/* * 86Box A hypervisor and IBM PC system emulator that specializes in * running old operating systems and software designed for IBM * PC systems and compatibles from 1981 through fairly recent * system designs based on the PCI bus. * * This file is part of the 86Box distribution. * * Implementation of the ALi M1489 chipset. * * * * Authors: Tiseno100, * Miran Grca, * * Copyright 2020-2021 Tiseno100. * Copyright 2020-2021 Miran Grca. */ #include #include #include #include #include #include #define HAVE_STDARG_H #include <86box/86box.h> #include "cpu.h" #include <86box/timer.h> #include <86box/io.h> #include <86box/device.h> #include <86box/hdc_ide.h> #include <86box/hdc.h> #include <86box/mem.h> #include <86box/nmi.h> #include <86box/pic.h> #include <86box/pci.h> #include <86box/plat_unused.h> #include <86box/port_92.h> #include <86box/smram.h> #include <86box/chipset.h> #define DEFINE_SHADOW_PROCEDURE (((dev->regs[0x14] & 0x10) ? MEM_READ_INTERNAL : MEM_READ_EXTANY) | \ ((dev->regs[0x14] & 0x20) ? MEM_WRITE_INTERNAL : MEM_WRITE_EXTANY)) #define DISABLED_SHADOW (MEM_READ_EXTANY | MEM_WRITE_EXTANY) #ifdef ENABLE_ALI1489_LOG int ali1489_do_log = ENABLE_ALI1489_LOG; static void ali1489_log(const char *fmt, ...) { va_list ap; if (ali1489_do_log) { va_start(ap, fmt); pclog_ex(fmt, ap); va_end(ap); } } #else # define ali1489_log(fmt, ...) #endif typedef struct ali1489_t { uint8_t index; uint8_t pci_slot; uint8_t regs[256]; uint8_t pci_conf[256]; port_92_t *port_92; smram_t *smram; } ali1489_t; static void ali1489_shadow_recalc(ali1489_t *dev) { shadowbios = shadowbios_write = 0; for (uint8_t i = 0; i < 8; i++) { if (dev->regs[0x13] & (1 << i)) { ali1489_log("%06Xh-%06Xh region shadow enabled: read = %i, write = %i\n", 0xc0000 + (i << 14), 0xc3fff + (i << 14), !!(dev->regs[0x14] & 0x10), !!(dev->regs[0x14] & 0x20)); mem_set_mem_state_both(0xc0000 + (i << 14), 0x4000, DEFINE_SHADOW_PROCEDURE); } else { ali1489_log("%06Xh-%06Xh region shadow disabled\n", 0xc0000 + (i << 14), 0xc3fff + (i << 14)); mem_set_mem_state_both(0xc0000 + (i << 14), 0x4000, DISABLED_SHADOW); } } for (uint8_t i = 0; i < 4; i++) { if (dev->regs[0x14] & (1 << i)) { ali1489_log("%06Xh-%06Xh region shadow enabled: read = %i, write = %i\n", 0xe0000 + (i << 15), 0xe7fff + (i << 15), !!(dev->regs[0x14] & 0x10), !!(dev->regs[0x14] & 0x20)); mem_set_mem_state_both(0xe0000 + (i << 15), 0x8000, DEFINE_SHADOW_PROCEDURE); shadowbios |= !!(dev->regs[0x14] & 0x10); shadowbios_write |= !!(dev->regs[0x14] & 0x20); } else { ali1489_log("%06Xh-%06Xh region shadow disabled\n", 0xe0000 + (i << 15), 0xe7fff + (i << 15)); mem_set_mem_state_both(0xe0000 + (i << 15), 0x8000, DISABLED_SHADOW); } } flushmmucache_nopc(); } static void ali1489_smram_recalc(ali1489_t *dev) { /* The datasheet documents SMM behavior quite terribly. Everything were done according to the M1489 programming guide. */ smram_disable(dev->smram); switch (dev->regs[0x19] & 0x30) { case 0x10: smram_enable(dev->smram, 0xa0000, 0xa0000, 