/* * VARCem Virtual ARchaeological Computer EMulator. * An emulator of (mostly) x86-based PC systems and devices, * using the ISA,EISA,VLB,MCA and PCI system buses, roughly * spanning the era between 1981 and 1995. * * This file is part of the VARCem Project. * * Implementation of the following network controllers: * - Novell NE1000 (ISA 8-bit); * - Novell NE2000 (ISA 16-bit); * - Realtek RTL8019AS (ISA 16-bit, PnP); * - Realtek RTL8029AS (PCI). * * Version: @(#)net_ne2000.c 1.0.7 2018/07/24 * * Based on @(#)ne2k.cc v1.56.2.1 2004/02/02 22:37:22 cbothamy * * Authors: Fred N. van Kempen, * TheCollector1995, * Miran Grca, * Peter Grehan, * * Copyright 2017,2018 Fred N. van Kempen. * Copyright 2016-2018 Miran Grca. * Portions Copyright (C) 2002 MandrakeSoft S.A. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the: * * Free Software Foundation, Inc. * 59 Temple Place - Suite 330 * Boston, MA 02111-1307 * USA. */ #include #include #include #include #include #include #include #define HAVE_STDARG_H #include "../86box.h" #include "../config.h" #include "../machine/machine.h" #include "../io.h" #include "../mem.h" #include "../rom.h" #include "../mca.h" #include "../pci.h" #include "../pic.h" #include "../random.h" #include "../device.h" #include "../ui.h" #include "network.h" #include "net_dp8390.h" #include "net_ne2000.h" #include "bswap.h" enum { PNP_PHASE_WAIT_FOR_KEY = 0, PNP_PHASE_CONFIG, PNP_PHASE_ISOLATION, PNP_PHASE_SLEEP }; /* ROM BIOS file paths. */ #define ROM_PATH_NE1000 L"roms/network/ne1000/ne1000.rom" #define ROM_PATH_NE2000 L"roms/network/ne2000/ne2000.rom" #define ROM_PATH_RTL8019 L"roms/network/rtl8019as/rtl8019as.rom" #define ROM_PATH_RTL8029 L"roms/network/rtl8029as/rtl8029as.rom" /* PCI info. */ #define PNP_VENDID 0x4a8c /* Realtek, Inc */ #define PCI_VENDID 0x10ec /* Realtek, Inc */ #define PNP_DEVID 0x8019 /* RTL8029AS */ #define PCI_DEVID 0x8029 /* RTL8029AS */ #define PCI_REGSIZE 256 /* size of PCI space */ uint8_t pnp_init_key[32] = { 0x6A, 0xB5, 0xDA, 0xED, 0xF6, 0xFB, 0x7D, 0xBE, 0xDF, 0x6F, 0x37, 0x1B, 0x0D, 0x86, 0xC3, 0x61, 0xB0, 0x58, 0x2C, 0x16, 0x8B, 0x45, 0xA2, 0xD1, 0xE8, 0x74, 0x3A, 0x9D, 0xCE, 0xE7, 0x73, 0x39 }; typedef struct { dp8390_t dp8390; uint8_t macaddr[32]; /* ASIC ROM'd MAC address, even bytes */ int board; int is_pci, is_mca, is_8bit; const char *name; uint32_t base_address; int base_irq; uint32_t bios_addr, bios_size, bios_mask; uint8_t pnp_regs[256]; uint8_t pnp_res_data[256]; bar_t pci_bar[2]; uint8_t pci_regs[PCI_REGSIZE]; uint8_t maclocal[6]; /* configured MAC (local) address */ uint8_t eeprom[128]; /* for RTL8029AS */ rom_t bios_rom; int card; /* PCI card slot */ int has_bios; uint8_t pnp_phase; uint8_t pnp_magic_count; uint8_t pnp_address; uint8_t pnp_res_pos; uint8_t pnp_csn; uint8_t pnp_activate; uint8_t pnp_io_check; uint8_t pnp_csnsav; uint16_t pnp_read; uint64_t pnp_id; uint8_t pnp_id_checksum; uint8_t pnp_serial_read_pos; uint8_t pnp_serial_read_pair; uint8_t pnp_serial_read; /* RTL8019AS/RTL8029AS registers */ uint8_t config0, config2, config3; uint8_t _9346cr; /* POS registers, MCA boards only */ uint8_t pos_regs[8]; } nic_t; static void nic_rx(void *, uint8_t *, int); static void nic_tx(nic_t *, uint32_t); #ifdef ENABLE_NIC_LOG int nic_do_log = ENABLE_NIC_LOG; #endif static void nelog(int lvl, const char *fmt, ...) { #ifdef ENABLE_NIC_LOG va_list ap; if (nic_do_log >= lvl) { va_start(ap, fmt); pclog_ex(fmt, ap); va_end(ap); } #endif } static void nic_interrupt(nic_t *dev, int set) { if (PCI && dev->is_pci) { if (set) pci_set_irq(dev->card, PCI_INTA); else pci_clear_irq(dev->card, PCI_INTA); } else { if (set) picint(1<base_irq); else picintc(1<base_irq); } } /* reset - restore state to power-up, cancelling all i/o */ static void nic_reset(void *priv) { nic_t *dev = (nic_t *)priv; int i; nelog(1, "%s: reset\n", dev->name); if (dev->board == NE2K_NE1000) { /* Initialize the MAC address area by doubling the physical address */ dev->macaddr[0] = dev->dp8390.physaddr[0]; dev->macaddr[1] = dev->dp8390.physaddr[1]; dev->macaddr[2] = dev->dp8390.physaddr[2]; dev->macaddr[3] = dev->dp8390.physaddr[3]; dev->macaddr[4] = dev->dp8390.physaddr[4]; dev->macaddr[5] = dev->dp8390.physaddr[5]; /* ne1k signature */ for (i=6; i<16; i++) dev->macaddr[i] = 0x57; } else { /* Initialize the MAC address area by doubling the physical address */ dev->macaddr[0] = dev->dp8390.physaddr[0]; dev->macaddr[1] = dev->dp8390.physaddr[0]; dev->macaddr[2] = dev->dp8390.physaddr[1]; dev->macaddr[3] = dev->dp8390.physaddr[1]; dev->macaddr[4] = dev->dp8390.physaddr[2]; dev->macaddr[5] = dev->dp8390.physaddr[2]; dev->macaddr[6] = dev->dp8390.physaddr[3]; dev->macaddr[7] = dev->dp8390.physaddr[3]; dev->macaddr[8] = dev->dp8390.physaddr[4]; dev->macaddr[9] = dev->dp8390.physaddr[4]; dev->macaddr[10] = dev->dp8390.physaddr[5]; dev->macaddr[11] = dev->dp8390.physaddr[5]; /* ne2k signature */ for (i=12; i<32; i++) dev->macaddr[i] = 0x57; } /* Zero out registers and memory */ memset(&dev->dp8390.CR, 0x00, sizeof(dev->dp8390.CR) ); memset(&dev->dp8390.ISR, 0x00, sizeof(dev->dp8390.ISR)); memset(&dev->dp8390.IMR, 0x00, sizeof(dev->dp8390.IMR)); memset(&dev->dp8390.DCR, 0x00, sizeof(dev->dp8390.DCR)); memset(&dev->dp8390.TCR, 0x00, sizeof(dev->dp8390.TCR)); memset(&dev->dp8390.TSR, 0x00, sizeof(dev->dp8390.TSR)); memset(&dev->dp8390.RSR, 0x00, sizeof(dev->dp8390.RSR)); dev->dp8390.tx_timer_active = 0; dev->dp8390.local_dma = 0; dev->dp8390.page_start = 0; dev->dp8390.page_stop = 0; dev->dp8390.bound_ptr = 0; dev->dp8390.tx_page_start = 0; dev->dp8390.num_coll = 0; dev->dp8390.tx_bytes = 0; dev->dp8390.fifo = 0; dev->dp8390.remote_dma = 0; dev->dp8390.remote_start = 0; dev->dp8390.remote_bytes = 0; dev->dp8390.tallycnt_0 = 0; dev->dp8390.tallycnt_1 = 0; dev->dp8390.tallycnt_2 = 0; dev->dp8390.curr_page = 0; dev->dp8390.rempkt_ptr = 0; dev->dp8390.localpkt_ptr = 0; dev->dp8390.address_cnt = 0; memset(&dev->dp8390.mem, 0x00, sizeof(dev->dp8390.mem)); /* Set power-up conditions */ dev->dp8390.CR.stop = 1; dev->dp8390.CR.rdma_cmd = 4; dev->dp8390.ISR.reset = 1; dev->dp8390.DCR.longaddr = 1; nic_interrupt(dev, 0); } static void nic_soft_reset(void *priv) { nic_t *dev = (nic_t *)priv; memset(&(dev->dp8390.ISR), 0x00, sizeof(dev->dp8390.ISR)); dev->dp8390.ISR.reset = 1; } /* * Access the 32K private RAM. * * The NE2000 memory is accessed through the data port of the * ASIC (offset 0) after setting up a remote-DMA transfer. * Both byte and word accesses are allowed. * The first 16 bytes contain the MAC address at even locations, * and there is 16K of buffer memory starting at 16K. */ static uint32_t chipmem_read(nic_t *dev, uint32_t addr, unsigned int len) { uint32_t retval = 0; if ((len == 2) && (addr & 0x1)) { nelog(3, "%s: unaligned chipmem word read\n", dev->name); } nelog(3, "Chipmem Read Address=%04x\n", addr); /* ROM'd MAC address */ if (dev->board != NE2K_NE1000) { if (addr <= 31) { retval = dev->macaddr[addr % 32]; if ((len == 2) || (len == 4)) { retval |= (dev->macaddr[(addr + 1) % 32] << 8); } if (len == 4) { retval |= (dev->macaddr[(addr + 2) % 32] << 16); retval |= (dev->macaddr[(addr + 3) % 32] << 24); } return(retval); } if ((addr >= DP8390_DWORD_MEMSTART) && (addr < DP8390_DWORD_MEMEND)) { retval = dev->dp8390.mem[addr - DP8390_DWORD_MEMSTART]; if ((len == 2) || (len == 4)) { retval |= (dev->dp8390.mem[addr - DP8390_DWORD_MEMSTART + 1] << 8); } if (len == 4) { retval |= (dev->dp8390.mem[addr - DP8390_DWORD_MEMSTART + 2] << 16); retval |= (dev->dp8390.mem[addr - DP8390_DWORD_MEMSTART + 3] << 24); } return(retval); } } else { if (addr <= 15) { retval = dev->macaddr[addr % 16]; if (len == 2) { retval |= (dev->macaddr[(addr + 1) % 16] << 8); } return(retval); } if ((addr >= DP8390_WORD_MEMSTART) && (addr < DP8390_WORD_MEMEND)) { retval = dev->dp8390.mem[addr - DP8390_WORD_MEMSTART]; if (len == 2) { retval |= (dev->dp8390.mem[addr - DP8390_WORD_MEMSTART + 1] << 