/* * 86Box A hypervisor and IBM PC system emulator that specializes in * running old operating systems and software designed for IBM * PC systems and compatibles from 1981 through fairly recent * system designs based on the PCI bus. * * This file is part of the 86Box distribution. * * Nuked OPL3 emulator. * * Thanks: * MAME Development Team(Jarek Burczynski, Tatsuyuki Satoh): * Feedback and Rhythm part calculation information. * forums.submarine.org.uk(carbon14, opl3): * Tremolo and phase generator calculation information. * OPLx decapsulated(Matthew Gambrell, Olli Niemitalo): * OPL2 ROMs. * siliconpr0n.org(John McMaster, digshadow): * YMF262 and VRC VII decaps and die shots. * * Version: 1.8 * * Translation from C++ into C done by Miran Grca. * * **TODO** The OPL3 is a stereo chip, and, thus, always generates * a two-sample stream of data, for the L and R channels, * in that order. The OPL2, however, is mono. What should * we generate for that? * * Version: @(#)snd_opl_nuked.c 1.0.5 2020/07/16 * * Authors: Fred N. van Kempen, * Miran Grca, * Alexey Khokholov (Nuke.YKT) * * Copyright 2017-2020 Fred N. van Kempen. * Copyright 2016-2020 Miran Grca. * Copyright 2013-2020 Alexey Khokholov (Nuke.YKT) */ #include #include #include #include #include #define HAVE_STDARG_H #include <86box/86box.h> #include <86box/sound.h> #include <86box/timer.h> #include <86box/device.h> #include <86box/snd_opl.h> #include <86box/snd_opl_nuked.h> #if OPL_ENABLE_STEREOEXT && !defined OPL_SIN #ifndef _USE_MATH_DEFINES #define _USE_MATH_DEFINES 1 #endif #include // input: [0, 256), output: [0, 65536] #define OPL_SIN(x) ((int32_t)(sin((x) * M_PI / 512.0) * 65536.0)) #endif /* Quirk: Some FM channels are output one sample later on the left side than the right. */ #ifndef OPL_QUIRK_CHANNELSAMPLEDELAY #define OPL_QUIRK_CHANNELSAMPLEDELAY (!OPL_ENABLE_STEREOEXT) #endif #define RSM_FRAC 10 // Channel types enum { ch_2op = 0, ch_4op = 1, ch_4op2 = 2, ch_drum = 3 }; // Envelope key types enum { egk_norm = 0x01, egk_drum = 0x02 }; #ifdef ENABLE_OPL_LOG int nuked_do_log = ENABLE_OPL_LOG; static void nuked_log(const char *fmt, ...) { va_list ap; if (nuked_do_log) { va_start(ap, fmt); pclog_ex(fmt, ap); va_end(ap); } } #else # define nuked_log(fmt, ...) #endif // logsin table static const uint16_t logsinrom[256] = { 0x859, 0x6c3, 0x607, 0x58b, 0x52e, 0x4e4, 0x4a6, 0x471, 0x443, 0x41a, 0x3f5, 0x3d3, 0x3b5, 0x398, 0x37e, 0x365, 0x34e, 0x339, 0x324, 0x311, 0x2ff, 0x2ed, 0x2dc, 0x2cd, 0x2bd, 0x2af, 0x2a0, 0x293, 0x286, 0x279, 0x26d, 0x261, 0x256, 0x24b, 0x240, 0x236, 0x22c, 0x222, 0x218, 0x20f, 0x206, 0x1fd, 0x1f5, 0x1ec, 0x1e4, 0x1dc, 0x1d4, 0x1cd, 0x1c5, 0x1be, 0x1b7, 0x1b0, 0x1a9, 0x1a2, 0x19b, 0x195, 0x18f, 0x188, 0x182, 0x17c, 0x177, 0x171, 0x16b, 0x166, 0x160, 0x15b, 0x155, 0x150, 0x14b, 0x146, 0x141, 0x13c, 0x137, 0x133, 0x12e, 0x129, 0x125, 0x121, 0x11c, 0x118, 0x114, 0x10f, 0x10b, 0x107, 0x103, 0x0ff, 0x0fb, 0x0f8, 0x0f4, 0x0f0, 0x0ec, 0x0e9, 0x0e5, 0x0e2, 0x0de, 0x0db, 0x0d7, 0x0d4, 0x0d1, 0x0cd, 0x0ca, 0x0c7, 0x0c4, 0x0c1, 0x0be, 0x0bb, 0x0b8, 0x0b5, 0x0b2, 0x0af, 0x0ac, 0x0a9, 0x0a7, 0x0a4, 0x0a1, 0x09f, 0x09c, 0x099, 0x097, 0x094, 0x092, 0x08f, 0x08d, 0x08a, 0x088, 0x086, 0x083, 0x081, 0x07f, 0x07d, 0x07a, 0x078, 0x076, 0x074, 0x072, 0x070, 0x06e, 0x06c, 0x06a, 0x068, 0x066, 0x064, 0x062, 0x060, 0x05e, 0x05c, 0x05b, 0x059, 0x057, 0x055, 0x053, 0x052, 0x050, 0x04e, 0x04d, 0x04b, 0x04a, 0x048, 0x046, 0x045, 0x043, 0x042, 0x040, 0x03f, 0x03e, 0x03c, 0x03b, 0x039, 0x038, 0x037, 0x035, 0x034, 0x033, 0x031, 0x030, 0x02f, 0x02e, 0x02d, 0x02b, 0x02a, 0x029, 0x028, 0x027, 0x026, 0x025, 0x024, 0x023, 0x022, 0x021, 0x020, 0x01f, 0x01e, 0x01d, 0x01c, 0x01b, 0x01a, 0x019, 0x018, 0x017, 0x017, 0x016, 0x015, 0x014, 0x014, 0x013, 0x012, 0x011, 0x011, 0x010, 0x00f, 0x00f, 0x00e, 0x00d, 0x00d, 0x00c, 0x00c, 0x00b, 0x00a, 0x00a, 0x009, 0x009, 0x008, 0x008, 0x007, 0x007, 0x007, 0x006, 0x006, 0x005, 0x005, 0x005, 0x004, 0x004, 0x004, 0x003, 0x003, 0x003, 0x002, 0x002, 0x002, 0x002, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000 }; // exp table static const uint16_t exprom[256] = { 0x7fa, 0x7f5, 0x7ef, 0x7ea, 0x7e4, 0x7df, 