/* * 86Box A hypervisor and IBM PC system emulator that specializes in * running old operating systems and software designed for IBM * PC systems and compatibles from 1981 through fairly recent * system designs based on the PCI bus. * * This file is part of the 86Box distribution. * * Roland MPU-401 emulation. * * Version: @(#)sound_mpu401.c 1.0.1 2017/06/19 * * Author: Sarah Walker, * DOSBox Team, * Miran Grca, * TheCollector1995, * Copyright 2008-2017 Sarah Walker. * Copyright 2008-2017 DOSBox Team. * Copyright 2016-2017 Miran Grca. * Copyright 2016-2017 TheCollector1995. */ #include "../ibm.h" #include "../device.h" #include "../io.h" #include "../pic.h" #include "../timer.h" #include "midi.h" #include "sound.h" #include "snd_mpu401.h" #include #include enum { STATUS_OUTPUT_NOT_READY = 0x40, STATUS_INPUT_NOT_READY = 0x80 }; static void MPU401_WriteCommand(mpu_t *mpu, uint8_t val); static void MPU401_EOIHandlerDispatch(void *p); int mpu401_standalone_enable = 0; static int mpu401_event_callback = 0; static int mpu401_eoi_callback = 0; static int mpu401_reset_callback = 0; #ifdef ENABLE_MPU401_LOG static int mpu401_do_log = 1; static char logfmt[512]; #endif static void mpulog(const char *fmt, ...) { #ifdef ENABLE_MPU401_LOG va_list ap; if (mpu401_do_log) { va_start(ap, fmt); memset(logfmt, 0, 512); strcpy(logfmt, "MPU-401: "); strcpy(logfmt + strlen(logfmt), fmt); vprintf(logfmt, ap); va_end(ap); } #endif } #define pclog mpulog static void QueueByte(mpu_t *mpu, uint8_t data) { if (mpu->state.block_ack) { mpu->state.block_ack=0; return; } if (mpu->queue_used == 0 && mpu->intelligent) { mpu->state.irq_pending=1; //PIC_ActivateIRQ(mpu->irq); picint(1 << mpu->irq); } if (mpu->queue_used < MPU401_QUEUE) { int pos = mpu->queue_used+mpu->queue_pos; if (mpu->queue_pos >= MPU401_QUEUE) mpu->queue_pos -= MPU401_QUEUE; if (pos>=MPU401_QUEUE) pos-=MPU401_QUEUE; mpu->queue_used++; mpu->queue[pos]=data; } else pclog("MPU401:Data queue full\n"); } static void ClrQueue(mpu_t *mpu) { mpu->queue_used=0; mpu->queue_pos=0; } static void MPU401_Reset(mpu_t *mpu) { uint8_t i; picintc(1 << mpu->irq); mpu->mode=(mpu->intelligent ? M_INTELLIGENT : M_UART); mpu->state.eoi_scheduled=0; mpu->state.wsd=0; mpu->state.wsm=0; mpu->state.conductor=0; mpu->state.cond_req=0; mpu->state.cond_set=0; mpu->state.playing=0; mpu->state.run_irq=0; mpu->state.irq_pending=0; mpu->state.cmask=0xff; mpu->state.amask=mpu->state.tmask=0; mpu->state.midi_mask=0xffff; mpu->state.data_onoff=0; mpu->state.command_byte=0; mpu->state.block_ack=0; mpu->clock.tempo=mpu->clock.old_tempo=100; mpu->clock.timebase=mpu->clock.old_timebase=120; mpu->clock.tempo_rel=mpu->clock.old_tempo_rel=40; mpu->clock.tempo_grad=0; mpu->clock.clock_to_host=0; mpu->clock.cth_rate=60; mpu->clock.cth_counter=0; ClrQueue(mpu); mpu->state.req_mask=0; mpu->condbuf.counter=0; mpu->condbuf.type=T_OVERFLOW; for (i=0;i<8;i++) {mpu->playbuf[i].type=T_OVERFLOW;mpu->playbuf[i].counter=0;} } static void