8); } return(retval); } } nelog(3, "%s: out-of-bounds chipmem read, %04X\n", dev->name, addr); if (dev->is_pci) { return(0xff); } else { switch(len) { case 1: return(0xff); case 2: return(0xffff); } } return(0xffff); } static void chipmem_write(nic_t *dev, uint32_t addr, uint32_t val, unsigned len) { if ((len == 2) && (addr & 0x1)) { nelog(3, "%s: unaligned chipmem word write\n", dev->name); } nelog(3, "Chipmem Write Address=%04x\n", addr); if (dev->board != NE2K_NE1000) { if ((addr >= DP8390_DWORD_MEMSTART) && (addr < DP8390_DWORD_MEMEND)) { dev->dp8390.mem[addr-DP8390_DWORD_MEMSTART] = val & 0xff; if ((len == 2) || (len == 4)) { dev->dp8390.mem[addr-DP8390_DWORD_MEMSTART+1] = val >> 8; } if (len == 4) { dev->dp8390.mem[addr-DP8390_DWORD_MEMSTART+2] = val >> 16; dev->dp8390.mem[addr-DP8390_DWORD_MEMSTART+3] = val >> 24; } } else { nelog(3, "%s: out-of-bounds chipmem write, %04X\n", dev->name, addr); } } else { if ((addr >= DP8390_WORD_MEMSTART) && (addr < DP8390_WORD_MEMEND)) { dev->dp8390.mem[addr-DP8390_WORD_MEMSTART] = val & 0xff; if (len == 2) { dev->dp8390.mem[addr-DP8390_WORD_MEMSTART+1] = val >> 8; } } else { nelog(3, "%s: out-of-bounds chipmem write, %04X\n", dev->name, addr); } } } /* * Access the ASIC I/O space. * * This is the high 16 bytes of i/o space (the lower 16 bytes * is for the DS8390). Only two locations are used: offset 0, * which is used for data transfer, and offset 0x0f, which is * used to reset the device. * * The data transfer port is used to as 'external' DMA to the * DS8390. The chip has to have the DMA registers set up, and * after that, insw/outsw instructions can be used to move * the appropriate number of bytes to/from the device. */ static uint32_t asic_read(nic_t *dev, uint32_t off, unsigned int len) { uint32_t retval = 0; switch(off) { case 0x00: /* Data register */ /* A read remote-DMA command must have been issued, and the source-address and length registers must have been initialised. */ if (len > dev->dp8390.remote_bytes) { nelog(3, "%s: DMA read underrun iolen=%d remote_bytes=%d\n", dev->name, len, dev->dp8390.remote_bytes); } nelog(3, "%s: DMA read: addr=%4x remote_bytes=%d\n", dev->name, dev->dp8390.remote_dma,dev->dp8390.remote_bytes); retval = chipmem_read(dev, dev->dp8390.remote_dma, len); /* The 8390 bumps the address and decreases the byte count by the selected word size after every access, not by the amount of data requested by the host (io_len). */ if (len == 4) { dev->dp8390.remote_dma += len; } else { dev->dp8390.remote_dma += (dev->dp8390.DCR.wdsize + 1); } if (dev->dp8390.remote_dma == dev->dp8390.page_stop << 8) { dev->dp8390.remote_dma = dev->dp8390.page_start << 8; } /* keep s.remote_bytes from underflowing */ if (dev->dp8390.remote_bytes > dev->dp8390.DCR.wdsize) { if (len == 4) { dev->dp8390.remote_bytes -= len; } else { dev->dp8390.remote_bytes -= (dev->dp8390.DCR.wdsize + 1); } } else { dev->dp8390.remote_bytes = 0; } /* If all bytes have been written, signal remote-DMA complete */ if (dev->dp8390.remote_bytes == 0) { dev->dp8390.ISR.rdma_done = 1; if (dev->dp8390.IMR.rdma_inte) nic_interrupt(dev, 1); } break; case 0x0f: /* Reset register */ nic_soft_reset(dev); break; case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f: retval = 0; break; default: nelog(3, "%s: ASIC read invalid address %04x\n", dev->name, (unsigned)off); break; } return(retval); } static void asic_write(nic_t *dev, uint32_t off, uint32_t val, unsigned len) { nelog(3, "%s: ASIC write addr=0x%02x, value=0x%04x\n", dev->name, (unsigned)off, (unsigned) val); switch(off) { case 0x00: /* Data register - see asic_read for a description */ if ((len > 1) && (dev->dp8390.DCR.wdsize == 0)) { nelog(3, "%s: DMA write length %d on byte mode operation\n", dev->name, len); break; } if (dev->dp8390.remote_bytes == 0) nelog(3, "%s: DMA write, byte count 0\n", dev->name); chipmem_write(dev, dev->dp8390.remote_dma, val, len); if (len == 4) dev->dp8390.remote_dma += len; else dev->dp8390.remote_dma += (dev->dp8390.DCR.wdsize + 1); if (dev->dp8390.remote_dma == dev->dp8390.page_stop << 8) dev->dp8390.remote_dma = dev->dp8390.page_start << 8; if (len == 4) dev->dp8390.remote_bytes -= len; else dev->dp8390.remote_bytes -= (dev->dp8390.DCR.wdsize + 1); if (dev->dp8390.remote_bytes > DP8390_DWORD_MEMSIZ) dev->dp8390.remote_bytes = 0; /* If all bytes have been written, signal remote-DMA complete */ if (dev->dp8390.remote_bytes == 0) { dev->dp8390.ISR.rdma_done = 1; if (dev->dp8390.IMR.rdma_inte) nic_interrupt(dev, 1); } break; case 0x0f: /* Reset register */ /* end of reset pulse */ break; case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f: break; default: /* this is invalid, but happens under win95 device detection */ nelog(3, "%s: ASIC write invalid address %04x, ignoring\n", dev->name, (unsigned)off); break; } } /* Handle reads/writes to the 'zeroth' page of the DS8390 register file. */ static uint32_t page0_read(nic_t *dev, uint32_t off, unsigned int len) { uint8_t retval = 0; if (len > 1) { /* encountered with win98 hardware probe */ nelog(3, "%s: bad length! Page0 read from register 0x%02x, len=%u\n", dev->name, off, len); return(retval); } switch(off) { case 0x01: /* CLDA0 */ retval = (dev->dp8390.local_dma & 0xff); break; case 0x02: /* CLDA1 */ retval = (dev->dp8390.local_dma >> 8); break; case 0x03: /* BNRY */ retval = dev->dp8390.bound_ptr; break; case 0x04: /* TSR */ retval = ((dev->dp8390.TSR.ow_coll << 7) | (dev->dp8390.TSR.cd_hbeat << 6) | (dev->dp8390.TSR.fifo_ur << 5) | (dev->dp8390.TSR.no_carrier << 4) | (dev->dp8390.TSR.aborted << 3) | (dev->dp8390.TSR.collided << 2) | (dev->dp8390.TSR.tx_ok)); break; case 0x05: /* NCR */ retval = dev->dp8390.num_coll; break; case 0x06: /* FIFO */ /* reading FIFO is only valid in loopback mode */ nelog(3, "%s: reading FIFO not supported yet\n", dev->name); retval = dev->dp8390.fifo; break; case 0x07: /* ISR */ retval = ((dev->dp8390.ISR.reset << 7) | (dev->dp8390.ISR.rdma_done << 6) | (dev->dp8390.ISR.cnt_oflow << 5) | (dev->dp8390.ISR.overwrite << 4) | (dev->dp8390.ISR.tx_err << 3) | (dev->dp8390.ISR.rx_err << 2) | (dev->dp8390.ISR.pkt_tx << 1) | (dev->dp8390.ISR.pkt_rx)); break; case 0x08: /* CRDA0 */ retval = (dev->dp8390.remote_dma & 0xff); break; case 0x09: /* CRDA1 */ retval = (dev->dp8390.remote_dma >> 8); break; case 0x0a: /* reserved / RTL8029ID0 */ if (dev->board == NE2K_RTL8019AS) { retval = 0x50; } else if (dev->board == NE2K_RTL8029AS) { retval = 0x50; } else { nelog(3, "%s: reserved Page0 read - 0x0a\n", dev->name); retval = 0xff; } break; case 0x0b: /* reserved / RTL8029ID1 */ if (dev->board == NE2K_RTL8019AS) { retval = 0x70; } else if (dev->board == NE2K_RTL8029AS) { retval = 0x43; } else { nelog(3, "%s: reserved Page0 read - 0x0b\n", dev->name); retval = 0xff; } break; case 0x0c: /* RSR */ retval = ((dev->dp8390.RSR.deferred << 7) | (dev->dp8390.RSR.rx_disabled << 6) | (dev->dp8390.RSR.rx_mbit << 5) | (dev->dp8390.RSR.rx_missed << 4) | (dev->dp8390.RSR.fifo_or << 3) | (dev->dp8390.RSR.bad_falign << 2) | (dev->dp8390.RSR.bad_crc << 1) | (dev->dp8390.RSR.rx_ok)); break; case 0x0d: /* CNTR0 */ retval = dev->dp8390.tallycnt_0; break; case 0x0e: /* CNTR1 */ retval = dev->dp8390.tallycnt_1; break; case 0x0f: /* CNTR2 */ retval = dev->dp8390.tallycnt_2; break; default: nelog(3, "%s: Page0 register 0x%02x out of range\n", dev->name, off); break; } nelog(3, "%s: Page0 read from register 0x%02x, value=0x%02x\n", dev->name, off, retval); return(retval); } static void page0_write(nic_t *dev, uint32_t off, uint32_t val, unsigned len) { uint8_t val2; nelog(3, "%s: Page0 write to register 0x%02x, value=0x%02x\n", dev->name, off, val); switch(off) { case 0x01: /* PSTART */ dev->dp8390.page_start = val; break; case 0x02: /* PSTOP */ dev->dp8390.page_stop = val; break; case 0x03: /* BNRY */ dev->dp8390.bound_ptr = val; break; case 0x04: /* TPSR */ dev->dp8390.tx_page_start = val; break; case 0x05: /* TBCR0 */ /* Clear out low byte and re-insert */ dev->dp8390.tx_bytes &= 0xff00; dev->dp8390.tx_bytes |= (val & 0xff); break; case 0x06: /* TBCR1 */ /* Clear out high byte and re-insert */ dev->dp8390.tx_bytes &= 0x00ff; dev->dp8390.tx_bytes |= ((val & 0xff) << 8); break; case 0x07: /* ISR */ val &= 0x7f; /* clear RST bit - status-only bit */ /* All other values are cleared iff the ISR bit is 1 */ dev->dp8390.ISR.pkt_rx &= !