0x1f) << 16) | (((uint32_t) cdb[2]) << 8) | ((uint32_t) cdb[3]); break; case GPCMD_VERIFY_10: case GPCMD_WRITE_10: case GPCMD_WRITE_AND_VERIFY_10: dev->sector_len = (cdb[7] << 8) | cdb[8]; dev->sector_pos = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5]; zip_log("ZIP %i: Length: %i, LBA: %i\n", dev->id, dev->sector_len, dev->sector_pos); break; case GPCMD_VERIFY_12: case GPCMD_WRITE_12: case GPCMD_WRITE_AND_VERIFY_12: dev->sector_len = (((uint32_t) cdb[6]) << 24) | (((uint32_t) cdb[7]) << 16) | (((uint32_t) cdb[8]) << 8) | ((uint32_t) cdb[9]); dev->sector_pos = (((uint32_t) cdb[2]) << 24) | (((uint32_t) cdb[3]) << 16) | (((uint32_t) cdb[4]) << 8) | ((uint32_t) cdb[5]); break; } if (dev->drv->is_250) { if ((dev->sector_pos >= dev->drv->medium_size) || ((dev->sector_pos + dev->sector_len - 1) >= dev->drv->medium_size)) { zip_lba_out_of_range(dev); return; } } else { if ((dev->sector_pos >= ZIP_SECTORS) || ((dev->sector_pos + dev->sector_len - 1) >= ZIP_SECTORS)) { zip_lba_out_of_range(dev); return; } } if (!dev->sector_len) { zip_set_phase(dev, SCSI_PHASE_STATUS); /* zip_log("ZIP %i: All done - callback set\n", dev->id); */ dev->packet_status = ZIP_PHASE_COMPLETE; dev->callback = 20LL * ZIP_TIME; zip_set_callback(dev); break; } max_len = dev->sector_len; dev->requested_blocks = max_len; /* If we're writing all blocks in one go for DMA, why not also for PIO, it should NOT matter anyway, this step should be identical and only the way the read dat is transferred to the host should be different. */ dev->packet_len = max_len * alloc_length; zip_buf_alloc(dev, dev->packet_len); dev->requested_blocks = max_len; dev->packet_len = max_len << 9; zip_set_buf_len(dev, BufLen, (int32_t *) &dev->packet_len); zip_data_command_finish(dev, dev->packet_len, 512, dev->packet_len, 1); dev->all_blocks_total = dev->block_total; if (dev->packet_status != ZIP_PHASE_COMPLETE) ui_sb_update_icon(SB_ZIP | dev->id, 1); else ui_sb_update_icon(SB_ZIP | dev->id, 0); return; case GPCMD_WRITE_SAME_10: zip_set_phase(dev, SCSI_PHASE_DATA_OUT); alloc_length = 512; if ((cdb[1] & 6) == 6) { zip_invalid_field(dev); return; } if ((dev->drv->bus_type == ZIP_BUS_SCSI) && dev->drv->read_only) { zip_write_protected(dev); return; } dev->sector_len = (cdb[7] << 8) | cdb[8]; dev->sector_pos = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5]; if (dev->drv->is_250) { if ((dev->sector_pos >= dev->drv->medium_size) || ((dev->sector_pos + dev->sector_len - 1) >= dev->drv->medium_size)) { zip_lba_out_of_range(dev); return; } } else { if ((dev->sector_pos >= ZIP_SECTORS) || ((dev->sector_pos + dev->sector_len - 1) >= ZIP_SECTORS)) { zip_lba_out_of_range(dev); return; } } if (!dev->sector_len) { zip_set_phase(dev, SCSI_PHASE_STATUS); /* zip_log("ZIP %i: All done - callback set\n", dev->id); */ dev->packet_status = ZIP_PHASE_COMPLETE; dev->callback = 20LL * ZIP_TIME; zip_set_callback(dev); break; } max_len = dev->sector_len; dev->requested_blocks = max_len; /* If we're writing all blocks in one go for DMA, why not also for PIO, it should NOT matter anyway, this