MPU401_ResetDone(void *p) { mpu_t *mpu = (mpu_t *)p; pclog("MPU-401 reset callback\n"); mpu401_reset_callback = 0; mpu->state.reset=0; if (mpu->state.cmd_pending) { MPU401_WriteCommand(mpu, mpu->state.cmd_pending-1); mpu->state.cmd_pending=0; } } static void MPU401_WriteCommand(mpu_t *mpu, uint8_t val) { uint8_t i; if (mpu->state.reset) { mpu->state.cmd_pending=val+1; return; } if (val<=0x2f) { switch (val&3) { /* MIDI stop, start, continue */ case 1: {midi_write(0xfc);break;} case 2: {midi_write(0xfa);break;} case 3: {midi_write(0xfb);break;} } // if (val&0x20) LOG(LOG_MISC,LOG_ERROR)("MPU-401:Unhandled Recording Command %x",(int)val); switch (val&0xc) { case 0x4: /* Stop */ mpu->state.playing=0; mpu401_event_callback = 0; for (i=0xb0;i<0xbf;i++) { /* All notes off */ midi_write(i); midi_write(0x7b); midi_write(0); } break; case 0x8: /* Play */ // LOG(LOG_MISC,LOG_NORMAL)("MPU-401:Intelligent mode playback started"); mpu->state.playing=1; mpu401_event_callback = (MPU401_TIMECONSTANT / (mpu->clock.tempo*mpu->clock.timebase)) * 1000 * TIMER_USEC; ClrQueue(mpu); break; } } else if (val>=0xa0 && val<=0xa7) { /* Request play counter */ if (mpu->state.cmask&(1<<(val&7))) QueueByte(mpu, mpu->playbuf[val&7].counter); } else if (val>=0xd0 && val<=0xd7) { /* Send data */ mpu->state.old_chan=mpu->state.channel; mpu->state.channel=val&7; mpu->state.wsd=1; mpu->state.wsm=0; mpu->state.wsd_start=1; } else switch (val) { case 0xdf: /* Send system message */ mpu->state.wsd=0; mpu->state.wsm=1; mpu->state.wsd_start=1; break; case 0x8e: /* Conductor */ mpu->state.cond_set=0; break; case 0x8f: mpu->state.cond_set=1; break; case 0x94: /* Clock to host */ mpu->clock.clock_to_host=0; break; case 0x95: mpu->clock.clock_to_host=1; break; case 0xc2: /* Internal timebase */ mpu->clock.timebase=48; break; case 0xc3: mpu->clock.timebase=72; break; case 0xc4: mpu->clock.timebase=96; break; case 0xc5: mpu->clock.timebase=120; break; case 0xc6: mpu->clock.timebase=144; break; case 0xc7: mpu->clock.timebase=168; break; case 0xc8: mpu->clock.timebase=192; break; /* Commands with data byte */ case 0xe0: case 0xe1: case 0xe2: case 0xe4: case 0xe6: case 0xe7: case 0xec: case 0xed: case 0xee: case 0xef: mpu->state.command_byte=val; break; /* Commands 0xa# returning data */ case 0xab: /* Request and clear recording counter */ QueueByte(mpu, MSG_MPU_ACK); QueueByte(mpu, 0); return; case 0xac: /* Request version */ QueueByte(mpu, MSG_MPU_ACK); QueueByte(mpu, MPU401_VERSION); return; case 0xad: /* Request revision */ QueueByte(mpu, MSG_MPU_ACK); QueueByte(mpu, MPU401_REVISION); return; case 0xaf: /* Request tempo */ QueueByte(mpu, MSG_MPU_ACK); QueueByte(mpu, mpu->clock.tempo); return; case 0xb1: /* Reset relative tempo */ mpu->clock.tempo_rel=40; break; case 0xb9: /* Clear play map */ case 0xb8: /* Clear play counters */ for (i=0xb0;i<0xbf;i++) { /* All notes off */ midi_write(i); midi_write(0x7b); midi_write(0); } for (i=0;i<8;i++) { mpu->playbuf[i].counter=0; mpu->playbuf[i].type=T_OVERFLOW; } mpu->condbuf.counter=0; mpu->condbuf.type=T_OVERFLOW; if (!