0x20000, (dev->regs[0x19] & 0x08), 1); break; case 0x20: smram_enable(dev->smram, 0xe0000, 0xe0000, 0x10000, (dev->regs[0x19] & 0x08), 1); break; case 0x30: if ((dev->regs[0x35] & 0xc0) == 0x80) smram_enable(dev->smram, 0x68000, 0xa8000, 0x08000, (dev->regs[0x19] & 0x08), 1); else smram_enable(dev->smram, 0x38000, 0xa8000, 0x08000, (dev->regs[0x19] & 0x08), 1); break; default: break; } if ((dev->regs[0x19] & 0x31) == 0x11) { /* If SMRAM is enabled and bit 0 is set, code still goes to DRAM. */ mem_set_mem_state_smram_ex(1, 0xa0000, 0x20000, 0x02); } } static void ali1489_defaults(ali1489_t *dev) { memset(dev->pci_conf, 0x00, 256); memset(dev->regs, 0x00, 256); /* PCI registers */ dev->pci_conf[0x00] = 0xb9; dev->pci_conf[0x01] = 0x10; dev->pci_conf[0x02] = 0x89; dev->pci_conf[0x03] = 0x14; dev->pci_conf[0x04] = 0x07; dev->pci_conf[0x07] = 0x04; dev->pci_conf[0x0b] = 0x06; /* ISA registers */ dev->regs[0x01] = 0x0f; dev->regs[0x02] = 0x0f; dev->regs[0x10] = 0xf1; dev->regs[0x11] = 0xff; dev->regs[0x15] = 0x20; dev->regs[0x16] = 0x30; dev->regs[0x19] = 0x04; dev->regs[0x21] = 0x72; dev->regs[0x28] = 0x02; dev->regs[0x2b] = 0xdb; dev->regs[0x3c] = 0x03; dev->regs[0x3d] = 0x01; dev->regs[0x40] = 0x03; ali1489_shadow_recalc(dev); cpu_cache_int_enabled = 0; cpu_cache_ext_enabled = 0; cpu_update_waitstates(); ali1489_smram_recalc(dev); port_92_remove(dev->port_92); picintc(1 << 10); picintc(1 << 15); nmi = 0; smi_line = 0; in_smm = 0; pci_set_irq_routing(PCI_INTA, PCI_IRQ_DISABLED); pci_set_irq_routing(PCI_INTB, PCI_IRQ_DISABLED); pci_set_irq_routing(PCI_INTC, PCI_IRQ_DISABLED); pci_set_irq_routing(PCI_INTD, PCI_IRQ_DISABLED); } static void ali1489_write(uint16_t addr, uint8_t val, void *priv) { ali1489_t *dev = (ali1489_t *) priv; uint8_t old; uint8_t irq; const uint8_t irq_array[16] = { 0, 9, 3, 10, 4, 5, 7, 6, 0, 11, 0, 12, 0, 14, 0, 15 }; switch (addr) { case 0x22: dev->index = val; break; case 0x23: /* Check if the configuration registers are unlocked */ if (dev->regs[0x03] == 0xc5) { switch (dev->index) { case 0x03: /* Lock Register */ case 0x10: /* DRAM Configuration Register I */ case 0x11: /* DRAM Configuration Register II */ case 0x12: /* ROM Function Register */ dev->regs[dev->index] = val; break; case 0x13: /* Shadow Region Register */ case 0x14: /* Shadow Control Register */ if (dev->index == 0x14) dev->regs[dev->index] = (val & 0xbf); else dev->regs[dev->index] = val; ali1489_shadow_recalc(dev); ali1489_smram_recalc(dev); break; case 0x15: /* Cycle Check Point Control Register */ dev->regs[dev->index] = (val & 0xf1); break; case 0x16: /* Cache Control Register I */ dev->regs[dev->index] = val; cpu_cache_int_enabled = (val & 0x01); cpu_cache_ext_enabled = (val & 0x02); cpu_update_waitstates(); break; case 0x17: /* Cache Control Register II */ dev->regs[dev->index] = val; break; case 0x19: /* SMM Control Register */ dev->regs[dev->index] = val; ali1489_smram_recalc(dev); break; case 0x1a: /* EDO DRAM Configuration Register */ case 0x1b: /* DRAM Timing