((int)((val & 0x01) == 0x01)); dev->dp8390.ISR.pkt_tx &= !((int)((val & 0x02) == 0x02)); dev->dp8390.ISR.rx_err &= !((int)((val & 0x04) == 0x04)); dev->dp8390.ISR.tx_err &= !((int)((val & 0x08) == 0x08)); dev->dp8390.ISR.overwrite &= !((int)((val & 0x10) == 0x10)); dev->dp8390.ISR.cnt_oflow &= !((int)((val & 0x20) == 0x20)); dev->dp8390.ISR.rdma_done &= !((int)((val & 0x40) == 0x40)); val = ((dev->dp8390.ISR.rdma_done << 6) | (dev->dp8390.ISR.cnt_oflow << 5) | (dev->dp8390.ISR.overwrite << 4) | (dev->dp8390.ISR.tx_err << 3) | (dev->dp8390.ISR.rx_err << 2) | (dev->dp8390.ISR.pkt_tx << 1) | (dev->dp8390.ISR.pkt_rx)); val &= ((dev->dp8390.IMR.rdma_inte << 6) | (dev->dp8390.IMR.cofl_inte << 5) | (dev->dp8390.IMR.overw_inte << 4) | (dev->dp8390.IMR.txerr_inte << 3) | (dev->dp8390.IMR.rxerr_inte << 2) | (dev->dp8390.IMR.tx_inte << 1) | (dev->dp8390.IMR.rx_inte)); if (val == 0x00) nic_interrupt(dev, 0); break; case 0x08: /* RSAR0 */ /* Clear out low byte and re-insert */ dev->dp8390.remote_start &= 0xff00; dev->dp8390.remote_start |= (val & 0xff); dev->dp8390.remote_dma = dev->dp8390.remote_start; break; case 0x09: /* RSAR1 */ /* Clear out high byte and re-insert */ dev->dp8390.remote_start &= 0x00ff; dev->dp8390.remote_start |= ((val & 0xff) << 8); dev->dp8390.remote_dma = dev->dp8390.remote_start; break; case 0x0a: /* RBCR0 */ /* Clear out low byte and re-insert */ dev->dp8390.remote_bytes &= 0xff00; dev->dp8390.remote_bytes |= (val & 0xff); break; case 0x0b: /* RBCR1 */ /* Clear out high byte and re-insert */ dev->dp8390.remote_bytes &= 0x00ff; dev->dp8390.remote_bytes |= ((val & 0xff) << 8); break; case 0x0c: /* RCR */ /* Check if the reserved bits are set */ if (val & 0xc0) { nelog(3, "%s: RCR write, reserved bits set\n", dev->name); } /* Set all other bit-fields */ dev->dp8390.RCR.errors_ok = ((val & 0x01) == 0x01); dev->dp8390.RCR.runts_ok = ((val & 0x02) == 0x02); dev->dp8390.RCR.broadcast = ((val & 0x04) == 0x04); dev->dp8390.RCR.multicast = ((val & 0x08) == 0x08); dev->dp8390.RCR.promisc = ((val & 0x10) == 0x10); dev->dp8390.RCR.monitor = ((val & 0x20) == 0x20); /* Monitor bit is a little suspicious... */ if (val & 0x20) nelog(3, "%s: RCR write, monitor bit set!\n", dev->name); break; case 0x0d: /* TCR */ /* Check reserved bits */ if (val & 0xe0) nelog(3, "%s: TCR write, reserved bits set\n", dev->name); /* Test loop mode (not supported) */ if (val & 0x06) { dev->dp8390.TCR.loop_cntl = (val & 0x6) >> 1; nelog(3, "%s: TCR write, loop mode %d not supported\n", dev->name, dev->dp8390.TCR.loop_cntl); } else { dev->dp8390.TCR.loop_cntl = 0; } /* Inhibit-CRC not supported. */ if (val & 0x01) nelog(3, "%s: TCR write, inhibit-CRC not supported\n",dev->name); /* Auto-transmit disable very suspicious */ if (val & 0x08) nelog(3, "%s: TCR write, auto transmit disable not supported\n", dev->name); /* Allow collision-offset to be set, although not used */ dev->dp8390.TCR.coll_prio = ((val & 0x08) == 0x08); break; case 0x0e: /* DCR */ /* the loopback mode is not suppported yet */ if (! (val & 0x08)) nelog(3, "%s: DCR write, loopback mode selected\n", dev->name); /* It is questionable to set longaddr and auto_rx, since * they are not supported on the NE2000. Print a warning * and continue. */ if (val & 0x04) nelog(3, "%s: DCR write - LAS set ???\n", dev->name); if (val & 0x10) nelog(3, "%s: DCR write - AR set ???\n", dev->name); /* Set other values. */ dev->dp8390.DCR.wdsize = ((val & 0x01) == 0x01); dev->dp8390.DCR.endian = ((val & 0x02) == 0x02); dev->dp8390.DCR.longaddr = ((val & 0x04) == 0x04); /* illegal ? */ dev->dp8390.DCR.loop = ((val & 0x08) == 0x08); dev->dp8390.DCR.auto_rx = ((val & 0x10) == 0x10); /* also illegal ? */ dev->dp8390.DCR.fifo_size = (val & 0x50) >> 5; break; case 0x0f: /* IMR */ /* Check for reserved bit */ if (val & 0x80) nelog(3, "%s: IMR write, reserved bit set\n",dev->name); /* Set other values */ dev->dp8390.IMR.rx_inte = ((val & 0x01) == 0x01); dev->dp8390.IMR.tx_inte = ((val & 0x02) == 0x02); dev->dp8390.IMR.rxerr_inte = ((val & 0x04) == 0x04); dev->dp8390.IMR.txerr_inte = ((val & 0x08) == 0x08); dev->dp8390.IMR.overw_inte = ((val & 0x10) == 0x10); dev->dp8390.IMR.cofl_inte = ((val & 0x20) == 0x20); dev->dp8390.IMR.rdma_inte = ((val & 0x40) == 0x40); val2 = ((dev->dp8390.ISR.rdma_done << 6) | (dev->dp8390.ISR.cnt_oflow << 5) | (dev->dp8390.ISR.overwrite << 4) | (dev->dp8390.ISR.tx_err << 3) | (dev->dp8390.ISR.rx_err << 2) | (dev->dp8390.ISR.pkt_tx << 1) | (dev->dp8390.ISR.pkt_rx)); if (((val & val2) & 0x7f) == 0) nic_interrupt(dev, 0); else nic_interrupt(dev, 1); break; default: nelog(3, "%s: Page0 write, bad register 0x%02x\n", dev->name, off); break; } } /* Handle reads/writes to the first page of the DS8390 register file. */ static uint32_t page1_read(nic_t *dev, uint32_t off, unsigned int len) { nelog(3, "%s: Page1 read from register 0x%02x, len=%u\n", dev->name, off, len); switch(off) { case 0x01: /* PAR0-5 */ case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: return(dev->dp8390.physaddr[off - 1]); case 0x07: /* CURR */ nelog(3, "%s: returning current page: 0x%02x\n", dev->name, (dev->dp8390.curr_page)); return(dev->dp8390.curr_page); case 0x08: /* MAR0-7 */ case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f: return(dev->dp8390.mchash[off - 8]); default: nelog(3, "%s: Page1 read register 0x%02x out of range\n", dev->name, off); return(0); } } static void page1_write(nic_t *dev, uint32_t off, uint32_t val, unsigned len) { nelog(3, "%s: Page1 write to register 0x%02x, len=%u, value=0x%04x\n", dev->name, off, len, val); switch(off) { case 0x01: /* PAR0-5 */ case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: dev->dp8390.physaddr[off - 1] = val; if (off == 6) nelog(3, "%s: physical address set to %02x:%02x:%02x:%02x:%02x:%02x\n", dev->name, dev->dp8390.physaddr[0], dev->dp8390.physaddr[1], dev->dp8390.physaddr[2], dev->dp8390.physaddr[3], dev->dp8390.physaddr[4], dev->dp8390.physaddr[5]); break; case 0x07: /* CURR */ dev->dp8390.curr_page = val; break; case 0x08: /* MAR0-7 */ case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f: dev->dp8390.mchash[off - 8] = val; break; default: nelog(3, "%s: Page1 write register 0x%02x out of range\n", dev->name, off); break; } } /* Handle reads/writes to the second page of the DS8390 register file. */ static uint32_t page2_read(nic_t *dev, uint32_t off, unsigned int len) { nelog(3, "%s: Page2 read from register 0x%02x, len=%u\n", dev->name, off, len); switch(off) { case 0x01: /* PSTART */ return(dev->dp8390.page_start); case 0x02: /* PSTOP */ return(dev->dp8390.page_stop); case 0x03: /* Remote Next-packet pointer */ return(dev->dp8390.rempkt_ptr); case 0x04: /* TPSR */ return(dev->dp8390.tx_page_start); case 0x05: /* Local Next-packet pointer */ return(dev->dp8390.localpkt_ptr); case 0x06: /* Address counter (upper) */ return(dev->dp8390.address_cnt >> 8); case 0x07: /* Address counter (lower) */ return(dev->dp8390.address_cnt & 0xff); case 0x08: /* Reserved */ case 0x09: case 0x0a: case 0x0b: nelog(3, "%s: reserved Page2 read - register 0x%02x\n", dev->name, off); return(0xff); case 0x0c: /* RCR */ return ((dev->dp8390.RCR.monitor << 5) | (dev->dp8390.RCR.promisc << 4) | (dev->dp8390.RCR.multicast << 3) | (dev->dp8390.RCR.broadcast << 2) | (dev->dp8390.RCR.runts_ok << 1) | (dev->dp8390.RCR.errors_ok)); case 0x0d: /* TCR */ return ((dev->dp8390.TCR.coll_prio << 4) | (dev->dp8390.TCR.ext_stoptx << 3) | ((dev->dp8390.TCR.loop_cntl & 0x3) << 1) | (dev->dp8390.TCR.crc_disable)); case 0x0e: /* DCR */ return (((dev->dp8390.DCR.fifo_size & 0x3) << 5) | (dev->dp8390.DCR.auto_rx << 4) | (dev->dp8390.DCR.loop << 3) | (dev->dp8390.DCR.longaddr << 2) | (dev->dp8390.DCR.endian << 1) | (dev->dp8390.DCR.wdsize)); case 0x0f: /* IMR */ return ((dev->dp8390.IMR.rdma_inte << 6) | (dev->dp8390.IMR.cofl_inte << 5) | (dev->dp8390.IMR.overw_inte << 4) | (dev->dp8390.IMR.txerr_inte << 3) | (dev->dp8390.IMR.rxerr_inte << 2) | (dev->dp8390.IMR.tx_inte << 1) | (dev->dp8390.IMR.rx_inte)); default: nelog(3, "%s: Page2 register 0x%02x out of range\n", dev->name, off); break; } return(0); } static void page2_write(nic_t *dev, uint32_t off, uint32_t val, unsigned len) { /* Maybe all writes here should be BX_PANIC()'d, since they affect internal operation, but let them through for now and print a warning. */ nelog(3, "%s: Page2 write to register 0x%02x, len=%u, value=0x%04x\n", dev->name, off, len, val); switch(off) { case 0x01: /* CLDA0 */ /* Clear out low byte and re-insert */ dev->dp8390.local_dma &= 0xff00; dev->dp8390.local_dma |= (val & 0xff); break; case 0x02: /* CLDA1 */ /* Clear out high byte and re-insert */ dev->dp8390.local_dma &= 0x00ff; dev->dp8390.local_dma |= ((val & 0xff) << 8); break; case 0x03: /* Remote Next-pkt pointer */ dev->dp8390.rempkt_ptr = val; break; case 0x04: nelog(3, "page 2 write to reserved register 0x04\n"); break; case 0x05: /* Local Next-packet pointer */ dev->dp8390.localpkt_ptr = val; break; case 0x06: /* Address counter (upper) */ /* Clear out high byte and re-insert */ dev->dp8390.address_cnt &= 0x00ff; dev->dp8390.address_cnt |= ((val & 0xff) << 8); break; case 0x07: /* Address counter (lower) */ /* Clear out low byte and re-insert */ dev->dp8390.address_cnt &= 0xff00; dev->dp8390.address_cnt |= (val & 0xff); break; case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: case 0x0e: case 0x0f: nelog(3, "%s: Page2 write to reserved register 0x%02x\n", dev->name, off); break; default: nelog(3, "%s: Page2 write, illegal register 0x%02x\n", dev->name, off); break; } } /* Writes to this page are illegal. */ static uint32_t page3_read(nic_t *dev, uint32_t off, unsigned int len) { if (dev->board >= NE2K_RTL8019AS) switch(off) { case 0x1: /* 9346CR */ return(dev->_9346cr); case 0x3: /* CONFIG0 */ return(0x00); /* Cable not BNC */ case 0x5: /* CONFIG2 */ return(dev->config2 & 0xe0); case 0x6: /* CONFIG3 */ return(dev->config3 & 0x46); case 0x8: /* CSNSAV */ return((dev->board == NE2K_RTL8019AS) ? dev->pnp_csnsav : 0x00); case 0xe: /* 8029ASID0 */ return(0x29); case 0xf: /* 8029ASID1 */ return(0x08); default: break; } nelog(3, "%s: Page3 read register 0x%02x attempted\n", dev->name, off); return(0x00); } static void page3_write(nic_t *dev, uint32_t off, uint32_t val, unsigned len) { if (dev->board >= NE2K_RTL8019AS) { nelog(3, "%s: Page2 write to register 0x%02x, len=%u, value=0x%04x\n", dev->name, off, len, val); switch(off) { case 0x01: /* 9346CR */ dev->_9346cr = (val & 0xfe); break; case 0x05: /* CONFIG2 */ dev->config2 = (val & 0xe0); break; case 0x06: /* CONFIG3 */ dev->config3 = (val & 0x46); break; case 0x09: /* HLTCLK */ break; default: nelog(3, "%s: Page3 write to reserved register 0x%02x\n", dev->name, off); break; } } else nelog(3, "%s: Page3 write register 0x%02x attempted\n", dev->name, off); } /* Routines for handling reads/writes to the Command Register. */ static uint32_t read_cr(nic_t *dev) { uint32_t retval; retval = (((dev->dp8390.CR.pgsel & 0x03) << 6) | ((dev->dp8390.CR.rdma_cmd & 0x07) << 3) | (dev->dp8390.CR.tx_packet << 2) | (dev->dp8390.CR.start << 1) | (dev->dp8390.CR.stop)); nelog(3, "%s: read CR returns 0x%02x\n", dev->name, retval); return(retval); } static void write_cr(nic_t *dev, uint32_t val) { nelog(3, "%s: wrote 0x%02x to CR\n", dev->name, val); /* Validate remote-DMA */ if ((val & 0x38) == 0x00) { nelog(3, "%s: CR write - invalid rDMA value 0\n", dev->name); val |= 0x20; /* dma_cmd == 4 is a safe default */ } /* Check for s/w reset */ if (val & 0x01) { dev->dp8390.ISR.reset = 1; dev->dp8390.CR.stop = 1; } else { dev->dp8390.CR.stop = 0; } dev->dp8390.CR.rdma_cmd = (val & 0x38) >> 3; /* If start command issued, the RST bit in the ISR */ /* must be cleared */ if ((val & 0x02) && !dev->dp8390.CR.start) dev->dp8390.ISR.reset = 0; dev->dp8390.CR.start = ((val & 0x02) == 0x02); dev->dp8390.CR.pgsel = (val & 0xc0) >> 6; /* Check for send-packet command */ if (dev->dp8390.CR.rdma_cmd == 3) { /* Set up DMA read from receive ring */ dev->dp8390.remote_start = dev->dp8390.remote_dma = dev->dp8390.bound_ptr * 256; dev->dp8390.remote_bytes = (uint16_t) chipmem_read(dev, dev->dp8390.bound_ptr * 256 + 2, 2); nelog(3, "%s: sending buffer #x%x length %d\n", dev->name, dev->dp8390.remote_start, dev->dp8390.remote_bytes); } /* Check for start-tx */ if ((val & 0x04) && dev->dp8390.TCR.loop_cntl) { if (dev->dp8390.TCR.loop_cntl != 1) { nelog(3, "%s: loop mode %d not supported\n", dev->name, dev->dp8390.TCR.loop_cntl); } else { if (dev->board >= NE2K_NE2000) { nic_rx(dev, &dev->dp8390.mem[dev->dp8390.tx_page_start*256 - DP8390_DWORD_MEMSTART], dev->dp8390.tx_bytes); } else { nic_rx(dev, &dev->dp8390.mem[dev->dp8390.tx_page_start*256 - DP8390_WORD_MEMSTART], dev->dp8390.tx_bytes); } } } else if (val & 0x04) { if (dev->dp8390.CR.stop || (!dev->dp8390.CR.start && (dev->board < NE2K_RTL8019AS))) { if (dev->dp8390.tx_bytes == 0) /* njh@bandsman.co.uk */ { return; /* Solaris9 probe */ } nelog(3, "%s: CR write - tx start, dev in reset\n", dev->name); } if (dev->dp8390.tx_bytes == 0) nelog(3, "%s: CR write - tx start, tx bytes == 0\n", dev->name); /* Send the packet to the system driver */ dev->dp8390.CR.tx_packet = 1; if (dev->board >= NE2K_NE2000) { network_tx(&dev->dp8390.mem[dev->dp8390.tx_page_start*256 - DP8390_DWORD_MEMSTART], dev->dp8390.tx_bytes); } else { network_tx(&dev->dp8390.mem[dev->dp8390.tx_page_start*256 - DP8390_WORD_MEMSTART], dev->dp8390.tx_bytes); } /* some more debug */ if (dev->dp8390.tx_timer_active) nelog(3, "%s: CR write, tx timer still active\n", dev->name); nic_tx(dev, val); } /* Linux probes for an interrupt by setting up a remote-DMA read * of 0 bytes with remote-DMA completion interrupts enabled. * Detect this here */ if (dev->dp8390.CR.rdma_cmd == 0x01 && dev->dp8390.CR.start && dev->dp8390.remote_bytes == 0) { dev->dp8390.ISR.rdma_done = 1; if (dev->dp8390.IMR.rdma_inte) { nic_interrupt(dev, 1); if (!dev->is_pci) nic_interrupt(dev, 0); } } } static uint32_t nic_read(nic_t *dev, uint32_t addr, unsigned len) { uint32_t retval = 0; int off = addr - dev->base_address; nelog(3, "%s: read addr %x, len %d\n", dev->name, addr, len); if (off >= 0x10) { retval = asic_read(dev, off - 0x10, len); } else if (off == 0x00) { retval = read_cr(dev); } else switch(dev->dp8390.CR.pgsel) { case 0x00: retval = page0_read(dev, off, len); break; case 0x01: retval = page1_read(dev, off, len); break; case 0x02: retval = page2_read(dev, off, len); break; case 0x03: retval = page3_read(dev, off, len); break; default: nelog(3, "%s: unknown value of pgsel in read - %d\n", dev->name, dev->dp8390.CR.pgsel); break; } return(retval); } static uint8_t nic_readb(uint16_t addr, void *priv) { return(nic_read((nic_t *)priv, addr, 1)); } static uint16_t nic_readw(uint16_t addr, void *priv) { nic_t *dev = (nic_t *)priv; if (dev->dp8390.DCR.wdsize & 1) return(nic_read(dev, addr, 2)); else return(nic_read(dev, addr, 1)); } static uint32_t nic_readl(uint16_t addr, void *priv) { return(nic_read((nic_t *)priv, addr, 4)); } static void nic_write(nic_t *dev, uint32_t addr, uint32_t val, unsigned len) { int off = addr - dev->base_address; nelog(3, "%s: write addr %x, value %x len %d\n", dev->name, addr, val, len); /* The high 16 bytes of i/o space are for the ne2000 asic - the low 16 bytes are for the DS8390, with the current page being selected by the PS0,PS1 registers in the command register */ if (off >= 0x10) { asic_write(dev, off - 0x10, val, len); } else if (off == 0x00) { write_cr(dev, val); } else switch(dev->dp8390.CR.pgsel) { case 0x00: page0_write(dev, off, val, len); break; case 0x01: page1_write(dev, off, val, len); break; case 0x02: page2_write(dev, off, val, len); break; case 0x03: page3_write(dev, off, val, len); break; default: nelog(3, "%s: unknown value of pgsel in write - %d\n", dev->name, dev->dp8390.CR.pgsel); break; } } static void nic_writeb(uint16_t addr, uint8_t val, void *priv) { nic_write((nic_t *)priv, addr, val, 1); } static void nic_writew(uint16_t addr, uint16_t val, void *priv) { nic_t *dev = (nic_t *)priv; if (dev->dp8390.DCR.wdsize & 1) nic_write(dev, addr, val, 2); else nic_write(dev, addr, val, 1); } static void nic_writel(uint16_t addr, uint32_t val, void *priv) { nic_write((nic_t *)priv, addr, val, 4); } static void nic_iocheckset(nic_t *dev, uint16_t addr); static void nic_iocheckremove(nic_t *dev, uint16_t addr); static void nic_ioset(nic_t *dev, uint16_t addr); static void nic_ioremove(nic_t *dev, uint16_t addr); static uint8_t nic_pnp_io_check_readb(uint16_t addr, void *priv) { nic_t *dev = (nic_t *) priv; return((dev->pnp_io_check & 0x01) ? 