(mpu->state.conductor=mpu->state.cond_set)) mpu->state.cond_req=0; mpu->state.amask=mpu->state.tmask; mpu->state.req_mask=0; mpu->state.irq_pending=1; break; case 0xff: /* Reset MPU-401 */ pclog("MPU-401:Reset %X\n",val); mpu401_reset_callback = MPU401_RESETBUSY * 33 * TIMER_USEC; mpu->state.reset=1; MPU401_Reset(mpu); #if 0 if (mpu->mode==M_UART) return;//do not send ack in UART mode #endif break; case 0x3f: /* UART mode */ pclog("MPU-401:Set UART mode %X\n",val); mpu->mode=M_UART; break; default:; //LOG(LOG_MISC,LOG_NORMAL)("MPU-401:Unhandled command %X",val); } QueueByte(mpu, MSG_MPU_ACK); } static void MPU401_WriteData(mpu_t *mpu, uint8_t val) { if (mpu->mode==M_UART) {midi_write(val); return;} switch (mpu->state.command_byte) { /* 0xe# command data */ case 0x00: break; case 0xe0: /* Set tempo */ mpu->state.command_byte=0; mpu->clock.tempo=val; return; case 0xe1: /* Set relative tempo */ mpu->state.command_byte=0; if (val!=0x40) //default value pclog("MPU-401:Relative tempo change not implemented\n"); return; case 0xe7: /* Set internal clock to host interval */ mpu->state.command_byte=0; mpu->clock.cth_rate=val>>2; return; case 0xec: /* Set active track mask */ mpu->state.command_byte=0; mpu->state.tmask=val; return; case 0xed: /* Set play counter mask */ mpu->state.command_byte=0; mpu->state.cmask=val; return; case 0xee: /* Set 1-8 MIDI channel mask */ mpu->state.command_byte=0; mpu->state.midi_mask&=0xff00; mpu->state.midi_mask|=val; return; case 0xef: /* Set 9-16 MIDI channel mask */ mpu->state.command_byte=0; mpu->state.midi_mask&=0x00ff; mpu->state.midi_mask|=((uint16_t)val)<<8; return; //case 0xe2: /* Set graduation for relative tempo */ //case 0xe4: /* Set metronome */ //case 0xe6: /* Set metronome measure length */ default: mpu->state.command_byte=0; return; } static int length,cnt,posd; if (mpu->state.wsd) { /* Directly send MIDI message */ if (mpu->state.wsd_start) { mpu->state.wsd_start=0; cnt=0; switch (val&0xf0) { case 0xc0:case 0xd0: mpu->playbuf[mpu->state.channel].value[0]=val; length=2; break; case 0x80:case 0x90:case 0xa0:case 0xb0:case 0xe0: mpu->playbuf[mpu->state.channel].value[0]=val; length=3; break; case 0xf0: //pclog("MPU-401:Illegal WSD byte\n"); mpu->state.wsd=0; mpu->state.channel=mpu->state.old_chan; return; default: /* MIDI with running status */ cnt++; midi_write(mpu->playbuf[mpu->state.channel].value[0]); } } if (cntstate.wsd=0; mpu->state.channel=mpu->state.old_chan; } return; } if (mpu->state.wsm) { /* Directly send system message */ if (val==MSG_EOX) {midi_write(MSG_EOX);mpu->state.wsm=0;return;} if (mpu->state.wsd_start) { mpu->state.wsd_start=0; cnt=0; switch (val) { case 0xf2:{ length=3; break;} case 0xf3:{ length=2; break;} case 0xf6:{ length=1; break;} case 0xf0:{ length=0; break;} default: length=0; } } if (!length || cntstate.wsm=0; return; } if (mpu->state.cond_req) { /* Command */ switch (mpu->state.data_onoff) { case -1: return; case 0: /* Timing byte */ mpu->condbuf.vlength=0; if (val<0xf0) mpu->state.data_onoff++; else { mpu->state.data_onoff=-1; MPU401_EOIHandlerDispatch(mpu); return; } if (val==0) mpu->state.send_now=1; else mpu->state.send_now=0; mpu->condbuf.counter=val; break; case 1: /* Command byte #1 */ mpu->condbuf.type=T_COMMAND; if (val==0xf8 || val==0xf9) mpu->condbuf.type=T_OVERFLOW; mpu->condbuf.value[mpu->condbuf.vlength]=val; mpu->condbuf.vlength++; if ((val&0xf0)!=0xe0) MPU401_EOIHandlerDispatch(mpu); else mpu->state.data_onoff++; break; case 2:/* Command byte #2 */ mpu->condbuf.value[mpu->condbuf.vlength]=val; mpu->condbuf.vlength++; MPU401_EOIHandlerDispatch(mpu); break; } return; } switch (mpu->state.data_onoff) { /* Data */ case -1: return; case 0: /* Timing byte */ if (val<0xf0) mpu->state.data_onoff=1; else { mpu->state.data_onoff=-1; MPU401_EOIHandlerDispatch(mpu); return; } if (val==0) mpu->state.send_now=1; else mpu->state.send_now=0; mpu->playbuf[mpu->state.channel].counter=val; break; case 1: /* MIDI */ mpu->playbuf[mpu->state.channel].vlength++; posd=mpu->playbuf[mpu->state.channel].vlength; if (posd==1) { switch (val&0xf0) { case 0xf0: /* System message or mark */ if (val>0xf7) { mpu->playbuf[mpu->state.channel].type=T_MARK; mpu->playbuf[mpu->state.channel].sys_val=val; length=1; } else { //LOG(LOG_MISC,LOG_ERROR)("MPU-401:Illegal message"); mpu->playbuf[mpu->state.channel].type=T_MIDI_SYS; mpu->playbuf[mpu->state.channel].sys_val=val; length=1; } break; case 0xc0: case 0xd0: /* MIDI Message */ mpu->playbuf[mpu->state.channel].type=T_MIDI_NORM; length=mpu->playbuf[mpu->state.channel].length=2; break; case 0x80: case 0x90: case 0xa0: case 0xb0: case 0xe0: mpu->playbuf[mpu->state.channel].type=T_MIDI_NORM; length=mpu->playbuf[mpu->state.channel].length=3; break; default: /* MIDI data with running status */ posd++; mpu->playbuf[mpu->state.channel].vlength++; mpu->playbuf[mpu->state.channel].type=T_MIDI_NORM; length=mpu->playbuf[mpu->state.channel].length; break; } } if (!(posd==1 && val>=0xf0)) mpu->playbuf[mpu->state.channel].value[posd-1]=val; if (posd==length) MPU401_EOIHandlerDispatch(mpu); } } static void MPU401_IntelligentOut(mpu_t *mpu, uint8_t chan) { uint8_t val; uint8_t i; switch (mpu->playbuf[chan].type) { case T_OVERFLOW: break; case T_MARK: val=mpu->playbuf[chan].sys_val; if (val==0xfc) { midi_write(val); mpu->state.amask&=~(1<state.req_mask&=~(1<playbuf[chan].vlength;i++) midi_write(mpu->playbuf[chan].value[i]); break; default: break; } } static void UpdateTrack(mpu_t *mpu, uint8_t chan) { MPU401_IntelligentOut(mpu, chan); if (mpu->state.amask&(1<playbuf[chan].vlength=0; mpu->playbuf[chan].type=T_OVERFLOW; mpu->playbuf[chan].counter=0xf0; mpu->state.req_mask|=(1<state.amask==0 && !mpu->state.conductor) mpu->state.req_mask|=(1<<12); } } static void UpdateConductor(mpu_t *mpu) { if (mpu->condbuf.value[0]==0xfc) { mpu->condbuf.value[0]=0; mpu->state.conductor=0; mpu->state.req_mask&=~(1<<9); if (mpu->state.amask==0) mpu->state.req_mask|=(1<<12); return; } mpu->condbuf.vlength=0; mpu->condbuf.counter=0xf0; mpu->state.req_mask|=(1<<9); } //Updates counters and requests new data on "End of Input" static void MPU401_EOIHandler(void *p) { mpu_t *mpu = (mpu_t *)p; uint8_t i; pclog("MPU-401 end of input callback\n"); mpu401_eoi_callback = 0; mpu->state.eoi_scheduled=0; if (mpu->state.send_now) { mpu->state.send_now=0; if (mpu->state.cond_req) UpdateConductor(mpu); else UpdateTrack(mpu, mpu->state.channel); } mpu->state.irq_pending=0; if (!mpu->state.playing || !mpu->state.req_mask) return; i=0; do { if (mpu->state.req_mask&(1<state.req_mask&=~(1<state.send_now) { mpu->state.eoi_scheduled=1; mpu401_eoi_callback = 60 * TIMER_USEC; /* Possible a bit longer */ } else if (!mpu->state.eoi_scheduled) MPU401_EOIHandler(mpu); } static void imf_write(uint16_t addr, uint8_t val, void *p) { pclog("IMF:Wr %4X,%X\n", addr, val); } uint8_t MPU401_ReadData(mpu_t *mpu) { uint8_t ret; ret = MSG_MPU_ACK; if (mpu->queue_used) { if (mpu->queue_pos>=MPU401_QUEUE) mpu->queue_pos-=MPU401_QUEUE; ret=mpu->queue[mpu->queue_pos]; mpu->queue_pos++;mpu->queue_used--; } if (!mpu->intelligent) return ret; if (mpu->queue_used == 0) picintc(1 << mpu->irq); if (ret>=0xf0 && ret<=0xf7) { /* MIDI data request */ mpu->state.channel=ret&7; mpu->state.data_onoff=0; mpu->state.cond_req=0; } if (ret==MSG_MPU_COMMAND_REQ) { mpu->state.data_onoff=0; mpu->state.cond_req=1; if (mpu->condbuf.type!=T_OVERFLOW) { mpu->state.block_ack=1; MPU401_WriteCommand(mpu, mpu->condbuf.value[0]); if (mpu->state.command_byte) MPU401_WriteData(mpu, mpu->condbuf.value[1]); } mpu->condbuf.type=T_OVERFLOW; } if (ret==MSG_MPU_END || ret==MSG_MPU_CLOCK || ret==MSG_MPU_ACK) { mpu->state.data_onoff=-1; MPU401_EOIHandlerDispatch(mpu); } return ret; } static void mpu401_write(uint16_t addr, uint8_t val, void *p) { mpu_t *mpu = (mpu_t *)p; /* pclog("MPU401 Write Port %04X, val %x\n", addr, val); */ switch (addr & 1) { case 0: /*Data*/ MPU401_WriteData(mpu, val); pclog("Write Data (0x330) %X\n", val); break; case 1: /*Command*/ MPU401_WriteCommand(mpu, val); pclog("Write Command (0x331) %x\n", val); break; } } static uint8_t mpu401_read(uint16_t addr, void *p) { mpu_t *mpu = (mpu_t *)p; uint8_t ret = 0; switch (addr & 1) { case 0: //Read Data ret = MPU401_ReadData(mpu); pclog("Read Data (0x330) %X\n", ret); break; case 1: //Read Status ret = 0x3f; /* Bits 6 and 7 clear */ if (mpu->state.cmd_pending) ret|=STATUS_OUTPUT_NOT_READY; if (!mpu->queue_used) ret|=STATUS_INPUT_NOT_READY; pclog("Read Status (0x331) %x\n", ret); break; } /* pclog("MPU401 Read Port %04X, ret %x\n", addr, ret); */ return ret; } static void MPU401_Event(void *p) { mpu_t *mpu = (mpu_t *)p; uint8_t i; int new_time; pclog("MPU-401 event callback\n"); if (mpu->mode==M_UART) { mpu401_event_callback = 0; return; } if (mpu->state.irq_pending) goto next_event; for (i=0;i<8;i++) { /* Decrease counters */ if (mpu->state.amask&(1<playbuf[i].counter--; if (mpu->playbuf[i].counter<=0) UpdateTrack(mpu, i); } } if (mpu->state.conductor) { mpu->condbuf.counter--; if (mpu->condbuf.counter<=0) UpdateConductor(mpu); } if (mpu->clock.clock_to_host) { mpu->clock.cth_counter++; if (mpu->clock.cth_counter >= mpu->clock.cth_rate) { mpu->clock.cth_counter=0; mpu->state.req_mask|=(1<<13); } } if (!mpu->state.irq_pending && mpu->state.req_mask) MPU401_EOIHandler(mpu); next_event: /* mpu401_event_callback = 0; */ new_time = (mpu->clock.tempo * mpu->clock.timebase); if (new_time == 0) { mpu401_event_callback = 0; return; } else { mpu401_event_callback += (MPU401_TIMECONSTANT/new_time) * 1000 * TIMER_USEC; pclog("Next event after %i us (time constant: %i)\n", (int) ((MPU401_TIMECONSTANT/new_time) * 1000 * TIMER_USEC), (int) MPU401_TIMECONSTANT); } } void mpu401_init(mpu_t *mpu, uint16_t addr, int irq, int mode) { #if 0 if (mode != M_INTELLIGENT) { mpu401_uart_init(mpu, addr); return; } #endif mpu->status = STATUS_INPUT_NOT_READY; mpu->irq = irq; mpu->queue_used = 0; mpu->queue_pos = 0; mpu->mode = M_UART; mpu->intelligent = (mode == M_INTELLIGENT) ? 1 : 0; pclog("Starting as %s (mode is %s)\n", mpu->intelligent ? "INTELLIGENT" : "UART", (mode == M_INTELLIGENT) ? "INTELLIGENT" : "UART"); mpu401_event_callback = 0; mpu401_eoi_callback = 0; mpu401_reset_callback = 0; io_sethandler(addr, 0x0002, mpu401_read, NULL, NULL, mpu401_write, NULL, NULL, mpu); io_sethandler(0x2A20, 0x0010, NULL, NULL, NULL, imf_write, NULL, NULL, mpu); timer_add(MPU401_Event, &mpu401_event_callback, &mpu401_event_callback, mpu); timer_add(MPU401_EOIHandler, &mpu401_eoi_callback, &mpu401_eoi_callback, mpu); timer_add(MPU401_ResetDone, &mpu401_reset_callback, &mpu401_reset_callback, mpu); MPU401_Reset(mpu); } void mpu401_device_add(void) { char *n; if (!mpu401_standalone_enable) { return; } n = sound_card_get_internal_name(sound_card_current); if (n != NULL) { if (!strcmp(n, "sb16") || !strcmp(n, "sbawe32")) { return; } } device_add(&mpu401_device); } void *mpu401_standalone_init() { mpu_t *mpu; mpu = malloc(sizeof(mpu_t)); memset(mpu, 0, sizeof(mpu_t)); pclog("mpu_init\n"); mpu401_init(mpu, device_get_config_hex16("base"), device_get_config_int("irq"), device_get_config_int("mode")); return mpu; } void mpu401_standalone_close(void *p) { mpu_t *mpu = (mpu_t *)p; free(mpu); } static device_config_t mpu401_standalone_config[] = { { "base", "MPU-401 Address", CONFIG_HEX16, "", 0x330, { { "0x300", 0x300 }, { "0x330", 0x330 }, { "" } } }, { "irq", "MPU-401 IRQ", CONFIG_SELECTION, "", 9, { { "IRQ 9", 9 }, { "IRQ 3", 3 }, { "IRQ 4", 4 }, { "IRQ 5", 5 }, { "IRQ 7", 7 }, { "IRQ 10", 10 }, { "" } } }, { "mode", "Mode", CONFIG_SELECTION, "", 1, { { "UART", M_UART }, { "Intelligent", M_INTELLIGENT }, { "" } } }, { "", "", -1 } }; device_t mpu401_device = { "MPU-401 (Standalone)", 0, mpu401_standalone_init, mpu401_standalone_close, NULL, NULL, NULL, NULL, mpu401_standalone_config };