step should be identical and only the way the read dat is transferred to the host should be different. */ dev->packet_len = max_len * alloc_length; zip_buf_alloc(dev, dev->packet_len); dev->requested_blocks = max_len; dev->packet_len = alloc_length; zip_set_buf_len(dev, BufLen, (int32_t *) &dev->packet_len); zip_data_command_finish(dev, dev->packet_len, 512, dev->packet_len, 1); dev->all_blocks_total = dev->block_total; if (dev->packet_status != ZIP_PHASE_COMPLETE) ui_sb_update_icon(SB_ZIP | dev->id, 1); else ui_sb_update_icon(SB_ZIP | dev->id, 0); return; case GPCMD_MODE_SENSE_6: case GPCMD_MODE_SENSE_10: zip_set_phase(dev, SCSI_PHASE_DATA_IN); if (dev->drv->bus_type == ZIP_BUS_SCSI) block_desc = ((cdb[1] >> 3) & 1) ? 0 : 1; else block_desc = 0; if (cdb[0] == GPCMD_MODE_SENSE_6) { len = cdb[4]; zip_buf_alloc(dev, 256); } else { len = (cdb[8] | (cdb[7] << 8)); zip_buf_alloc(dev, 65536); } dev->current_page_code = cdb[2] & 0x3F; zip_log("Mode sense page: %02X\n", dev->current_page_code); if (!(zip_mode_sense_page_flags & (1LL << dev->current_page_code))) { zip_invalid_field(dev); zip_buf_free(dev); return; } memset(zipbufferb, 0, len); alloc_length = len; if (cdb[0] == GPCMD_MODE_SENSE_6) { len = zip_mode_sense(dev, zipbufferb, 4, cdb[2], block_desc); len = MIN(len, alloc_length); zipbufferb[0] = len - 1; zipbufferb[1] = 0; if (block_desc) zipbufferb[3] = 8; } else { len = zip_mode_sense(dev, zipbufferb, 8, cdb[2], block_desc); len = MIN(len, alloc_length); zipbufferb[0]=(len - 2) >> 8; zipbufferb[1]=(len - 2) & 255; zipbufferb[2] = 0; if (block_desc) { zipbufferb[6] = 0; zipbufferb[7] = 8; } } zip_set_buf_len(dev, BufLen, &len); zip_log("ZIP %i: Reading mode page: %02X...\n", dev->id, cdb[2]); zip_data_command_finish(dev, len, len, alloc_length, 0); return; case GPCMD_MODE_SELECT_6: case GPCMD_MODE_SELECT_10: zip_set_phase(dev, SCSI_PHASE_DATA_OUT); if (cdb[0] == GPCMD_MODE_SELECT_6) { len = cdb[4]; zip_buf_alloc(dev, 256); } else { len = (cdb[7] << 8) | cdb[8]; zip_buf_alloc(dev, 65536); } zip_set_buf_len(dev, BufLen, &len); dev->total_length = len; dev->do_page_save = cdb[1] & 1; dev->current_page_pos = 0; zip_data_command_finish(dev, len, len, len, 1); return; case GPCMD_START_STOP_UNIT: zip_set_phase(dev, SCSI_PHASE_STATUS); switch(cdb[4] & 3) { case 0: /* Stop the disc. */ zip_eject(dev->id); /* The Iomega Windows 9x drivers require this. */ break; case 1: /* Start the disc and read the TOC. */ break; case 2: /* Eject the disc if possible. */ /* zip_eject(dev->id); */ break; case 3: /* Load the disc (close tray). */ zip_reload(dev->id); break; } zip_command_complete(dev); break; case GPCMD_INQUIRY: zip_set_phase(dev, SCSI_PHASE_DATA_IN); max_len = cdb[3]; max_len <<= 8; max_len |= cdb[4]; zip_buf_alloc(dev, 65536); if (cdb[1] & 1) { preamble_len = 4; size_idx = 3; zipbufferb[idx++] = 05; zipbufferb[idx++] = cdb[2]; zipbufferb[idx++] = 0; idx++; switch (cdb[2]) { case 0x00: zipbufferb[idx++] = 0x00; zipbufferb[idx++] = 0x83; break; case 0x83: if (idx + 24 > max_len) { zip_data_phase_error(dev); zip_buf_free(dev); return; } zipbufferb[idx++] = 