0x7da, 0x7d4, 0x7cf, 0x7c9, 0x7c4, 0x7bf, 0x7b9, 0x7b4, 0x7ae, 0x7a9, 0x7a4, 0x79f, 0x799, 0x794, 0x78f, 0x78a, 0x784, 0x77f, 0x77a, 0x775, 0x770, 0x76a, 0x765, 0x760, 0x75b, 0x756, 0x751, 0x74c, 0x747, 0x742, 0x73d, 0x738, 0x733, 0x72e, 0x729, 0x724, 0x71f, 0x71a, 0x715, 0x710, 0x70b, 0x706, 0x702, 0x6fd, 0x6f8, 0x6f3, 0x6ee, 0x6e9, 0x6e5, 0x6e0, 0x6db, 0x6d6, 0x6d2, 0x6cd, 0x6c8, 0x6c4, 0x6bf, 0x6ba, 0x6b5, 0x6b1, 0x6ac, 0x6a8, 0x6a3, 0x69e, 0x69a, 0x695, 0x691, 0x68c, 0x688, 0x683, 0x67f, 0x67a, 0x676, 0x671, 0x66d, 0x668, 0x664, 0x65f, 0x65b, 0x657, 0x652, 0x64e, 0x649, 0x645, 0x641, 0x63c, 0x638, 0x634, 0x630, 0x62b, 0x627, 0x623, 0x61e, 0x61a, 0x616, 0x612, 0x60e, 0x609, 0x605, 0x601, 0x5fd, 0x5f9, 0x5f5, 0x5f0, 0x5ec, 0x5e8, 0x5e4, 0x5e0, 0x5dc, 0x5d8, 0x5d4, 0x5d0, 0x5cc, 0x5c8, 0x5c4, 0x5c0, 0x5bc, 0x5b8, 0x5b4, 0x5b0, 0x5ac, 0x5a8, 0x5a4, 0x5a0, 0x59c, 0x599, 0x595, 0x591, 0x58d, 0x589, 0x585, 0x581, 0x57e, 0x57a, 0x576, 0x572, 0x56f, 0x56b, 0x567, 0x563, 0x560, 0x55c, 0x558, 0x554, 0x551, 0x54d, 0x549, 0x546, 0x542, 0x53e, 0x53b, 0x537, 0x534, 0x530, 0x52c, 0x529, 0x525, 0x522, 0x51e, 0x51b, 0x517, 0x514, 0x510, 0x50c, 0x509, 0x506, 0x502, 0x4ff, 0x4fb, 0x4f8, 0x4f4, 0x4f1, 0x4ed, 0x4ea, 0x4e7, 0x4e3, 0x4e0, 0x4dc, 0x4d9, 0x4d6, 0x4d2, 0x4cf, 0x4cc, 0x4c8, 0x4c5, 0x4c2, 0x4be, 0x4bb, 0x4b8, 0x4b5, 0x4b1, 0x4ae, 0x4ab, 0x4a8, 0x4a4, 0x4a1, 0x49e, 0x49b, 0x498, 0x494, 0x491, 0x48e, 0x48b, 0x488, 0x485, 0x482, 0x47e, 0x47b, 0x478, 0x475, 0x472, 0x46f, 0x46c, 0x469, 0x466, 0x463, 0x460, 0x45d, 0x45a, 0x457, 0x454, 0x451, 0x44e, 0x44b, 0x448, 0x445, 0x442, 0x43f, 0x43c, 0x439, 0x436, 0x433, 0x430, 0x42d, 0x42a, 0x428, 0x425, 0x422, 0x41f, 0x41c, 0x419, 0x416, 0x414, 0x411, 0x40e, 0x40b, 0x408, 0x406, 0x403, 0x400 }; // freq mult table multiplied by 2 // // 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 12, 12, 15, 15 static const uint8_t mt[16] = { 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30 }; // ksl table static const uint8_t kslrom[16] = { 0, 32, 40, 45, 48, 51, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64 }; static const uint8_t kslshift[4] = { 8, 1, 2, 0 }; // envelope generator constants static const uint8_t eg_incstep[4][4] = { { 0, 0, 0, 0 }, { 1, 0, 0, 0 }, { 1, 0, 1, 0 }, { 1, 1, 1, 0 } }; // address decoding static const int8_t ad_slot[0x20] = { 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1, 12, 13, 14, 15, 16, 17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static const uint8_t ch_slot[18] = { 0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20, 24, 25, 26, 30, 31, 32 }; #if OPL_ENABLE_STEREOEXT /* stereo extension panning table */ static int32_t panpot_lut[256]; static uint8_t panpot_lut_build = 0; #endif // Envelope generator typedef int16_t (*envelope_sinfunc)(uint16_t phase, uint16_t envelope); typedef void (*envelope_genfunc)(opl3_slot *slot); static int16_t OPL3_EnvelopeCalcExp(uint32_t level) { if (level > 0x1fff) level = 0x1fff; return ((exprom[level & 0xffu] << 1) >> (level >> 8)); } static int16_t OPL3_EnvelopeCalcSin0(uint16_t phase, uint16_t envelope) { uint16_t out = 0; uint16_t neg = 0; phase &= 0x3ff; if (phase & 0x0200) neg = 0xffff; if (phase & 0x0100) out = logsinrom[(phase & 0xffu) ^ 0xffu]; else out = logsinrom[phase & 0xffu]; return (OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg); } static int16_t OPL3_EnvelopeCalcSin1(uint16_t phase, uint16_t envelope) { uint16_t out = 0; phase &= 0x3ff; if (phase & 0x0200) out = 0x1000; else if (phase & 0x0100) out = logsinrom[(phase & 0xffu) ^ 0xffu]; else out = logsinrom[phase & 0xffu]; return (OPL3_EnvelopeCalcExp(out + (envelope << 3))); } static int16_t OPL3_EnvelopeCalcSin2(uint16_t phase, uint16_t envelope) { uint16_t out = 0; phase &= 0x03ff; if (phase & 0x0100) out = logsinrom[(phase & 0xffu) ^ 0xffu]; else out = logsinrom[phase & 0xffu]; return (OPL3_EnvelopeCalcExp(out + (envelope << 3))); } static int16_t OPL3_EnvelopeCalcSin3(uint16_t phase, uint16_t envelope) { uint16_t out = 0; phase &= 0x03ff; if (phase & 0x0100) out = 0x1000; else out = logsinrom[phase & 0xffu]; return (OPL3_EnvelopeCalcExp(out + (envelope << 3))); } static int16_t