0x55 : 0xAA); } static uint8_t nic_pnp_readb(uint16_t addr, void *priv) { nic_t *dev = (nic_t *) priv; uint8_t bit, next_shift; uint8_t ret = 0xFF; /* Plug and Play Registers */ switch(dev->pnp_address) { /* Card Control Registers */ case 0x01: /* Serial Isolation */ if (dev->pnp_phase != PNP_PHASE_ISOLATION) { ret = 0x00; break; } if (dev->pnp_serial_read_pair) { dev->pnp_serial_read <<= 1; /* TODO: Support for multiple PnP devices. if (pnp_get_bus_data() != dev->pnp_serial_read) dev->pnp_phase = PNP_PHASE_SLEEP; } else { */ if (!dev->pnp_serial_read_pos) { dev->pnp_res_pos = 0x1B; dev->pnp_phase = PNP_PHASE_CONFIG; nelog(1, "\nASSIGN CSN phase\n"); } } else { if (dev->pnp_serial_read_pos < 64) { bit = (dev->pnp_id >> dev->pnp_serial_read_pos) & 0x01; next_shift = (!!(dev->pnp_id_checksum & 0x02) ^ !!(dev->pnp_id_checksum & 0x01) ^ bit) & 0x01; dev->pnp_id_checksum >>= 1; dev->pnp_id_checksum |= (next_shift << 7); } else { if (dev->pnp_serial_read_pos == 64) dev->eeprom[0x1A] = dev->pnp_id_checksum; bit = (dev->pnp_id_checksum >> (dev->pnp_serial_read_pos & 0x07)) & 0x01; } dev->pnp_serial_read = bit ? 0x55 : 0x00; dev->pnp_serial_read_pos = (dev->pnp_serial_read_pos + 1) % 72; } dev->pnp_serial_read_pair ^= 1; ret = dev->pnp_serial_read; break; case 0x04: /* Resource Data */ ret = dev->eeprom[dev->pnp_res_pos]; dev->pnp_res_pos++; break; case 0x05: /* Status */ ret = 0x01; break; case 0x06: /* Card Select Number (CSN) */ nelog(1, "Card Select Number (CSN)\n"); ret = dev->pnp_csn; break; case 0x07: /* Logical Device Number */ nelog(1, "Logical Device Number\n"); ret = 0x00; break; case 0x30: /* Activate */ nelog(1, "Activate\n"); ret = dev->pnp_activate; break; case 0x31: /* I/O Range Check */ nelog(1, "I/O Range Check\n"); ret = dev->pnp_io_check; break; /* Logical Device Configuration Registers */ /* Memory Configuration Registers We currently force them to stay 0x00 because we currently do not support a RTL8019AS BIOS. */ case 0x40: /* BROM base address bits[23:16] */ case 0x41: /* BROM base address bits[15:0] */ case 0x42: /* Memory Control */ ret = 0x00; break; /* I/O Configuration Registers */ case 0x60: /* I/O base address bits[15:8] */ ret = (dev->base_address >> 8); break; case 0x61: /* I/O base address bits[7:0] */ ret = (dev->base_address & 0xFF); break; /* Interrupt Configuration Registers */ case 0x70: /* IRQ level */ ret = dev->base_irq; break; case 0x71: /* IRQ type */ ret = 0x02; /* high, edge */ break; /* DMA Configuration Registers */ case 0x74: /* DMA channel select 0 */ case 0x75: /* DMA channel select 1 */ ret = 0x04; /* indicating no DMA channel is needed */ break; /* Vendor Defined Registers */ case 0xF0: /* CONFIG0 */ case 0xF1: /* CONFIG1 */ ret = 0x00; break; case 0xF2: /* CONFIG2 */ ret = (dev->config2 & 0xe0); break; case 0xF3: /* CONFIG3 */ ret = (dev->config3 & 0x46); break; case 0xF5: /* CSNSAV */ ret = (dev->pnp_csnsav); break; } nelog(1, "nic_pnp_readb(%04X) = %02X\n", addr, ret); return(ret); } static void nic_pnp_io_set(nic_t *dev, uint16_t read_addr); static void nic_pnp_io_remove(nic_t *dev); static void nic_pnp_writeb(uint16_t addr, uint8_t val, void *priv) { nic_t *dev = (nic_t *) priv; uint16_t new_addr = 0; nelog(1, "nic_pnp_writeb(%04X, %02X)\n", addr, val); /* Plug and Play Registers */ switch(dev->pnp_address) { /* Card Control Registers */ case 0x00: /* Set RD_DATA port */ new_addr = val; new_addr <<= 2; new_addr |= 3; nic_pnp_io_remove(dev); nic_pnp_io_set(dev, new_addr); nelog(1, "PnP read data address now: %04X\n", new_addr); break; case 0x02: /* Config Control */ if (val & 0x01) { /* Reset command */ nic_pnp_io_remove(dev); memset(dev->pnp_regs, 0, 256); nelog(1, "All logical devices reset\n"); } if (val & 0x02) { /* Wait for Key command */ dev->pnp_phase = PNP_PHASE_WAIT_FOR_KEY; nelog(1, "WAIT FOR KEY phase\n"); } if (val & 0x04) { /* PnP Reset CSN command */ dev->pnp_csn = dev->pnp_csnsav = 0; nelog(1, "CSN reset\n"); } break; case 0x03: /* Wake[CSN] */ nelog(1, "Wake[%02X]\n", val); if (val == dev->pnp_csn) { dev->pnp_res_pos = 0x12; dev->pnp_id_checksum = 0x6A; if (dev->pnp_phase == PNP_PHASE_SLEEP) { dev->pnp_phase = val ? PNP_PHASE_CONFIG : PNP_PHASE_ISOLATION; } } else { if ((dev->pnp_phase == PNP_PHASE_CONFIG) || (dev->pnp_phase == PNP_PHASE_ISOLATION)) dev->pnp_phase = PNP_PHASE_SLEEP; } break; case 0x06: /* Card Select Number (CSN) */ dev->pnp_csn = dev->pnp_csnsav = val; dev->pnp_phase = PNP_PHASE_CONFIG; nelog(1, "CSN set to %02X\n", dev->pnp_csn); break; case 0x30: /* Activate */ if ((dev->pnp_activate ^ val) & 0x01) { nic_ioremove(dev, dev->base_address); if (val & 0x01) nic_ioset(dev, dev->base_address); nelog(1, "I/O range %sabled\n", val & 0x02 ? "en" : "dis"); } dev->pnp_activate = val; break; case 0x31: /* I/O Range Check */ if ((dev->pnp_io_check ^ val) & 0x02) { nic_iocheckremove(dev, dev->base_address); if (val & 0x02) nic_iocheckset(dev, dev->base_address); nelog(1, "I/O range check %sabled\n", val & 0x02 ? "en" : "dis"); } dev->pnp_io_check = val; break; /* Logical Device Configuration Registers */ /* Memory Configuration Registers We currently force them to stay 0x00 because we currently do not support a RTL8019AS BIOS. */ /* I/O Configuration Registers */ case 0x60: /* I/O base address bits[15:8] */ if ((dev->pnp_activate & 0x01) || (dev->pnp_io_check & 0x02)) nic_ioremove(dev, dev->base_address); dev->base_address &= 0x00ff; dev->base_address |= (((uint16_t) val) << 8); if ((dev->pnp_activate & 0x01) || (dev->pnp_io_check & 0x02)) nic_ioset(dev, dev->base_address); nelog(1, "Base address now: %04X\n", dev->base_address); break; case 0x61: /* I/O base address bits[7:0] */ if ((dev->pnp_activate & 0x01) || (dev->pnp_io_check & 0x02)) nic_ioremove(dev, dev->base_address); dev->base_address &= 0xff00; dev->base_address |= val; if ((dev->pnp_activate & 0x01) || (dev->pnp_io_check & 0x02)) nic_ioset(dev, dev->base_address); nelog(1, "Base address now: %04X\n", dev->base_address); break; /* Interrupt Configuration Registers */ case 0x70: /* IRQ level */ dev->base_irq = val; nelog(1, "IRQ now: %02i\n", dev->base_irq); break; /* Vendor Defined Registers */ case 0xF6: /* Vendor Control */ dev->pnp_csn = 0; break; } return; } static void nic_pnp_io_set(nic_t *dev, uint16_t read_addr) { if ((read_addr >= 0x0200) && (read_addr <= 0x03FF)) { io_sethandler(read_addr, 1, nic_pnp_readb, NULL, NULL, NULL, NULL, NULL, dev); } dev->pnp_read = read_addr; } static void nic_pnp_io_remove(nic_t *dev) { if ((dev->pnp_read >= 0x0200) && (dev->pnp_read <= 0x03FF)) { io_removehandler(dev->pnp_read, 1, nic_pnp_readb, NULL, NULL, NULL, NULL, NULL, dev); } } static void nic_pnp_address_writeb(uint16_t addr, uint8_t val, void *priv) { nic_t *dev = (nic_t *) priv; /* nelog(1, "nic_pnp_address_writeb(%04X, %02X)\n", addr, val); */ switch(dev->pnp_phase) { case PNP_PHASE_WAIT_FOR_KEY: if (val == pnp_init_key[dev->pnp_magic_count]) { dev->pnp_magic_count = (dev->pnp_magic_count + 1) & 0x1f; if (!dev->pnp_magic_count) dev->pnp_phase = PNP_PHASE_SLEEP; } else dev->pnp_magic_count = 0; break; default: dev->pnp_address = val; break; } return; } static void nic_iocheckset(nic_t *dev, uint16_t addr) { io_sethandler(addr, 32, nic_pnp_io_check_readb, NULL, NULL, NULL, NULL, NULL, dev); } static void nic_iocheckremove(nic_t *dev, uint16_t addr) { io_removehandler(addr, 32, nic_pnp_io_check_readb, NULL, NULL, NULL, NULL, NULL, dev); } static void nic_ioset(nic_t *dev, uint16_t addr) { if (dev->is_mca) { io_sethandler(addr, 16, nic_readb, nic_readw, nic_readl, nic_writeb, nic_writew, nic_writel, dev); io_sethandler(addr+16, 16, nic_readb, nic_readw, nic_readl, nic_writeb, nic_writew, nic_writel, dev); io_sethandler(addr+0x1f, 16, nic_readb, nic_readw, nic_readl, nic_writeb, nic_writew, nic_writel, dev); } else if (dev->is_pci) { io_sethandler(addr, 16, nic_readb, nic_readw, nic_readl, nic_writeb, nic_writew, nic_writel, dev); io_sethandler(addr+16, 16, nic_readb, nic_readw, nic_readl, nic_writeb, nic_writew, nic_writel, dev); io_sethandler(addr+0x1f, 1, nic_readb, nic_readw, nic_readl, nic_writeb, nic_writew, nic_writel, dev); } else { io_sethandler(addr, 16, nic_readb, NULL, NULL, nic_writeb, NULL, NULL, dev); if (dev->is_8bit) { io_sethandler(addr+16, 16, nic_readb, NULL, NULL, nic_writeb, NULL, NULL, dev); } else { io_sethandler(addr+16, 16, nic_readb, nic_readw, NULL, nic_writeb, nic_writew, NULL, dev); } io_sethandler(addr+0x1f, 1, nic_readb, NULL, NULL, nic_writeb, NULL, NULL, dev); } } static void nic_ioremove(nic_t *dev, uint16_t addr) { if (dev->is_mca) { io_removehandler(addr, 16, nic_readb, nic_readw, nic_readl, nic_writeb, nic_writew, nic_writel, dev); io_removehandler(addr+16, 16, nic_readb, nic_readw, nic_readl, nic_writeb, nic_writew, nic_writel, dev); io_removehandler(addr+0x1f, 16, nic_readb, nic_readw, nic_readl, nic_writeb, nic_writew, nic_writel, dev); } else if (dev->is_pci) { io_removehandler(addr, 16, nic_readb, nic_readw, nic_readl, nic_writeb, nic_writew, nic_writel, dev); io_removehandler(addr+16, 16, nic_readb, nic_readw, nic_readl, nic_writeb, nic_writew, nic_writel, dev); io_removehandler(addr+0x1f, 1, nic_readb, nic_readw, nic_readl, nic_writeb, nic_writew, nic_writel, dev); } else { io_removehandler(addr, 16, nic_readb, NULL, NULL, nic_writeb, NULL, NULL, dev); if (dev->is_8bit) { io_removehandler(addr+16, 16, nic_readb, NULL, NULL, nic_writeb, NULL, NULL, dev); } else { io_removehandler(addr+16, 16, nic_readb, nic_readw, NULL, nic_writeb, nic_writew, NULL, dev); } io_removehandler(addr+0x1f, 1, nic_readb, NULL, NULL, nic_writeb, NULL, NULL, dev); } } static void nic_update_bios(nic_t *dev) { int reg_bios_enable; reg_bios_enable = 1; if (! dev->has_bios) return; if (PCI && dev->is_pci) reg_bios_enable = dev->pci_bar[1].addr_regs[0] & 0x01; /* PCI BIOS stuff, just enable_disable. */ if (reg_bios_enable) { mem_mapping_set_addr(&dev->bios_rom.mapping, dev->bios_addr, dev->bios_size); nelog(1, "%s: BIOS now at: %06X\n", dev->name, dev->bios_addr); } else { nelog(1, "%s: BIOS disabled\n", dev->name); mem_mapping_disable(&dev->bios_rom.mapping); } } static uint8_t nic_pci_read(int func, int addr, void *priv) { nic_t *dev = (nic_t *)priv; uint8_t ret = 0x00; switch(addr) { case 0x00: /* PCI_VID_LO */ case 0x01: /* PCI_VID_HI */ ret = dev->pci_regs[addr]; break; case 0x02: /* PCI_DID_LO */ case 0x03: /* PCI_DID_HI */ ret = dev->pci_regs[addr]; break; case 0x04: /* PCI_COMMAND_LO */ case 0x05: /* PCI_COMMAND_HI */ ret = dev->pci_regs[addr]; break; case 0x06: /* PCI_STATUS_LO */ case 0x07: /* PCI_STATUS_HI */ ret = dev->pci_regs[addr]; break; case 0x08: /* PCI_REVID */ ret = 0x00; /* Rev. 00 */ break; case 0x09: /* PCI_PIFR */ ret = 0x00; /* Rev. 00 */ break; case 0x0A: /* PCI_SCR */ ret = dev->pci_regs[addr]; break; case 0x0B: /* PCI_BCR */ ret = dev->pci_regs[addr]; break; #if 0 case 0x0C: /* (reserved) */ ret = dev->pci_regs[addr]; break; case 0x0D: /* PCI_LTR */ case 0x0E: /* PCI_HTR */ ret = dev->pci_regs[addr]; break; case 0x0F: /* (reserved) */ ret = dev->pci_regs[addr]; break; #endif case 0x10: /* PCI_BAR 7:5 */ ret = (dev->pci_bar[0].addr_regs[0] & 0xe0) | 0x01; break; case 0x11: /* PCI_BAR 15:8 */ ret = dev->pci_bar[0].addr_regs[1]; break; case 0x12: /* PCI_BAR 23:16 */ ret = dev->pci_bar[0].addr_regs[2]; break; case 0x13: /* PCI_BAR 31:24 */ ret = dev->pci_bar[0].addr_regs[3]; break; case 0x2C: /* PCI_SVID_LO */ case 0x2D: /* PCI_SVID_HI */ ret = dev->pci_regs[addr]; break; case 0x2E: /* PCI_SID_LO */ case 0x2F: /* PCI_SID_HI */ ret = dev->pci_regs[addr]; break; case 0x30: /* PCI_ROMBAR */ ret = dev->pci_bar[1].addr_regs[0] & 0x01; break; case 0x31: /* PCI_ROMBAR 15:11 */ ret = dev->pci_bar[1].addr_regs[1] & 0x80; break; case 0x32: /* PCI_ROMBAR 23:16 */ ret = dev->pci_bar[1].addr_regs[2]; break; case 0x33: /* PCI_ROMBAR 31:24 */ ret = dev->pci_bar[1].addr_regs[3]; break; case 0x3C: /* PCI_ILR */ ret = dev->pci_regs[addr]; break; case 0x3D: /* PCI_IPR */ ret = dev->pci_regs[addr]; break; } nelog(2, "%s: PCI_Read(%d, %04x) = %02x\n", dev->name, func, addr, ret); return(ret); } static void nic_pci_write(int func, int addr, uint8_t val, void *priv) { nic_t *dev = (nic_t *)priv; uint8_t valxor; nelog(2, "%s: PCI_Write(%d, %04x, %02x)\n", dev->name, func, addr, val); switch(addr) { case 0x04: /* PCI_COMMAND_LO */ valxor = (val & 0x03) ^ dev->pci_regs[addr]; if (valxor & PCI_COMMAND_IO) { nic_ioremove(dev, dev->base_address); if ((dev->base_address != 0) && (val & PCI_COMMAND_IO)) { nic_ioset(dev, dev->base_address); } } #if 0 if (val & PCI_COMMAND_MEMORY) { ... } #endif dev->pci_regs[addr] = val & 0x03; break; #if 0 case 0x0C: /* (reserved) */ dev->pci_regs[addr] = val; break; case 0x0D: /* PCI_LTR */ dev->pci_regs[addr] = val; break; case 0x0E: /* PCI_HTR */ dev->pci_regs[addr] = val; break; case 0x0F: /* (reserved) */ dev->pci_regs[addr] = val; break; #endif case 0x10: /* PCI_BAR */ val &= 0xe0; /* 0xe0 acc to RTL DS */ val |= 0x01; /* re-enable IOIN bit */ /*FALLTHROUGH*/ case 0x11: /* PCI_BAR */ case 0x12: /* PCI_BAR */ case 0x13: /* PCI_BAR */ /* Remove old I/O. */ nic_ioremove(dev, dev->base_address); /* Set new I/O as per PCI request. */ dev->pci_bar[0].addr_regs[addr & 3] = val; /* Then let's calculate the new I/O base. */ dev->base_address = dev->pci_bar[0].addr & 0xffe0; /* Log the new base. */ nelog(1, "%s: PCI: new I/O base is %04X\n", dev->name, dev->base_address); /* We're done, so get out of the here. */ if (dev->pci_regs[4] & PCI_COMMAND_IO) { if (dev->base_address != 0) { nic_ioset(dev, dev->base_address); } } break; case 0x30: /* PCI_ROMBAR */ case 0x31: /* PCI_ROMBAR */ case 0x32: /* PCI_ROMBAR */ case 0x33: /* PCI_ROMBAR */ dev->pci_bar[1].addr_regs[addr & 3] = val; /* dev->pci_bar[1].addr_regs[1] &= dev->bios_mask; */ dev->pci_bar[1].addr &= 0xffff8001; dev->bios_addr = dev->pci_bar[1].addr; nic_update_bios(dev); return; case 0x3C: /* PCI_ILR */ nelog(1, "%s: IRQ now: %i\n", dev->name, val); dev->base_irq = val; dev->pci_regs[addr] = dev->base_irq; return; } } static void nic_tx(nic_t *dev, uint32_t val) { dev->dp8390.CR.tx_packet = 0; dev->dp8390.TSR.tx_ok = 1; dev->dp8390.ISR.pkt_tx = 1; /* Generate an interrupt if not masked */ if (dev->dp8390.IMR.tx_inte) nic_interrupt(dev, 1); dev->dp8390.tx_timer_active = 0; } /* * Called by the platform-specific code when an Ethernet frame * has been received. The destination address is tested to see * if it should be accepted, and if the RX ring has enough room, * it is copied into it and the receive process is updated. */ static void nic_rx(void *priv, uint8_t *buf, int io_len) { static uint8_t bcast_addr[6] = {0xff,0xff,0xff,0xff,0xff,0xff}; nic_t *dev = (nic_t *)priv; uint8_t pkthdr[4]; uint8_t *startptr; int pages, avail; int idx, nextpage; int endbytes; //FIXME: move to upper layer