0x02; zipbufferb[idx++] = 0x00; zipbufferb[idx++] = 0x00; zipbufferb[idx++] = 20; ide_padstr8(zipbufferb + idx, 20, "53R141"); /* Serial */ idx += 20; if (idx + 72 > cdb[4]) goto atapi_out; zipbufferb[idx++] = 0x02; zipbufferb[idx++] = 0x01; zipbufferb[idx++] = 0x00; zipbufferb[idx++] = 68; ide_padstr8(zipbufferb + idx, 8, "IOMEGA "); /* Vendor */ idx += 8; if (dev->drv->is_250) ide_padstr8(zipbufferb + idx, 40, "ZIP 250 "); /* Product */ else ide_padstr8(zipbufferb + idx, 40, "ZIP 100 "); /* Product */ idx += 40; ide_padstr8(zipbufferb + idx, 20, "53R141"); /* Product */ idx += 20; break; default: zip_log("INQUIRY: Invalid page: %02X\n", cdb[2]); zip_invalid_field(dev); zip_buf_free(dev); return; } } else { preamble_len = 5; size_idx = 4; memset(zipbufferb, 0, 8); if (cdb[1] & 0xe0) zipbufferb[0] = 0x60; /*No physical device on this LUN*/ else zipbufferb[0] = 0x00; /*Hard disk*/ zipbufferb[1] = 0x80; /*Removable*/ if (dev->drv->is_250) { zipbufferb[2] = (dev->drv->bus_type == ZIP_BUS_SCSI) ? 0x02 : 0x00; /*SCSI-2 compliant*/ zipbufferb[3] = (dev->drv->bus_type == ZIP_BUS_SCSI) ? 0x02 : 0x21; } else { zipbufferb[2] = (dev->drv->bus_type == ZIP_BUS_SCSI) ? 0x02 : 0x00; /*SCSI-2 compliant*/ zipbufferb[3] = (dev->drv->bus_type == ZIP_BUS_SCSI) ? 0x02 : 0x21; } zipbufferb[4] = 31; if (dev->drv->bus_type == ZIP_BUS_SCSI) { zipbufferb[6] = 1; /* 16-bit transfers supported */ zipbufferb[7] = 0x20; /* Wide bus supported */ } ide_padstr8(zipbufferb + 8, 8, "IOMEGA "); /* Vendor */ if (dev->drv->is_250) { ide_padstr8(zipbufferb + 16, 16, "ZIP 250 "); /* Product */ ide_padstr8(zipbufferb + 32, 4, "42.S"); /* Revision */ if (max_len >= 44) ide_padstr8(zipbufferb + 36, 8, "08/08/01"); /* Date? */ if (max_len >= 122) ide_padstr8(zipbufferb + 96, 26, "(c) Copyright IOMEGA 2000 "); /* Copyright string */ } else { ide_padstr8(zipbufferb + 16, 16, "ZIP 100 "); /* Product */ ide_padstr8(zipbufferb + 32, 4, "E.08"); /* Revision */ } idx = 36; if (max_len == 96) { zipbufferb[4] = 91; idx = 96; } else if (max_len == 128) { zipbufferb[4] = 0x75; idx = 128; } } atapi_out: zipbufferb[size_idx] = idx - preamble_len; len=idx; len = MIN(len, max_len); zip_set_buf_len(dev, BufLen, &len); zip_data_command_finish(dev, len, len, max_len, 0); break; case GPCMD_PREVENT_REMOVAL: zip_set_phase(dev, SCSI_PHASE_STATUS); zip_command_complete(dev); break; case GPCMD_SEEK_6: case GPCMD_SEEK_10: zip_set_phase(dev, SCSI_PHASE_STATUS); switch(cdb[0]) { case GPCMD_SEEK_6: pos = (cdb[2] << 8) | cdb[3]; break; case GPCMD_SEEK_10: pos = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5]; break; } zip_seek(dev, pos); zip_command_complete(dev); break; case GPCMD_READ_CDROM_CAPACITY: zip_set_phase(dev, SCSI_PHASE_DATA_IN); zip_buf_alloc(dev, 8); if (zip_read_capacity(dev, dev->current_cdb, zipbufferb, (uint32_t *) &len) == 0) { zip_buf_free(dev); return; } zip_set_buf_len(dev, BufLen, &len); zip_data_command_finish(dev, len, len, len, 0); break; case GPCMD_IOMEGA_EJECT: zip_set_phase(dev, SCSI_PHASE_STATUS); zip_eject(dev->id); zip_command_complete(dev); break; case