OPL3_EnvelopeCalcSin4(uint16_t phase, uint16_t envelope) { uint16_t out = 0; uint16_t neg = 0; phase &= 0x03ff; if ((phase & 0x0300) == 0x0100) neg = 0xffff; if (phase & 0x0200) out = 0x1000; else if (phase & 0x80) out = logsinrom[((phase ^ 0xffu) << 1u) & 0xffu]; else out = logsinrom[(phase << 1u) & 0xffu]; return (OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg); } static int16_t OPL3_EnvelopeCalcSin5(uint16_t phase, uint16_t envelope) { uint16_t out = 0; phase &= 0x03ff; if (phase & 0x0200) out = 0x1000; else if (phase & 0x80) out = logsinrom[((phase ^ 0xffu) << 1u) & 0xffu]; else out = logsinrom[(phase << 1u) & 0xffu]; return (OPL3_EnvelopeCalcExp(out + (envelope << 3))); } static int16_t OPL3_EnvelopeCalcSin6(uint16_t phase, uint16_t envelope) { uint16_t neg = 0; phase &= 0x03ff; if (phase & 0x0200) neg = 0xffff; return (OPL3_EnvelopeCalcExp(envelope << 3) ^ neg); } static int16_t OPL3_EnvelopeCalcSin7(uint16_t phase, uint16_t envelope) { uint16_t out = 0; uint16_t neg = 0; phase &= 0x03ff; if (phase & 0x0200) { neg = 0xffff; phase = (phase & 0x01ff) ^ 0x01ff; } out = phase << 3; return (OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg); } static const envelope_sinfunc envelope_sin[8] = { OPL3_EnvelopeCalcSin0, OPL3_EnvelopeCalcSin1, OPL3_EnvelopeCalcSin2, OPL3_EnvelopeCalcSin3, OPL3_EnvelopeCalcSin4, OPL3_EnvelopeCalcSin5, OPL3_EnvelopeCalcSin6, OPL3_EnvelopeCalcSin7 }; enum envelope_gen_num { envelope_gen_num_attack = 0, envelope_gen_num_decay = 1, envelope_gen_num_sustain = 2, envelope_gen_num_release = 3 }; static void OPL3_EnvelopeUpdateKSL(opl3_slot *slot) { int16_t ksl = (kslrom[slot->channel->f_num >> 6u] << 2) - ((0x08 - slot->channel->block) << 5); if (ksl < 0) ksl = 0; slot->eg_ksl = (uint8_t) ksl; } static void OPL3_EnvelopeCalc(opl3_slot *slot) { uint8_t nonzero; uint8_t rate; uint8_t rate_hi; uint8_t rate_lo; uint8_t reg_rate = 0; uint8_t ks; uint8_t eg_shift; uint8_t shift; uint16_t eg_rout; int16_t eg_inc; uint8_t eg_off; uint8_t reset = 0; slot->eg_out = slot->eg_rout + (slot->reg_tl << 2) + (slot->eg_ksl >> kslshift[slot->reg_ksl]) + *slot->trem; if (slot->key && slot->eg_gen == envelope_gen_num_release) { reset = 1; reg_rate = slot->reg_ar; } else switch (slot->eg_gen) { case envelope_gen_num_attack: reg_rate = slot->reg_ar; break; case envelope_gen_num_decay: reg_rate = slot->reg_dr; break; case envelope_gen_num_sustain: if (!slot->reg_type) reg_rate = slot->reg_rr; break; case envelope_gen_num_release: reg_rate = slot->reg_rr; break; default: break; } slot->pg_reset = reset; ks = slot->channel->ksv >> ((slot->reg_ksr ^ 1) << 1); nonzero = (reg_rate != 0); rate = ks + (reg_rate << 2); rate_hi = rate >> 2; rate_lo = rate & 0x03; if (rate_hi & 0x10) rate_hi = 0x0f; eg_shift = rate_hi + slot->chip->eg_add; shift = 0; if (nonzero) { if (rate_hi < 12) { if (slot->chip->eg_state) switch (eg_shift) { case 12: shift = 1; break; case 13: shift = (rate_lo >> 1) & 0x01; break; case 14: shift = rate_lo & 0x01; break; default: break; } } else { shift = (rate_hi & 0x03) + eg_incstep[rate_lo][slot->chip->eg_timer_lo]; if (shift & 0x04) shift = 0x03; if (!shift) shift = slot->chip->eg_state; } } eg_rout = slot->eg_rout; eg_inc = 0; eg_off = 0; // Instant attack if (reset && rate_hi == 0x0f) eg_rout = 0x00; // Envelope off if ((slot->eg_rout & 0x1f8) == 0x1f8) eg_off = 1; if (slot->eg_gen != envelope_gen_num_attack && !reset && eg_off) eg_rout = 0x1ff; switch (slot->eg_gen) { case envelope_gen_num_attack: if (!slot->eg_rout) slot->eg_gen = envelope_gen_num_decay; else if (slot->key && shift > 0 && rate_hi != 0x0f) eg_inc = ~slot->eg_rout >> (4 - shift); break; case envelope_gen_num_decay: if ((slot->eg_rout >> 4) == slot->reg_sl) slot->eg_gen = envelope_gen_num_sustain; else if (!eg_off && !reset && shift > 0) eg_inc = 1 << (shift - 1); break; case envelope_gen_num_sustain: case envelope_gen_num_release: if (!eg_off && !reset && shift > 0) eg_inc = 1 << (shift - 1); break; default: break; } slot->eg_rout = (eg_rout + eg_inc) & 0x1ff; // Key off if (reset) slot->eg_gen = envelope_gen_num_attack; if (!slot->key) slot->eg_gen = envelope_gen_num_release; } static void OPL3_EnvelopeKeyOn(opl3_slot *slot, uint8_t type) { slot->key |= type; } static void OPL3_EnvelopeKeyOff(opl3_slot *slot, uint8_t type) { slot->key &= ~type; } // Phase Generator static void OPL3_PhaseGenerate(opl3_slot *slot) { opl3_chip *chip; uint16_t f_num; uint32_t basefreq; uint8_t rm_xor; uint8_t n_bit; uint32_t noise; uint16_t phase; chip = slot->chip; f_num = slot->channel->f_num; if (slot->reg_vib) { int8_t range; uint8_t vibpos; range = (f_num >> 7) & 7; vibpos = chip->vibpos; if (!