ui_sb_update_icon(SB_NETWORK, 1); if (io_len != 60) nelog(2, "%s: rx_frame with length %d\n", dev->name, io_len); if ((dev->dp8390.CR.stop != 0) || (dev->dp8390.page_start == 0)) return; /* * Add the pkt header + CRC to the length, and work * out how many 256-byte pages the frame would occupy. */ pages = (io_len + sizeof(pkthdr) + sizeof(uint32_t) + 255)/256; if (dev->dp8390.curr_page < dev->dp8390.bound_ptr) { avail = dev->dp8390.bound_ptr - dev->dp8390.curr_page; } else { avail = (dev->dp8390.page_stop - dev->dp8390.page_start) - (dev->dp8390.curr_page - dev->dp8390.bound_ptr); } /* * Avoid getting into a buffer overflow condition by * not attempting to do partial receives. The emulation * to handle this condition seems particularly painful. */ if ((avail < pages) #if NE2K_NEVER_FULL_RING || (avail == pages) #endif ) { nelog(1, "%s: no space\n", dev->name); //FIXME: move to upper layer ui_sb_update_icon(SB_NETWORK, 0); return; } if ((io_len < 40/*60*/) && !dev->dp8390.RCR.runts_ok) { nelog(1, "%s: rejected small packet, length %d\n", dev->name, io_len); //FIXME: move to upper layer ui_sb_update_icon(SB_NETWORK, 0); return; } /* Some computers don't care... */ if (io_len < 60) io_len = 60; nelog(2, "%s: RX %x:%x:%x:%x:%x:%x > %x:%x:%x:%x:%x:%x len %d\n", dev->name, buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], io_len); /* Do address filtering if not in promiscuous mode. */ if (! dev->dp8390.RCR.promisc) { /* If this is a broadcast frame.. */ if (! memcmp(buf, bcast_addr, 6)) { /* Broadcast not enabled, we're done. */ if (! dev->dp8390.RCR.broadcast) { nelog(2, "%s: RX BC disabled\n", dev->name); //FIXME: move to upper layer ui_sb_update_icon(SB_NETWORK, 0); return; } } /* If this is a multicast frame.. */ else if (buf[0] & 0x01) { /* Multicast not enabled, we're done. */ if (! dev->dp8390.RCR.multicast) { #if 1 nelog(2, "%s: RX MC disabled\n", dev->name); #endif //FIXME: move to upper layer ui_sb_update_icon(SB_NETWORK, 0); return; } /* Are we listening to this multicast address? */ idx = mcast_index(buf); if (! (dev->dp8390.mchash[idx>>3] & (1<<(idx&0x7)))) { nelog(2, "%s: RX MC not listed\n", dev->name); //FIXME: move to upper layer ui_sb_update_icon(SB_NETWORK, 0); return; } } /* Unicast, must be for us.. */ else if (memcmp(buf, dev->dp8390.physaddr, 6)) return; } else { nelog(2, "%s: RX promiscuous receive\n", dev->name); } nextpage = dev->dp8390.curr_page + pages; if (nextpage >= dev->dp8390.page_stop) nextpage -= (dev->dp8390.page_stop - dev->dp8390.page_start); /* Set up packet header. */ pkthdr[0] = 0x01; /* RXOK - packet is OK */ if (buf[0] & 0x01) pkthdr[0] |= 0x20; /* MULTICAST packet */ pkthdr[1] = nextpage; /* ptr to next packet */ pkthdr[2] = (io_len + sizeof(pkthdr))&0xff; /* length-low */ pkthdr[3] = (io_len + sizeof(pkthdr))>>8; /* length-hi */ nelog(2, "%s: RX pkthdr [%02x %02x %02x %02x]\n", dev->name, pkthdr[0], pkthdr[1], pkthdr[2], pkthdr[3]); /* Copy into buffer, update curpage, and signal interrupt if config'd */ if (dev->board >= NE2K_NE2000) startptr = &dev->dp8390.mem[(dev->dp8390.curr_page * 256) - DP8390_DWORD_MEMSTART]; else startptr = &dev->dp8390.mem[(dev->dp8390.curr_page * 256) - DP8390_WORD_MEMSTART]; memcpy(startptr, pkthdr, sizeof(pkthdr)); if ((nextpage > dev->dp8390.curr_page) || ((dev->dp8390.curr_page + pages) == dev->dp8390.page_stop)) { memcpy(startptr+sizeof(pkthdr), buf, io_len); } else { endbytes = (dev->dp8390.page_stop - dev->dp8390.curr_page) * 256; memcpy(startptr+sizeof(pkthdr), buf, endbytes-sizeof(pkthdr)); if (dev->board >= NE2K_NE2000) startptr = &dev->dp8390.mem[(dev->dp8390.page_start * 256) - DP8390_DWORD_MEMSTART]; else startptr = &dev->dp8390.mem[(dev->dp8390.page_start * 256) - DP8390_WORD_MEMSTART]; memcpy(startptr, buf+endbytes-sizeof(pkthdr), io_len-endbytes+8); } dev->dp8390.curr_page = nextpage; dev->dp8390.RSR.rx_ok = 1; dev->dp8390.RSR.rx_mbit = (buf[0] & 0x01) ? 1 : 0; dev->dp8390.ISR.pkt_rx = 1; if (dev->dp8390.IMR.rx_inte) nic_interrupt(dev, 1); //FIXME: move to upper layer ui_sb_update_icon(SB_NETWORK, 0); } static void nic_rom_init(nic_t *dev, wchar_t *s) { uint32_t temp; FILE *f; if (s == NULL) return; if (dev->bios_addr == 0) return; if ((f = rom_fopen(s, L"rb")) != NULL) { fseek(f, 0L, SEEK_END); temp = ftell(f); fclose(f); dev->bios_size = 0x10000; if (temp <= 0x8000) dev->bios_size = 0x8000; if (temp <= 0x4000) dev->bios_size = 0x4000; if (temp <= 0x2000) dev->bios_size = 0x2000; dev->bios_mask = (dev->bios_size >> 8) & 0xff; dev->bios_mask = (0x100 - dev->bios_mask) & 0xff; } else { dev->bios_addr = 0x00000; dev->bios_size = 0; return; } /* Create a memory mapping for the space. */ rom_init(&dev->bios_rom, s, dev->bios_addr, dev->bios_size, dev->bios_size-1, 0, MEM_MAPPING_EXTERNAL); nelog(1, "%s: BIOS configured at %06lX (size %ld)\n", dev->name, dev->bios_addr, dev->bios_size); } static uint8_t nic_mca_read(int port, void *priv) { nic_t *dev = (nic_t *)priv; return(dev->pos_regs[port & 7]); } #define MCA_7154_IO_PORTS { 0x1000, 0x2020, 0x8020, 0xa0a0, 0xb0b0, 0xc0c0, \ 0xc3d0 } #define MCA_7154_IRQS { 3, 4, 5, 9 } static void nic_mca_write(int port, uint8_t val, void *priv) { nic_t *dev = (nic_t *)priv; uint16_t novell_base[7] = MCA_7154_IO_PORTS; int8_t novell_irq[4] = MCA_7154_IRQS; /* MCA does not write registers below 0x0100. */ if (port < 0x0102) return; /* Save the MCA register value. */ dev->pos_regs[port & 7] = val; nic_ioremove(dev, dev->base_address); /* This is always necessary so that the old handler doesn't remain. */ /* Get the new assigned I/O base address. */ dev->base_address = novell_base[((dev->pos_regs[2] & 0xE) >> 1) - 1]; /* Save the new IRQ values. */ dev->base_irq = novell_irq[(dev->pos_regs[2] & 0x60) >> 5]; dev->bios_addr = 0x0000; dev->has_bios = 0; /* * The PS/2 Model 80 BIOS always enables a card if it finds one, * even if no resources were assigned yet (because we only added * the card, but have not run AutoConfig yet...) * * So, remove current address, if any. */ /* Initialize the device if fully configured. */ if (dev->pos_regs[2] & 0x01) { /* Card enabled; register (new) I/O handler. */ nic_ioset(dev, dev->base_address); } } static void * nic_init(const device_t *info) { uint32_t mac; wchar_t *rom; nic_t *dev; #ifdef ENABLE_NIC_LOG int i; #endif int c; char *ansi_id = "REALTEK PLUG & PLAY ETHERNET CARD"; uint64_t *eeprom_pnp_id; /* Get the desired debug level. */ #ifdef ENABLE_NIC_LOG i = device_get_config_int("debug"); if (i > 0) nic_do_log = i; #endif dev = malloc(sizeof(nic_t)); memset(dev, 0x00, sizeof(nic_t)); dev->name = info->name; dev->board = info->local; rom = NULL; switch(dev->board) { case NE2K_NE1000: dev->is_8bit = 1; /*FALLTHROUGH*/ case NE2K_NE2000: dev->maclocal[0] = 0x00; /* 00:00:D8 (Novell OID) */ dev->maclocal[1] = 0x00; dev->maclocal[2] = 0xD8; rom = (dev->board == NE2K_NE1000) ? NULL : ROM_PATH_NE2000; break; case NE2K_NE2_MCA: nelog(3, "NE/2 adapter\n"); dev->is_mca = 1; dev->maclocal[0] = 0x00; /* 00:00:D8 (Novell OID) */ dev->maclocal[1] = 0x00; dev->maclocal[2] = 0xD8; dev->pos_regs[0] = 0x54; dev->pos_regs[1] = 0x71; rom = NULL; break; case NE2K_RTL8019AS: case NE2K_RTL8029AS: dev->is_pci = (dev->board == NE2K_RTL8029AS) ? 