GPCMD_READ_FORMAT_CAPACITIES: len = (cdb[7] << 8) | cdb[8]; zip_buf_alloc(dev, len); memset(zipbufferb, 0, len); pos = 0; /* List header */ zipbufferb[pos++] = 0; zipbufferb[pos++] = 0; zipbufferb[pos++] = 0; if (dev->drv->f != NULL) zipbufferb[pos++] = 16; else zipbufferb[pos++] = 8; /* Current/Maximum capacity header */ if (dev->drv->is_250) { if (dev->drv->f != NULL) { zipbufferb[pos++] = (dev->drv->medium_size >> 24) & 0xff; zipbufferb[pos++] = (dev->drv->medium_size >> 16) & 0xff; zipbufferb[pos++] = (dev->drv->medium_size >> 8) & 0xff; zipbufferb[pos++] = dev->drv->medium_size & 0xff; zipbufferb[pos++] = 2; /* Current medium capacity */ } else { zipbufferb[pos++] = (ZIP_250_SECTORS >> 24) & 0xff; zipbufferb[pos++] = (ZIP_250_SECTORS >> 16) & 0xff; zipbufferb[pos++] = (ZIP_250_SECTORS >> 8) & 0xff; zipbufferb[pos++] = ZIP_250_SECTORS & 0xff; zipbufferb[pos++] = 3; /* Maximum medium capacity */ } } else { zipbufferb[pos++] = (ZIP_SECTORS >> 24) & 0xff; zipbufferb[pos++] = (ZIP_SECTORS >> 16) & 0xff; zipbufferb[pos++] = (ZIP_SECTORS >> 8) & 0xff; zipbufferb[pos++] = ZIP_SECTORS & 0xff; if (dev->drv->f != NULL) zipbufferb[pos++] = 2; else zipbufferb[pos++] = 3; } zipbufferb[pos++] = 512 >> 16; zipbufferb[pos++] = 512 >> 8; zipbufferb[pos++] = 512 & 0xff; if (dev->drv->f != NULL) { /* Formattable capacity descriptor */ zipbufferb[pos++] = (dev->drv->medium_size >> 24) & 0xff; zipbufferb[pos++] = (dev->drv->medium_size >> 16) & 0xff; zipbufferb[pos++] = (dev->drv->medium_size >> 8) & 0xff; zipbufferb[pos++] = dev->drv->medium_size & 0xff; zipbufferb[pos++] = 0; zipbufferb[pos++] = 512 >> 16; zipbufferb[pos++] = 512 >> 8; zipbufferb[pos++] = 512 & 0xff; } zip_set_buf_len(dev, BufLen, &len); zip_data_command_finish(dev, len, len, len, 0); break; default: zip_illegal_opcode(dev); break; } /* zip_log("ZIP %i: Phase: %02X, request length: %i\n", dev->id, dev->phase, dev->request_length); */ if (zip_atapi_phase_to_scsi(dev) == SCSI_PHASE_STATUS) zip_buf_free(dev); } /* The command second phase function, needed for Mode Select. */ static uint8_t zip_phase_data_out(zip_t *dev) { uint16_t block_desc_len; uint16_t pos; uint8_t error = 0; uint8_t page, page_len; uint32_t i = 0; uint8_t hdr_len, val, old_val, ch; uint32_t last_to_write = 0; uint32_t c, h, s; int len = 0; switch(dev->current_cdb[0]) { case GPCMD_VERIFY_6: case GPCMD_VERIFY_10: case GPCMD_VERIFY_12: break; case GPCMD_WRITE_6: case GPCMD_WRITE_10: case GPCMD_WRITE_AND_VERIFY_10: case GPCMD_WRITE_12: case GPCMD_WRITE_AND_VERIFY_12: if (dev->requested_blocks > 0) zip_blocks(dev, &len, 1, 1); break; case GPCMD_WRITE_SAME_10: if (!dev->current_cdb[7] && !dev->current_cdb[8]) { if (dev->drv->is_250) last_to_write = (dev->drv->medium_size - 1); else last_to_write = (ZIP_SECTORS - 1); } else last_to_write = dev->sector_pos + dev->sector_len - 1; for (i = dev->sector_pos; i <= last_to_write; i++) { if (dev->current_cdb[1] & 2) { zipbufferb[0] = (i >> 24) & 0xff; zipbufferb[1] = (i >> 16) & 0xff; zipbufferb[2] = (i >> 8) & 