(vibpos & 3)) range = 0; else if (vibpos & 1) range >>= 1; range >>= chip->vibshift; if (vibpos & 4) range = -range; f_num += range; } basefreq = (f_num << slot->channel->block) >> 1; phase = (uint16_t) (slot->pg_phase >> 9); if (slot->pg_reset) slot->pg_phase = 0; slot->pg_phase += (basefreq * mt[slot->reg_mult]) >> 1; // Rhythm mode noise = chip->noise; slot->pg_phase_out = phase; if (slot->slot_num == 13) { // hh chip->rm_hh_bit2 = (phase >> 2) & 1; chip->rm_hh_bit3 = (phase >> 3) & 1; chip->rm_hh_bit7 = (phase >> 7) & 1; chip->rm_hh_bit8 = (phase >> 8) & 1; } if (slot->slot_num == 17 && (chip->rhy & 0x20)) { // tc chip->rm_tc_bit3 = (phase >> 3) & 1; chip->rm_tc_bit5 = (phase >> 5) & 1; } if (chip->rhy & 0x20) { rm_xor = (chip->rm_hh_bit2 ^ chip->rm_hh_bit7) | (chip->rm_hh_bit3 ^ chip->rm_tc_bit5) | (chip->rm_tc_bit3 ^ chip->rm_tc_bit5); switch (slot->slot_num) { case 13: // hh slot->pg_phase_out = rm_xor << 9; if (rm_xor ^ (noise & 1)) slot->pg_phase_out |= 0xd0; else slot->pg_phase_out |= 0x34; break; case 16: // sd slot->pg_phase_out = (chip->rm_hh_bit8 << 9) | ((chip->rm_hh_bit8 ^ (noise & 1)) << 8); break; case 17: // tc slot->pg_phase_out = (rm_xor << 9) | 0x80; break; default: break; } } n_bit = ((noise >> 14) ^ noise) & 0x01; chip->noise = (noise >> 1) | (n_bit << 22); } // Slot static void OPL3_SlotWrite20(opl3_slot *slot, uint8_t data) { if ((data >> 7) & 0x01) slot->trem = &slot->chip->tremolo; else slot->trem = (uint8_t *) &slot->chip->zeromod; slot->reg_vib = (data >> 6) & 0x01; slot->reg_type = (data >> 5) & 0x01; slot->reg_ksr = (data >> 4) & 0x01; slot->reg_mult = data & 0x0f; } static void OPL3_SlotWrite40(opl3_slot *slot, uint8_t data) { slot->reg_ksl = (data >> 6) & 0x03; slot->reg_tl = data & 0x3f; OPL3_EnvelopeUpdateKSL(slot); } static void OPL3_SlotWrite60(opl3_slot *slot, uint8_t data) { slot->reg_ar = (data >> 4) & 0x0f; slot->reg_dr = data & 0x0f; } static void OPL3_SlotWrite80(opl3_slot *slot, uint8_t data) { slot->reg_sl = (data >> 4) & 0x0f; if (slot->reg_sl == 0x0f) slot->reg_sl = 0x1f; slot->reg_rr = data & 0x0f; } static void OPL3_SlotWriteE0(opl3_slot *slot, uint8_t data) { slot->reg_wf = data & 0x07; if (slot->chip->newm == 0x00) slot->reg_wf &= 0x03; } static void OPL3_SlotGenerate(opl3_slot *slot) { slot->out = envelope_sin[slot->reg_wf](slot->pg_phase_out + *slot->mod, slot->eg_out); } static void OPL3_SlotCalcFB(opl3_slot *slot) { if (slot->channel->fb != 0x00) slot->fbmod = (slot->prout + slot->out) >> (0x09 - slot->channel->fb); else slot->fbmod = 0; slot->prout = slot->out; } // Channel static void OPL3_ChannelSetupAlg(opl3_channel *channel); static void OPL3_ChannelUpdateRhythm(opl3_chip *chip, uint8_t data) { opl3_channel *channel6; opl3_channel *channel7; opl3_channel *channel8; uint8_t chnum; chip->rhy = data & 0x3f; if (chip->rhy & 0x20) { channel6 = &chip->channel[6]; channel7 = &chip->channel[7]; channel8 = &chip->channel[8]; channel6->out[0] = &channel6->slotz[1]->out; channel6->out[1] = &channel6->slotz[1]->out; channel6->out[2] = &chip->zeromod; channel6->out[3] = &chip->zeromod; channel7->out[0] = &channel7->slotz[0]->out; channel7->out[1] = &channel7->slotz[0]->out; channel7->out[2] = &channel7->slotz[1]->out; channel7->out[3] = &channel7->slotz[1]->out; channel8->out[0] = &channel8->slotz[0]->out; channel8->out[1] = &channel8->slotz[0]->out; channel8->out[2] = &channel8->slotz[1]->out; channel8->out[3] = &channel8->slotz[1]->out; for (chnum = 6; chnum < 9; chnum++) chip->channel[chnum].chtype = ch_drum; OPL3_ChannelSetupAlg(channel6); OPL3_ChannelSetupAlg(channel7); OPL3_ChannelSetupAlg(channel8); // hh if (chip->rhy & 