1 : 0; dev->maclocal[0] = 0x00; /* 00:E0:4C (Realtek OID) */ dev->maclocal[1] = 0xE0; dev->maclocal[2] = 0x4C; rom = (dev->board == NE2K_RTL8019AS) ? ROM_PATH_RTL8019 : ROM_PATH_RTL8029; break; } if (dev->board >= NE2K_RTL8019AS) { dev->base_address = 0x340; dev->base_irq = 12; if (dev->board == NE2K_RTL8029AS) { dev->bios_addr = 0xD0000; dev->has_bios = device_get_config_int("bios"); } else { dev->bios_addr = 0x00000; dev->has_bios = 0; } } else { if (dev->board != NE2K_NE2_MCA) { dev->base_address = device_get_config_hex16("base"); dev->base_irq = device_get_config_int("irq"); if (dev->board == NE2K_NE2000) { dev->bios_addr = device_get_config_hex20("bios_addr"); dev->has_bios = !!dev->bios_addr; } else { dev->bios_addr = 0x00000; dev->has_bios = 0; } } else { mca_add(nic_mca_read, nic_mca_write, dev); } } /* See if we have a local MAC address configured. */ mac = device_get_config_mac("mac", -1); /* * Make this device known to the I/O system. * PnP and PCI devices start with address spaces inactive. */ if (dev->board < NE2K_RTL8019AS && dev->board != NE2K_NE2_MCA) nic_ioset(dev, dev->base_address); /* Set up our BIOS ROM space, if any. */ nic_rom_init(dev, rom); /* Set up our BIA. */ if (mac & 0xff000000) { /* Generate new local MAC. */ dev->maclocal[3] = random_generate(); dev->maclocal[4] = random_generate(); dev->maclocal[5] = random_generate(); mac = (((int) dev->maclocal[3]) << 16); mac |= (((int) dev->maclocal[4]) << 8); mac |= ((int) dev->maclocal[5]); device_set_config_mac("mac", mac); } else { dev->maclocal[3] = (mac>>16) & 0xff; dev->maclocal[4] = (mac>>8) & 0xff; dev->maclocal[5] = (mac & 0xff); } memcpy(dev->dp8390.physaddr, dev->maclocal, sizeof(dev->maclocal)); nelog(0, "%s: I/O=%04x, IRQ=%d, MAC=%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name, dev->base_address, dev->base_irq, dev->dp8390.physaddr[0], dev->dp8390.physaddr[1], dev->dp8390.physaddr[2], dev->dp8390.physaddr[3], dev->dp8390.physaddr[4], dev->dp8390.physaddr[5]); if (dev->board >= NE2K_RTL8019AS) { if (dev->is_pci) { /* * Configure the PCI space registers. * * We do this here, so the I/O routines are generic. */ memset(dev->pci_regs, 0, PCI_REGSIZE); dev->pci_regs[0x00] = (PCI_VENDID&0xff); dev->pci_regs[0x01] = (PCI_VENDID>>8); dev->pci_regs[0x02] = (PCI_DEVID&0xff); dev->pci_regs[0x03] = (PCI_DEVID>>8); dev->pci_regs[0x04] = 0x03; /* IOEN */ dev->pci_regs[0x05] = 0x00; dev->pci_regs[0x07] = 0x02; /* DST0, medium devsel */ dev->pci_regs[0x09] = 0x00; /* PIFR */ dev->pci_regs[0x0B] = 0x02; /* BCR: Network Controller */ dev->pci_regs[0x0A] = 0x00; /* SCR: Ethernet */ dev->pci_regs[0x2C] = (PCI_VENDID&0xff); dev->pci_regs[0x2D] = (PCI_VENDID>>8); dev->pci_regs[0x2E] = (PCI_DEVID&0xff); dev->pci_regs[0x2F] = (PCI_DEVID>>8); dev->pci_regs[0x3D] = PCI_INTA; /* PCI_IPR */ /* Enable our address space in PCI. */ dev->pci_bar[0].addr_regs[0] = 0x01; /* Enable our BIOS space in PCI, if needed. */ if (dev->bios_addr > 0) { dev->pci_bar[1].addr = 0xFFFF8000; dev->pci_bar[1].addr_regs[1] = dev->bios_mask; } else { dev->pci_bar[1].addr = 0; dev->bios_size = 0; } mem_mapping_disable(&dev->bios_rom.mapping); /* Add device to the PCI bus, keep its slot number. */ dev->card = pci_add_card(PCI_ADD_NORMAL, nic_pci_read, nic_pci_write, dev); } else { io_sethandler(0x0279, 1, NULL, NULL, NULL, nic_pnp_address_writeb, NULL, NULL, dev); dev->pnp_id = PNP_DEVID; dev->pnp_id <<= 32LL; dev->pnp_id |= PNP_VENDID; dev->pnp_phase = PNP_PHASE_WAIT_FOR_KEY; } /* Initialize the RTL8029 EEPROM. */ memset(dev->eeprom, 0x00, sizeof(dev->eeprom)); if (dev->board == NE2K_RTL8029AS) { memcpy(&dev->eeprom[0x02], dev->maclocal, 6); dev->eeprom[0x76] = dev->eeprom[0x7A] = dev->eeprom[0x7E] = (PCI_DEVID&0xff); dev->eeprom[0x77] = dev->eeprom[0x7B] = dev->eeprom[0x7F] = (dev->board == NE2K_RTL8019AS) ? (PNP_DEVID>>8) : (PCI_DEVID>>8); dev->eeprom[0x78] = dev->eeprom[0x7C] = (PCI_VENDID&0xff); dev->eeprom[0x79] = dev->eeprom[0x7D] = (PCI_VENDID>>8); } else { eeprom_pnp_id = (uint64_t *) &dev->eeprom[0x12]; *eeprom_pnp_id = dev->pnp_id; /* TAG: Plug and Play Version Number. */ dev->eeprom[0x1B] = 0x0A; /* Item byte */ dev->eeprom[0x1C] = 0x10; /* PnP version */ dev->eeprom[0x1D] = 0x10; /* Vendor version */ /* TAG: ANSI Identifier String. */ dev->eeprom[0x1E] = 0x82; /* Item byte */ dev->eeprom[0x1F] = 0x22; /* Length bits 7-0 */ dev->eeprom[0x20] = 0x00; /* Length bits 15-8 */ memcpy(&dev->eeprom[0x21], ansi_id, 0x22); /* TAG: Logical Device ID. */ dev->eeprom[0x43] = 0x16; /* Item byte */ dev->eeprom[0x44] = 0x4A; /* Logical device ID0 */ dev->eeprom[0x45] = 0x8C; /* Logical device ID1 */ dev->eeprom[0x46] = 0x80; /* Logical device ID2 */ dev->eeprom[0x47] = 0x19; /* Logical device ID3 */ dev->eeprom[0x48] = 0x02; /* Flag0 (02=BROM/disabled) */ dev->eeprom[0x49] = 0x00; /* Flag 1 */ /* TAG: Compatible Device ID (NE2000) */ dev->eeprom[0x4A] = 0x1C; /* Item byte */ dev->eeprom[0x4B] = 0x41; /* Compatible ID0 */ dev->eeprom[0x4C] = 0xD0; /* Compatible ID1 */ dev->eeprom[0x4D] = 0x80; /* Compatible ID2 */ dev->eeprom[0x4E] = 0xD6; /* Compatible ID3 */ /* TAG: I/O Format */ dev->eeprom[0x4F] = 0x47; /* Item byte */ dev->eeprom[0x50] = 0x00; /* I/O information */ dev->eeprom[0x51] = 0x20; /* Min. I/O base bits 7-0 */ dev->eeprom[0x52] = 0x02; /* Min. I/O base bits 15-8 */ dev->eeprom[0x53] = 0x80; /* Max. I/O base bits 7-0 */ dev->eeprom[0x54] = 0x03; /* Max. I/O base bits 15-8 */ dev->eeprom[0x55] = 0x20; /* Base alignment */ dev->eeprom[0x56] = 0x20; /* Range length */ /* TAG: IRQ Format. */ dev->eeprom[0x57] = 0x23; /* Item byte */ dev->eeprom[0x58] = 0x38; /* IRQ mask bits 7-0 */ dev->eeprom[0x59] = 0x9E; /* IRQ mask bits 15-8 */ dev->eeprom[0x5A] = 0x01; /* IRQ information */ /* TAG: END Tag */ dev->eeprom[0x5B] = 0x79; /* Item byte */ for (c = 0x1b; c < 0x5c; c++) /* Checksum (2's compl) */ dev->eeprom[0x5C] += dev->eeprom[c]; dev->eeprom[0x5C] = -dev->eeprom[0x5C]; io_sethandler(0x0A79, 1, NULL, NULL, NULL, nic_pnp_writeb, NULL, NULL, dev); } } /* Reset the board. */ nic_reset(dev); /* Attach ourselves to the network module. */ network_attach(dev, dev->dp8390.physaddr, nic_rx); nelog(1, "%s: %s attached IO=0x%X IRQ=%d\n", dev->name, dev->is_pci?"PCI":"ISA", dev->base_address, dev->base_irq); return(dev); } static void nic_close(void *priv) { nic_t *dev = (nic_t *)priv; /* Make sure the platform layer is shut down. */ network_close(); nic_ioremove(dev, dev->base_address); nelog(1, "%s: closed\n", dev->name); free(dev); } static const device_config_t ne1000_config[] = { { "base", "Address", CONFIG_HEX16, "", 0x300, { { "0x280", 0x280 }, { "0x300", 0x300 }, { "0x320", 0x320 }, { "0x340", 0x340 }, { "0x360", 0x360 }, { "0x380", 0x380 }, { "" } }, }, { "irq", "IRQ", CONFIG_SELECTION, "", 3, { { "IRQ 2", 2 }, { "IRQ 3", 3 }, { "IRQ 5", 5 }, { "IRQ 7", 7 }, { "IRQ 10", 10 }, { "IRQ 11", 11 }, { "" } }, }, { "mac", "MAC Address", CONFIG_MAC, "", -1 }, { "", "", -1 } }; static const device_config_t ne2000_config[] = { { "base", "Address", CONFIG_HEX16, "", 0x300, { { "0x280", 0x280 }, { "0x300", 0x300 }, { "0x320", 0x320 }, { "0x340", 0x340 }, { "0x360", 0x360 }, { "0x380", 0x380 }, { "" } }, }, { "irq", "IRQ", CONFIG_SELECTION, "", 10, { { "IRQ 2", 2 }, { "IRQ 3", 3 }, { "IRQ 5", 5 }, { "IRQ 7", 7 }, { "IRQ 10", 10 }, { "IRQ 11", 11 }, { "" } }, }, { "mac", "MAC Address", CONFIG_MAC, "", -1 }, { "bios_addr", "BIOS address", CONFIG_HEX20, "", 0, { { "Disabled", 0x00000 }, { "D000", 0xD0000 }, { "D800", 0xD8000 }, { "C800", 0xC8000 }, { "" } }, }, { "", "", -1 } }; static const device_config_t rtl8019as_config[] = { { "mac", "MAC Address", CONFIG_MAC, "", -1 }, { "", "", -1 } }; static const device_config_t rtl8029as_config[] = { { "bios", "Enable BIOS", CONFIG_BINARY, "", 0 }, { "mac", "MAC Address", CONFIG_MAC, "", -1 }, { "", "", -1 } }; static const device_config_t mca_mac_config[] = { { "mac", "MAC Address", CONFIG_MAC, "", -1 }, { "", "", -1 } }; const device_t ne1000_device = { "Novell NE1000", DEVICE_ISA, NE2K_NE1000, nic_init, nic_close, NULL, NULL, NULL, NULL, ne1000_config }; const device_t ne2000_device = { "Novell NE2000", DEVICE_ISA | DEVICE_AT, NE2K_NE2000, nic_init, nic_close, NULL, NULL, NULL, NULL, ne2000_config }; const device_t ne2_device = { "Novell NE/2", DEVICE_MCA, NE2K_NE2_MCA, nic_init, nic_close, NULL, NULL, NULL, NULL, mca_mac_config }; const device_t rtl8019as_device = { "Realtek RTL8019AS", DEVICE_ISA | DEVICE_AT, NE2K_RTL8019AS, nic_init, nic_close, NULL, NULL, NULL, NULL, rtl8019as_config }; const device_t rtl8029as_device = { "Realtek RTL8029AS", DEVICE_PCI, NE2K_RTL8029AS, nic_init, nic_close, NULL, NULL, NULL, NULL, rtl8029as_config };