0xff; zipbufferb[3] = i & 0xff; } else if (dev->current_cdb[1] & 4) { /* CHS are 96,1,2048 (ZIP 100) and 239,1,2048 (ZIP 250) */ s = (i % 2048); h = ((i - s) / 2048) % 1; c = ((i - s) / 2048) / 1; zipbufferb[0] = (c >> 16) & 0xff; zipbufferb[1] = (c >> 8) & 0xff; zipbufferb[2] = c & 0xff; zipbufferb[3] = h & 0xff; zipbufferb[4] = (s >> 24) & 0xff; zipbufferb[5] = (s >> 16) & 0xff; zipbufferb[6] = (s >> 8) & 0xff; zipbufferb[7] = s & 0xff; } fseek(dev->drv->f, dev->drv->base + (i << 9), SEEK_SET); fwrite(zipbufferb, 1, 512, dev->drv->f); } break; case GPCMD_MODE_SELECT_6: case GPCMD_MODE_SELECT_10: if (dev->current_cdb[0] == GPCMD_MODE_SELECT_10) hdr_len = 8; else hdr_len = 4; if (dev->drv->bus_type == ZIP_BUS_SCSI) { if (dev->current_cdb[0] == GPCMD_MODE_SELECT_6) { block_desc_len = zipbufferb[2]; block_desc_len <<= 8; block_desc_len |= zipbufferb[3]; } else { block_desc_len = zipbufferb[6]; block_desc_len <<= 8; block_desc_len |= zipbufferb[7]; } } else block_desc_len = 0; pos = hdr_len + block_desc_len; while(1) { page = zipbufferb[pos] & 0x3F; page_len = zipbufferb[pos + 1]; pos += 2; if (!(zip_mode_sense_page_flags & (1LL << ((uint64_t) page)))) error |= 1; else { for (i = 0; i < page_len; i++) { ch = zip_mode_sense_pages_changeable.pages[page][i + 2]; val = zipbufferb[pos + i]; old_val = dev->ms_pages_saved.pages[page][i + 2]; if (val != old_val) { if (ch) dev->ms_pages_saved.pages[page][i + 2] = val; else error |= 1; } } } pos += page_len; if (dev->drv->bus_type == ZIP_BUS_SCSI) val = zip_mode_sense_pages_default_scsi.pages[page][0] & 0x80; else val = zip_mode_sense_pages_default.pages[page][0] & 0x80; if (dev->do_page_save && val) zip_mode_sense_save(dev); if (pos >= dev->total_length) break; } if (error) { zip_invalid_field_pl(dev); return 0; } break; } return 1; } /* This is the general ATAPI PIO request function. */ static void zip_pio_request(zip_t *dev, uint8_t out) { int ret = 0; if (dev->drv->bus_type < ZIP_BUS_SCSI) { zip_log("ZIP %i: Lowering IDE IRQ\n", dev->id); ide_irq_lower(ide_drives[dev->drv->ide_channel]); } dev->status = BUSY_STAT; if (dev->pos >= dev->packet_len) { zip_log("ZIP %i: %i bytes %s, command done\n", dev->id, dev->pos, out ? "written" : "read"); dev->pos = dev->request_pos = 0; if (out) { ret = zip_phase_data_out(dev); /* If ret = 0 (phase 1 error), then we do not do anything else other than free the buffer, as the phase and callback have already been set by the error function. */ if (ret) zip_command_complete(dev); } else zip_command_complete(dev); zip_buf_free(dev); } else { zip_log("ZIP %i: %i bytes %s, %i bytes are still left\n", dev->id, dev->pos, out ? "written" : "read", dev->packet_len - dev->pos); /* If less than (packet length) bytes are remaining, update packet length accordingly. */ if ((dev->packet_len - dev->pos) < (dev->max_transfer_len)) dev->max_transfer_len = dev->packet_len - dev->pos; zip_log("ZIP %i: Packet length %i, request length %i\n", dev->id, dev->packet_len, dev->max_transfer_len); dev->packet_status = out ? ZIP_PHASE_DATA_OUT : ZIP_PHASE_DATA_IN; dev->status = BUSY_STAT; dev->phase = 1; zip_phase_callback(dev); dev->callback = 0LL; zip_set_callback(dev); dev->request_pos = 0; } } static int zip_read_from_ide_dma(uint8_t channel) { zip_t *dev; uint8_t id = atapi_zip_drives[channel]; int ret; if (id > ZIP_NUM) return 0; dev = zip[id]; if (ide_bus_master_write) { ret = ide_bus_master_write(channel >> 1, zipbufferb, dev->packet_len, ide_bus_master_priv[channel >> 1]); if (ret == 2) /* DMA not enabled, wait for it to be enabled. */ return 2; else if (ret == 1) { /* DMA error. */ zip_bus_master_error(dev); return 0; } else return 1; } else return 0; } static int zip_read_from_scsi_dma(uint8_t scsi_id) { zip_t *dev; uint8_t id = scsi_zip_drives[scsi_id]; int32_t *BufLen = &SCSIDevices[scsi_id].BufferLength; if (id > ZIP_NUM) return 0; dev = zip[id]; zip_log("Reading from SCSI DMA: SCSI ID %02X, init length %i\n", scsi_id, *BufLen); memcpy(zipbufferb, SCSIDevices[scsi_id].CmdBuffer, *BufLen); return 1; } static void zip_irq_raise(zip_t *dev) { if (dev->drv->bus_type < ZIP_BUS_SCSI) ide_irq_raise(ide_drives[dev->drv->ide_channel]); } static int zip_read_from_dma(zip_t *dev) { int32_t *BufLen = &SCSIDevices[dev->drv->scsi_device_id].BufferLength; int ret = 0; if (dev->drv->bus_type == ZIP_BUS_SCSI) ret = zip_read_from_scsi_dma(dev->drv->scsi_device_id); else ret = zip_read_from_ide_dma(dev->drv->ide_channel); if (ret != 1) return ret; if (dev->drv->bus_type == ZIP_BUS_SCSI) zip_log("ZIP %i: SCSI Input data length: %i\n", dev->id, *BufLen); else zip_log("ZIP %i: ATAPI Input data length: %i\n", dev->id, dev->packet_len); ret = zip_phase_data_out(dev); if (ret) return 1; else return 0; } static int zip_write_to_ide_dma(uint8_t channel) { zip_t *dev; uint8_t id = atapi_zip_drives[channel]; int ret; if (id > ZIP_NUM) { zip_log("ZIP %i: Drive not found\n", id); return 0; } dev = zip[id]; if (ide_bus_master_read) { ret = ide_bus_master_read(channel >> 1, zipbufferb, dev->packet_len, ide_bus_master_priv[channel >> 1]); if (ret == 2) /* DMA not enabled, wait for it to be enabled. */ return 2; else if (ret == 1) { /* DMA error. */ zip_bus_master_error(dev); return 0; } else return 1; } else return 0; } static int zip_write_to_scsi_dma(uint8_t scsi_id) { zip_t *dev; uint8_t id = scsi_zip_drives[scsi_id]; int32_t *BufLen = &SCSIDevices[scsi_id].BufferLength; if (id > ZIP_NUM) return 0; dev = zip[id]; zip_log("Writing to SCSI DMA: SCSI ID %02X, init length %i\n", scsi_id, *BufLen); memcpy(SCSIDevices[scsi_id].CmdBuffer, zipbufferb, *BufLen); zip_log("ZIP %i: Data from CD buffer: %02X %02X %02X %02X %02X %02X %02X %02X\n", id, zipbufferb[0], zipbufferb[1], zipbufferb[2], zipbufferb[3], zipbufferb[4], zipbufferb[5], zipbufferb[6], zipbufferb[7]); zip_log("ZIP %i: Data from SCSI DMA : %02X %02X %02X %02X %02X %02X %02X %02X\n", id, SCSIDevices[scsi_id].CmdBuffer[0], SCSIDevices[scsi_id].CmdBuffer[1], SCSIDevices[scsi_id].CmdBuffer[2], SCSIDevices[scsi_id].CmdBuffer[3], SCSIDevices[scsi_id].CmdBuffer[4], SCSIDevices[scsi_id].CmdBuffer[5], SCSIDevices[scsi_id].CmdBuffer[6], SCSIDevices[scsi_id].CmdBuffer[7]); return 