Control Register */ dev->regs[dev->index] = val; break; case 0x1c: /* Memory Data Buffer Direction Control Register */ dev->regs[dev->index] = val & 0x1f; break; case 0x1e: /* Linear Wrapped Burst Order Mode Control Register */ dev->regs[dev->index] = (val & 0x40); break; case 0x20: /* CPU to PCI Buffer Control Register */ dev->regs[dev->index] = val; break; case 0x21: /* DEVSELJ Check Point Setting Register */ dev->regs[dev->index] = (val & 0xbb) | 0x04; break; case 0x22: /* PCI to CPU W/R Buffer Configuration Register */ dev->regs[dev->index] = (val & 0xfd); break; case 0x25: /* GP/MEM Address Definition Register I */ case 0x26: /* GP/MEM Address Definition Register II */ case 0x27: /* GP/MEM Address Definition Register III */ dev->regs[dev->index] = val; break; case 0x28: /* PCI Arbiter Control Register */ dev->regs[dev->index] = val & 0x3f; break; case 0x29: /* System Clock Register */ dev->regs[dev->index] = val; port_92_remove(dev->port_92); if (val & 0x10) port_92_add(dev->port_92); break; case 0x2a: /* I/O Recovery Register */ dev->regs[dev->index] = val; break; case 0x2b: /* Turbo Function Register */ dev->regs[dev->index] = (val & 0xbf) | 0x40; break; case 0x30: /* Power Management Unit Control Register */ old = dev->regs[dev->index]; dev->regs[dev->index] = val; if (((val & 0x14) == 0x14) && !(old & 0x08) && (val & 0x08)) { switch (dev->regs[0x35] & 0x30) { case 0x00: smi_raise(); break; case 0x10: nmi_raise(); break; case 0x20: picint(1 << 15); break; case 0x30: picint(1 << 10); break; default: break; } dev->regs[0x35] |= 0x0e; } else if (!(val & 0x10)) dev->regs[0x35] &= ~0x0f; break; case 0x31: /* Mode Timer Monitoring Events Selection Register I */ case 0x32: /* Mode Timer Monitoring Events Selection Register II */ case 0x33: /* SMI Triggered Events Selection Register I */ case 0x34: /* SMI Triggered Events Selection Register II */ dev->regs[dev->index] = val; break; case 0x35: /* SMI Status Register */ dev->regs[dev->index] = (dev->regs[dev->index] & 0x0f) | (val & 0xf0); break; case 0x36: /* IRQ Channel Group Selected Control Register I */ dev->regs[dev->index] = (val & 0xe5); break; case 0x37: /* IRQ Channel Group Selected Control Register II */ dev->regs[dev->index] = (val & 0xef); break; case 0x38: /* DRQ Channel Selected Control Register */ case 0x39: /* Mode Timer Setting Register */ case 0x3a: /* Input_device Timer Setting Register */ case 0x3b: /* GP/MEM Timer Setting Register */ case 0x3c: /* LED Flash Control Register */ dev->regs[dev->index] = val; break; case 0x3d: /* Miscellaneous Register I */ dev->regs[dev->index] = (val & 0x07); break; case 0x40: /* Clock Generator Control Feature Register */ dev->regs[dev->index] = (val & 0x3f); break; case 0x41: /* Power Control Output Register */ dev->regs[dev->index] = val; break; case 0x42: /* PCI INTx Routing Table Mapping Register I */ irq = irq_array[val & 0x0f]; pci_set_irq_routing(PCI_INTA, (irq != 0) ? irq : PCI_IRQ_DISABLED); irq = irq_array[(val & 0xf0) >> 4]; pci_set_irq_routing(PCI_INTB, (irq != 0) ? irq : PCI_IRQ_DISABLED); break; case 0x43: /* PCI INTx Routing Table Mapping Register II */ irq = irq_array[val & 0x0f]; pci_set_irq_routing(PCI_INTC, (irq != 0) ? irq : PCI_IRQ_DISABLED); irq = irq_array[(val & 0xf0) >> 4]; pci_set_irq_routing(PCI_INTD, (irq != 0) ? irq : PCI_IRQ_DISABLED); break; case 0x44: /* PCI INTx Sensitivity Register */ /* TODO: When doing the IRQ and PCI IRQ rewrite, bits 0 to 3 toggle edge/level output. */ dev->regs[dev->index] = val; break; default: break; } if (dev->index != 0x03) { ali1489_log("M1489: dev->regs[%02x] = %02x\n", dev->index, val); } } else if (dev->index == 0x03) dev->regs[dev->index] = val; break; default: break; } } static uint8_t ali1489_read(uint16_t addr, void *priv) { uint8_t ret = 0xff; const ali1489_t *dev = (ali1489_t *) priv; switch (addr) { case 0x23: /* Avoid conflict with Cyrix CPU registers */ if (((dev->index == 0x20) || (dev->index >= 0xc0)) && cpu_iscyrix) ret = 0xff; else if (dev->index == 0x3f) ret = inb(0x70); else ret = dev->regs[dev->index]; break; default: break; } ali1489_log("M1489: dev->regs[%02x] (%02x)\n", dev->index, ret); return ret; } static void ali1489_pci_write(UNUSED(int func), int addr, uint8_t val, void *priv) { ali1489_t *dev = (ali1489_t *) priv; ali1489_log("M1489-PCI: dev->pci_conf[%02x] = %02x\n", addr, val); switch (addr) { /* Dummy PCI Config */ case 0x04: dev->pci_conf[0x04] = val & 0x7f; break; /* Dummy PCI Status */ case 0x07: dev->pci_conf[0x07] &= ~(val & 0xb8); break; default: break; } } static uint8_t ali1489_pci_read(UNUSED(int func), int addr, void *priv) { const ali1489_t *dev = (ali1489_t *) priv; uint8_t ret = 0xff; ret = dev->pci_conf[addr]; ali1489_log("M1489-PCI: dev->pci_conf[%02x] (%02x)\n", addr, ret); return ret; } static void ali1489_reset(void *priv) { ali1489_t *dev = (ali1489_t *) priv; pci_set_irq_routing(PCI_INTA, PCI_IRQ_DISABLED); pci_set_irq_routing(PCI_INTB, PCI_IRQ_DISABLED); pci_set_irq_routing(PCI_INTC, PCI_IRQ_DISABLED); pci_set_irq_routing(PCI_INTD, PCI_IRQ_DISABLED); ali1489_defaults(dev); } static void ali1489_close(void *priv) { ali1489_t *dev = (ali1489_t *) priv; smram_del(dev->smram); free(dev); } static void * ali1489_init(UNUSED(const device_t *info)) { ali1489_t *dev = (ali1489_t *) malloc(sizeof(ali1489_t)); memset(dev, 0, sizeof(ali1489_t)); /* M1487/M1489 22h Index Port 23h Data Port */ io_sethandler(0x0022, 0x0002, ali1489_read, NULL, NULL, ali1489_write, NULL, NULL, dev); /* Dummy M1489 PCI device */ pci_add_card(PCI_ADD_NORTHBRIDGE, ali1489_pci_read, ali1489_pci_write, dev, &dev->pci_slot); device_add(&ide_ali1489_device); dev->port_92 = device_add(&port_92_pci_device); dev->smram = smram_add(); ali1489_defaults(dev); return dev; } const device_t ali1489_device = { .name = "ALi M1489", .internal_name = "ali1489", .flags = 0, .local = 0, .init = ali1489_init, .close = ali1489_close, .reset = ali1489_reset, { .available = NULL }, .speed_changed = NULL, .force_redraw = NULL, .config = NULL };