1; } static int zip_write_to_dma(zip_t *dev) { int32_t *BufLen = &SCSIDevices[dev->drv->scsi_device_id].BufferLength; int ret = 0; if (dev->drv->bus_type == ZIP_BUS_SCSI) { zip_log("Write to SCSI DMA: (ID %02X)\n", dev->drv->scsi_device_id); ret = zip_write_to_scsi_dma(dev->drv->scsi_device_id); } else ret = zip_write_to_ide_dma(dev->drv->ide_channel); if (dev->drv->bus_type == ZIP_BUS_SCSI) zip_log("ZIP %i: SCSI Output data length: %i\n", dev->id, *BufLen); else zip_log("ZIP %i: ATAPI Output data length: %i\n", dev->id, dev->packet_len); return ret; } void zip_phase_callback(zip_t *dev) { int ret; switch(dev->packet_status) { case ZIP_PHASE_IDLE: zip_log("ZIP %i: ZIP_PHASE_IDLE\n", dev->id); dev->pos = 0; dev->phase = 1; dev->status = READY_STAT | DRQ_STAT | (dev->status & ERR_STAT); return; case ZIP_PHASE_COMMAND: zip_log("ZIP %i: ZIP_PHASE_COMMAND\n", dev->id); dev->status = BUSY_STAT | (dev->status & ERR_STAT); memcpy(dev->atapi_cdb, zipbufferb, 12); zip_command(dev, dev->atapi_cdb); return; case ZIP_PHASE_COMPLETE: zip_log("ZIP %i: ZIP_PHASE_COMPLETE\n", dev->id); dev->status = READY_STAT; dev->phase = 3; dev->packet_status = 0xFF; ui_sb_update_icon(SB_ZIP | dev->id, 0); zip_irq_raise(dev); return; case ZIP_PHASE_DATA_OUT: zip_log("ZIP %i: ZIP_PHASE_DATA_OUT\n", dev->id); dev->status = READY_STAT | DRQ_STAT | (dev->status & ERR_STAT); dev->phase = 0; zip_irq_raise(dev); return; case ZIP_PHASE_DATA_OUT_DMA: zip_log("ZIP %i: ZIP_PHASE_DATA_OUT_DMA\n", dev->id); ret = zip_read_from_dma(dev); if ((ret == 1) || (dev->drv->bus_type == ZIP_BUS_SCSI)) { zip_log("ZIP %i: DMA data out phase done\n"); zip_buf_free(dev); zip_command_complete(dev); } else if (ret == 2) { zip_log("ZIP %i: DMA out not enabled, wait\n"); zip_command_bus(dev); } else { zip_log("ZIP %i: DMA data out phase failure\n"); zip_buf_free(dev); } return; case ZIP_PHASE_DATA_IN: zip_log("ZIP %i: ZIP_PHASE_DATA_IN\n", dev->id); dev->status = READY_STAT | DRQ_STAT | (dev->status & ERR_STAT); dev->phase = 2; zip_irq_raise(dev); return; case ZIP_PHASE_DATA_IN_DMA: zip_log("ZIP %i: ZIP_PHASE_DATA_IN_DMA\n", dev->id); ret = zip_write_to_dma(dev); if ((ret == 1) || (dev->drv->bus_type == ZIP_BUS_SCSI)) { zip_log("ZIP %i: DMA data in phase done\n", dev->id); zip_buf_free(dev); zip_command_complete(dev); } else if (ret == 2) { zip_log("ZIP %i: DMA in not enabled, wait\n", dev->id); zip_command_bus(dev); } else { zip_log("ZIP %i: DMA data in phase failure\n", dev->id); zip_buf_free(dev); } return; case ZIP_PHASE_ERROR: zip_log("ZIP %i: ZIP_PHASE_ERROR\n", dev->id); dev->status = READY_STAT | ERR_STAT; dev->phase = 3; dev->packet_status = 0xFF; zip_irq_raise(dev); ui_sb_update_icon(SB_ZIP | dev->id, 0); return; } } uint32_t zip_read(uint8_t channel, int length) { zip_t *dev; uint16_t *zipbufferw; uint32_t *zipbufferl; uint8_t id = atapi_zip_drives[channel]; uint32_t temp = 0; if (id > ZIP_NUM) return 0; dev = zip[id]; zipbufferw = (uint16_t *) zipbufferb; zipbufferl = (uint32_t *) zipbufferb; if (!zipbufferb) return 0; /* Make sure we return a 0 and don't attempt to read from the buffer if we're transferring bytes beyond it, which can happen when issuing media access commands with an allocated length below minimum request length (which is 1 sector = 512 bytes). */ switch(length) { case 1: temp = (dev->pos < dev->packet_len) ? zipbufferb[dev->pos] : 0; dev->pos++; dev->request_pos++; break; case 2: temp = (dev->pos < dev->packet_len) ? zipbufferw[dev->pos >> 1] : 0; dev->pos += 2; dev->request_pos += 2; break; case 4: temp = (dev->pos < dev->packet_len) ? zipbufferl[dev->pos >> 2] : 0; dev->pos += 4; dev->request_pos += 4; break; default: return 0; } if (dev->packet_status == ZIP_PHASE_DATA_IN) { zip_log("ZIP %i: Returning: %04X (buffer position: %05i, request position: %05i)\n", id, temp, (dev->pos - 2) & 0xffff, (dev->request_pos - 2) & 0xffff); if ((dev->request_pos >= dev->max_transfer_len) || (dev->pos >= dev->packet_len)) { /* Time for a DRQ. */ zip_log("ZIP %i: Issuing read callback\n", id); zip_pio_request(dev, 0); } return temp; } else { zip_log("ZIP %i: Returning: 0000 (buffer position: %05i, request position: %05i)\n", id, (dev->pos - 2) & 0xffff, (dev->request_pos - 2) & 0xffff); return 0; } } void zip_write(uint8_t channel, uint32_t val, int length) { zip_t *dev; uint16_t *zipbufferw; uint32_t *zipbufferl; uint8_t id = atapi_zip_drives[channel]; if (id > ZIP_NUM) return; dev = zip[id]; if (dev->packet_status == ZIP_PHASE_IDLE) { if (!zipbufferb) zip_buf_alloc(dev, 12); } zipbufferw = (uint16_t *) zipbufferb; zipbufferl = (uint32_t *) zipbufferb; if (!zipbufferb) return; switch(length) { case 1: zipbufferb[dev->pos] = val & 0xff; dev->pos++; dev->request_pos++; break; case 2: zipbufferw[dev->pos >> 1] = val & 0xffff; dev->pos += 2; dev->request_pos += 2; break; case 4: zipbufferl[dev->pos >> 2] = val; dev->pos += 4; dev->request_pos += 4; break; default: return; } if (dev->packet_status == ZIP_PHASE_DATA_OUT) { if ((dev->request_pos >= dev->max_transfer_len) || (dev->pos >= dev->packet_len)) { /* Time for a DRQ. */ zip_pio_request(dev, 1); } return; } else if (dev->packet_status == ZIP_PHASE_IDLE) { if (dev->pos >= 12) { dev->pos = 0; dev->status = BUSY_STAT; dev->packet_status = ZIP_PHASE_COMMAND; timer_process(); zip_phase_callback(dev); timer_update_outstanding(); } return; } } /* Peform a master init on the entire module. */ void zip_global_init(void) { /* Clear the global data. */ memset(zip, 0x00, sizeof(zip)); memset(zip_drives, 0x00, sizeof(zip_drives)); } void zip_hard_reset(void) { int c; for (c = 0; c < ZIP_NUM; c++) { if (zip_drives[c].bus_type) { zip_log("ZIP hard_reset drive=%d\n", c); if (!zip[c]) { zip[c] = (zip_t *) malloc(sizeof(zip_t)); memset(zip[c], 0, sizeof(zip_t)); } zip[c]->id = c; zip[c]->drv = &zip_drives[c]; zip_init(zip[c]); if (wcslen(zip_drives[c].image_path)) zip_load(zip[c], zip_drives[c].image_path); zip_mode_sense_load(zip[c]); } } build_atapi_zip_map(); } void zip_close(void) { zip_t *dev; int c; for (c = 0; c < ZIP_NUM; c++) { dev = zip[c]; if (dev) { zip_disk_close(dev); free(zip[c]); zip[c] = NULL; } } }