0x01) OPL3_EnvelopeKeyOn(channel7->slotz[0], egk_drum); else OPL3_EnvelopeKeyOff(channel7->slotz[0], egk_drum); // tc if (chip->rhy & 0x02) OPL3_EnvelopeKeyOn(channel8->slotz[1], egk_drum); else OPL3_EnvelopeKeyOff(channel8->slotz[1], egk_drum); // tom if (chip->rhy & 0x04) OPL3_EnvelopeKeyOn(channel8->slotz[0], egk_drum); else OPL3_EnvelopeKeyOff(channel8->slotz[0], egk_drum); // sd if (chip->rhy & 0x08) OPL3_EnvelopeKeyOn(channel7->slotz[1], egk_drum); else OPL3_EnvelopeKeyOff(channel7->slotz[1], egk_drum); // bd if (chip->rhy & 0x10) { OPL3_EnvelopeKeyOn(channel6->slotz[0], egk_drum); OPL3_EnvelopeKeyOn(channel6->slotz[1], egk_drum); } else { OPL3_EnvelopeKeyOff(channel6->slotz[0], egk_drum); OPL3_EnvelopeKeyOff(channel6->slotz[1], egk_drum); } } else { for (chnum = 6; chnum < 9; chnum++) { chip->channel[chnum].chtype = ch_2op; OPL3_ChannelSetupAlg(&chip->channel[chnum]); OPL3_EnvelopeKeyOff(chip->channel[chnum].slotz[0], egk_drum); OPL3_EnvelopeKeyOff(chip->channel[chnum].slotz[1], egk_drum); } } } static void OPL3_ChannelWriteA0(opl3_channel *channel, uint8_t data) { if (channel->chip->newm && channel->chtype == ch_4op2) return; channel->f_num = (channel->f_num & 0x300) | data; channel->ksv = (channel->block << 1) | ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01); OPL3_EnvelopeUpdateKSL(channel->slotz[0]); OPL3_EnvelopeUpdateKSL(channel->slotz[1]); if (channel->chip->newm && channel->chtype == ch_4op) { channel->pair->f_num = channel->f_num; channel->pair->ksv = channel->ksv; OPL3_EnvelopeUpdateKSL(channel->pair->slotz[0]); OPL3_EnvelopeUpdateKSL(channel->pair->slotz[1]); } } static void OPL3_ChannelWriteB0(opl3_channel *channel, uint8_t data) { if (channel->chip->newm && channel->chtype == ch_4op2) return; channel->f_num = (channel->f_num & 0xff) | ((data & 0x03) << 8); channel->block = (data >> 2) & 0x07; channel->ksv = (channel->block << 1) | ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01); OPL3_EnvelopeUpdateKSL(channel->slotz[0]); OPL3_EnvelopeUpdateKSL(channel->slotz[1]); if (channel->chip->newm && channel->chtype == ch_4op) { channel->pair->f_num = channel->f_num; channel->pair->block = channel->block; channel->pair->ksv = channel->ksv; OPL3_EnvelopeUpdateKSL(channel->pair->slotz[0]); OPL3_EnvelopeUpdateKSL(channel->pair->slotz[1]); } } static void OPL3_ChannelSetupAlg(opl3_channel *channel) { if (channel->chtype == ch_drum) { if (channel->ch_num == 7 || channel->ch_num == 8) { channel->slotz[0]->mod = &channel->chip->zeromod; channel->slotz[1]->mod = &channel->chip->zeromod; return; } switch (channel->alg & 0x01) { case 0x00: channel->slotz[0]->mod = &channel->slotz[0]->fbmod; channel->slotz[1]->mod = &channel->slotz[0]->out; break; case 0x01: channel->slotz[0]->mod = &channel->slotz[0]->fbmod; channel->slotz[1]->mod = &channel->chip->zeromod; break; default: break; } return; } if (channel->alg & 0x08) return; if (channel->alg & 0x04) { channel->pair->out[0] = &channel->chip->zeromod; channel->pair->out[1] = &channel->chip->zeromod; channel->pair->out[2] = &channel->chip->zeromod; channel->pair->out[3] = &channel->chip->zeromod; switch (channel->alg & 0x03) { case 0x00: channel->pair->slotz[0]->mod = &channel->pair->slotz[0]->fbmod; channel->pair->slotz[1]->mod = &channel->pair->slotz[0]->out; channel->slotz[0]->mod = &channel->pair->slotz[1]->out; channel->slotz[1]->mod = &channel->slotz[0]->out; channel->out[0] = &channel->slotz[1]->out; channel->out[1] = &channel->chip->zeromod; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x01: channel->pair->slotz[0]->mod = &channel->pair->slotz[0]->fbmod; channel->pair->slotz[1]->mod = &channel->pair->slotz[0]->out; channel->slotz[0]->mod = &channel->chip->zeromod; channel->slotz[1]->mod = &channel->slotz[0]->out; channel->out[0] = &channel->pair->slotz[1]->out; channel->out[1] = &channel->slotz[1]->out; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x02: channel->pair->slotz[0]->mod = &channel->pair->slotz[0]->fbmod; channel->pair->slotz[1]->mod = &channel->chip->zeromod; channel->slotz[0]->mod = &channel->pair->slotz[1]->out; channel->slotz[1]->mod = &channel->slotz[0]->out; channel->out[0] = &channel->pair->slotz[0]->out; channel->out[1] = &channel->slotz[1]->out; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x03: channel->pair->slotz[0]->mod = &channel->pair->slotz[0]->fbmod; channel->pair->slotz[1]->mod = &channel->chip->zeromod; channel->slotz[0]->mod = &channel->pair->slotz[1]->out; channel->slotz[1]->mod = &channel->chip->zeromod; channel->out[0] = &channel->pair->slotz[0]->out; channel->out[1] = &channel->slotz[0]->out; channel->out[2] = &channel->slotz[1]->out; channel->out[3] = &channel->chip->zeromod; break; default: break; } } else switch (channel->alg & 0x01) { case 0x00: channel->slotz[0]->mod = &channel->slotz[0]->fbmod; channel->slotz[1]->mod = &channel->slotz[0]->out; channel->out[0] = &channel->slotz[1]->out; channel->out[1] = &channel->chip->zeromod; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x01: channel->slotz[0]->mod = &channel->slotz[0]->fbmod; channel->slotz[1]->mod = &channel->chip->zeromod; channel->out[0] = &channel->slotz[0]->out; channel->out[1] = &channel->slotz[1]->out; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; default: break; } } static void OPL3_ChannelUpdateAlg(opl3_channel *channel) { channel->alg = channel->con; if (channel->chip->newm) { if (channel->chtype == ch_4op) { channel->pair->alg = 0x04 | (channel->con << 1) | (channel->pair->con); channel->alg = 0x08; OPL3_ChannelSetupAlg(channel->pair); } else if (channel->chtype == ch_4op2) { channel->alg = 0x04 | (channel->pair->con << 1) | (channel->con); channel->pair->alg = 0x08; OPL3_ChannelSetupAlg(channel); } else OPL3_ChannelSetupAlg(channel); } else OPL3_ChannelSetupAlg(channel); } static void OPL3_ChannelWriteC0(opl3_channel *channel, uint8_t data) { channel->fb = (data & 0x0e) >> 1; channel->con = data & 0x01; OPL3_ChannelUpdateAlg(channel); if (channel->chip->newm) { channel->cha = ((data >> 4) & 0x01) ? ~0 : 0; channel->chb = ((data >> 5) & 0x01) ? ~0 : 0; channel->chc = ((data >> 6) & 0x01) ? ~0 : 0; channel->chd = ((data >> 7) & 0x01) ? ~0 : 0; } else { channel->cha = channel->chb = (uint16_t) ~0; // TODO: Verify on real chip if DAC2 output is disabled in compat mode channel->chc = channel->chd = 0; } #if OPL_ENABLE_STEREOEXT if (!channel->chip->stereoext) { channel->leftpan = channel->cha << 16; channel->rightpan = channel->chb << 16; } #endif } #if OPL_ENABLE_STEREOEXT static void OPL3_ChannelWriteD0(opl3_channel *channel, uint8_t data) { if (channel->chip->stereoext) { channel->leftpan = panpot_lut[data ^ 0xffu]; channel->rightpan = panpot_lut[data]; } } #endif static void OPL3_ChannelKeyOn(opl3_channel *channel) { if (channel->chip->newm) { if (channel->chtype == ch_4op) { OPL3_EnvelopeKeyOn(channel->slotz[0], egk_norm); OPL3_EnvelopeKeyOn(channel->slotz[1], egk_norm); OPL3_EnvelopeKeyOn(channel->pair->slotz[0], egk_norm); OPL3_EnvelopeKeyOn(channel->pair->slotz[1], egk_norm); } else if (channel->chtype == ch_2op || channel->chtype == ch_drum) { OPL3_EnvelopeKeyOn(channel->slotz[0], egk_norm); OPL3_EnvelopeKeyOn(channel->slotz[1], egk_norm); } } else { OPL3_EnvelopeKeyOn(channel->slotz[0], egk_norm); OPL3_EnvelopeKeyOn(channel->slotz[1], egk_norm); } } static void OPL3_ChannelKeyOff(opl3_channel *channel) { if (channel->chip->newm) { if (channel->chtype == ch_4op) { OPL3_EnvelopeKeyOff(channel->slotz[0], egk_norm); OPL3_EnvelopeKeyOff(channel->slotz[1], egk_norm); OPL3_EnvelopeKeyOff(channel->pair->slotz[0], egk_norm); OPL3_EnvelopeKeyOff(channel->pair->slotz[1], egk_norm); } else if (channel->chtype == ch_2op || channel->chtype == ch_drum) { OPL3_EnvelopeKeyOff(channel->slotz[0], egk_norm); OPL3_EnvelopeKeyOff(channel->slotz[1], egk_norm); } } else { OPL3_EnvelopeKeyOff(channel->slotz[0], egk_norm); OPL3_EnvelopeKeyOff(channel->slotz[1], egk_norm); } } static void OPL3_ChannelSet4Op(opl3_chip *chip, uint8_t data) { uint8_t chnum; for (uint8_t bit = 0; bit < 6; bit++) { chnum = bit; if (bit >= 3) chnum += 9 - 3; if ((data >> bit) & 0x01) { chip->channel[chnum].chtype = ch_4op; chip->channel[chnum + 3u].chtype = ch_4op2; OPL3_ChannelUpdateAlg(&chip->channel[chnum]); } else { chip->channel[chnum].chtype = ch_2op; chip->channel[chnum + 3u].chtype = ch_2op; OPL3_ChannelUpdateAlg(&chip->channel[chnum]); OPL3_ChannelUpdateAlg(&chip->channel[chnum + 3u]); } } } static void OPL3_ProcessSlot(opl3_slot *slot) { OPL3_SlotCalcFB(slot); OPL3_EnvelopeCalc(slot); OPL3_PhaseGenerate(slot); OPL3_SlotGenerate(slot); } static inline void OPL3_Generate4Ch(void *priv, int32_t *buf4) { opl3_chip *chip = (opl3_chip *) priv; opl3_channel *channel; opl3_writebuf *writebuf; int16_t **out; int32_t mix[2]; uint8_t i; int16_t accm; uint8_t shift = 0; buf4[1] = chip->mixbuff[1]; buf4[3] = chip->mixbuff[3]; #if OPL_QUIRK_CHANNELSAMPLEDELAY for (i = 0; i < 15; i++) #else for (i = 0; i < 36; i++) #endif OPL3_ProcessSlot(&chip->slot[i]); mix[0] = mix[1] = 0; for (i = 0; i < 18; i++) { channel = &chip->channel[i]; out = channel->out; accm = *out[0] + *out[1] + *out[2] + *out[3]; #if OPL_ENABLE_STEREOEXT mix[0] += (int16_t) ((accm * channel->leftpan) >> 16); #else mix[0] += (int16_t) (accm & channel->cha); #endif mix[1] += (int16_t) (accm & channel->chc); } chip->mixbuff[0] = mix[0]; chip->mixbuff[2] = mix[1]; #if OPL_QUIRK_CHANNELSAMPLEDELAY for (i = 15; i < 18; i++) OPL3_ProcessSlot(&chip->slot[i]); #endif buf4[0] = chip->mixbuff[0]; buf4[2] = chip->mixbuff[2]; #if OPL_QUIRK_CHANNELSAMPLEDELAY for (i = 18; i < 33; i++) OPL3_ProcessSlot(&chip->slot[i]); #endif mix[0] = mix[1] = 0; for (i = 0; i < 18; i++) { channel = &chip->channel[i]; out = channel->out; accm = *out[0] + *out[1] + *out[2] + *out[3]; #if OPL_ENABLE_STEREOEXT mix[0] += (int16_t) ((accm * channel->rightpan) >> 16); #else mix[0] += (int16_t) (accm & channel->chb); #endif mix[1] += (int16_t) (accm & channel->chd); } chip->mixbuff[1] = mix[0]; chip->mixbuff[3] = mix[1]; #if OPL_QUIRK_CHANNELSAMPLEDELAY for (i = 33; i < 36; i++) OPL3_ProcessSlot(&chip->slot[i]); #endif if ((chip->timer & 0x3f) == 0x3f) chip->tremolopos = (chip->tremolopos + 1) % 210; if (chip->tremolopos < 105) chip->tremolo = chip->tremolopos >> chip->tremoloshift; else chip->tremolo = (210 - chip->tremolopos) >> chip->tremoloshift; if ((chip->timer & 0x03ff) == 0x03ff) chip->vibpos = (chip->vibpos + 1) & 7; chip->timer++; if (chip->eg_state) { while (shift < 13 && ((chip->eg_timer >> shift) & 1) == 0) shift++; if (shift > 12) chip->eg_add = 0; else chip->eg_add = shift + 1; chip->eg_timer_lo = (uint8_t) (chip->eg_timer & 0x3u); } if (chip->eg_timerrem || chip->eg_state) { if (chip->eg_timer == UINT64_C(0xfffffffff)) { chip->eg_timer = 0; chip->eg_timerrem = 1; } else { chip->eg_timer++; chip->eg_timerrem = 0; } } chip->eg_state ^= 1; while ((writebuf = &chip->writebuf[chip->writebuf_cur]), writebuf->time <= chip->writebuf_samplecnt) { if (!(writebuf->reg & 0x200)) break; writebuf->reg &= 0x01ff; OPL3_WriteReg(chip, writebuf->reg, writebuf->data); chip->writebuf_cur = (chip->writebuf_cur + 1) % OPL_WRITEBUF_SIZE; } chip->writebuf_samplecnt++; } void OPL3_Generate(opl3_chip *chip, int32_t *buf) { int32_t samples[4]; OPL3_Generate4Ch(chip, samples); buf[0] = samples[0]; buf[1] = samples[1]; } void OPL3_Generate4ChResampled(opl3_chip *chip, int32_t *buf4) { while (chip->samplecnt >= chip->rateratio) { chip->oldsamples[0] = chip->samples[0]; chip->oldsamples[1] = chip->samples[1]; chip->oldsamples[2] = chip->samples[2]; chip->oldsamples[3] = chip->samples[3]; OPL3_Generate4Ch(chip, chip->samples); chip->samplecnt -= chip->rateratio; } buf4[0] = (int32_t) ((chip->oldsamples[0] * (chip->rateratio - chip->samplecnt) + chip->samples[0] * chip->samplecnt) / chip->rateratio); buf4[1] = (int32_t) ((chip->oldsamples[1] * (chip->rateratio - chip->samplecnt) + chip->samples[1] * chip->samplecnt) / chip->rateratio); buf4[2] = (int32_t) ((chip->oldsamples[2] * (chip->rateratio - chip->samplecnt) + chip->samples[2] * chip->samplecnt) / chip->rateratio); buf4[3] = (int32_t) ((chip->oldsamples[3] * (chip->rateratio - chip->samplecnt) + chip->samples[3] * chip->samplecnt) / chip->rateratio); chip->samplecnt += 1 << RSM_FRAC; } void OPL3_GenerateResampled(opl3_chip *chip, int32_t *buf) { int32_t samples[4]; OPL3_Generate4ChResampled(chip, samples); buf[0] = samples[0]; buf[1] = samples[1]; } void OPL3_Reset(opl3_chip *chip, uint32_t samplerate) { opl3_slot *slot; opl3_channel *channel; uint8_t local_ch_slot; memset(chip, 0x00, sizeof(opl3_chip)); for (uint8_t slotnum = 0; slotnum < 36; slotnum++) { slot = &chip->slot[slotnum]; slot->chip = chip; slot->mod = &chip->zeromod; slot->eg_rout = 0x01ff; slot->eg_out = 0x01ff; slot->eg_gen = envelope_gen_num_release; slot->trem = (uint8_t *) &chip->zeromod; slot->slot_num = slotnum; } for (uint8_t channum = 0; channum < 18; channum++) { channel = &chip->channel[channum]; local_ch_slot = ch_slot[channum]; channel->slotz[0] = &chip->slot[local_ch_slot]; channel->slotz[1] = &chip->slot[local_ch_slot + 3u]; chip->slot[local_ch_slot].channel = channel; chip->slot[local_ch_slot + 3u].channel = channel; if ((channum % 9) < 3) channel->pair = &chip->channel[channum + 3u]; else if ((channum % 9) < 6) channel->pair = &chip->channel[channum - 3u]; channel->chip = chip; channel->out[0] = &chip->zeromod; channel->out[1] = &chip->zeromod; channel->out[2] = &chip->zeromod; channel->out[3] = &chip->zeromod; channel->chtype = ch_2op; channel->cha = 0xffff; channel->chb = 0xffff; #if OPL_ENABLE_STEREOEXT channel->leftpan = 0x10000; channel->rightpan = 0x10000; #endif channel->ch_num = channum; OPL3_ChannelSetupAlg(channel); } chip->noise = 1; chip->rateratio = (samplerate << RSM_FRAC) / FREQ_49716; chip->tremoloshift = 4; chip->vibshift = 1; #if OPL_ENABLE_STEREOEXT if (!panpot_lut_build) { for (int32_t i = 0; i < 256; i++) panpot_lut[i] = OPL_SIN(i); panpot_lut_build = 1; } #endif } uint16_t nuked_write_addr(void *priv, uint16_t port, uint8_t val) { const opl3_chip *chip = (opl3_chip *) priv; uint16_t addr; addr = val; if ((port & 0x0002) && ((addr == 0x0005) || chip->newm)) addr |= 0x0100; return addr; } void OPL3_WriteReg(void *priv, uint16_t reg, uint8_t val) { opl3_chip *chip = (opl3_chip *) priv; uint8_t high = (reg >> 8) & 0x01; uint8_t regm = reg & 0xff; switch (regm & 0xf0) { case 0x00: if (high) switch (regm & 0x0f) { case 0x04: OPL3_ChannelSet4Op(chip, val); break; case 0x05: chip->newm = val & 0x01; #if OPL_ENABLE_STEREOEXT chip->stereoext = (val >> 1) & 0x01; #endif break; default: break; } else switch (regm & 0x0f) { case 0x08: chip->nts = (val >> 6) & 0x01; break; default: break; } break; case 0x20: case 0x30: if (ad_slot[regm & 0x1fu] >= 0) OPL3_SlotWrite20(&chip->slot[18u * high + ad_slot[regm & 0x1fu]], val); break; case 0x40: case 0x50: if (ad_slot[regm & 0x1fu] >= 0) OPL3_SlotWrite40(&chip->slot[18u * high + ad_slot[regm & 0x1fu]], val); break; case 0x60: case 0x70: if (ad_slot[regm & 0x1fu] >= 0) OPL3_SlotWrite60(&chip->slot[18u * high + ad_slot[regm & 0x1fu]], val); break; case 0x80: case 0x90: if (ad_slot[regm & 0x1fu] >= 0) OPL3_SlotWrite80(&chip->slot[18u * high + ad_slot[regm & 0x1fu]], val); break; case 0xe0: case 0xf0: if (ad_slot[regm & 0x1fu] >= 0) OPL3_SlotWriteE0(&chip->slot[18u * high + ad_slot[regm & 0x1fu]], val); break; case 0xa0: if ((regm & 0x0f) < 9) OPL3_ChannelWriteA0(&chip->channel[9u * high + (regm & 0x0fu)], val); break; case 0xb0: if (regm == 0xbd && !high) { chip->tremoloshift = (((val >> 7) ^ 1) << 1) + 2; chip->vibshift = ((val >> 6) & 0x01) ^ 1; OPL3_ChannelUpdateRhythm(chip, val); } else if ((regm & 0x0f) < 9) { OPL3_ChannelWriteB0(&chip->channel[9u * high + (regm & 0x0fu)], val); if (val & 0x20) OPL3_ChannelKeyOn(&chip->channel[9u * high + (regm & 0x0fu)]); else OPL3_ChannelKeyOff(&chip->channel[9u * high + (regm & 0x0fu)]); } break; case 0xc0: if ((regm & 0x0f) < 9) OPL3_ChannelWriteC0(&chip->channel[9u * high + (regm & 0x0fu)], val); break; #if OPL_ENABLE_STEREOEXT case 0xd0: if ((regm & 0x0f) < 9) OPL3_ChannelWriteD0(&chip->channel[9u * high + (regm & 0x0fu)], val); break; #endif default: break; } } void OPL3_WriteRegBuffered(void *priv, uint16_t reg, uint8_t val) { opl3_chip *chip = (opl3_chip *) priv; uint64_t time1; uint64_t time2; opl3_writebuf *writebuf; uint32_t writebuf_last; writebuf_last = chip->writebuf_last; writebuf = &chip->writebuf[writebuf_last]; if (writebuf->reg & 0x0200) { OPL3_WriteReg(chip, writebuf->reg & 0x01ff, writebuf->data); chip->writebuf_cur = (writebuf_last + 1) % OPL_WRITEBUF_SIZE; chip->writebuf_samplecnt = writebuf->time; } writebuf->reg = reg | 0x0200; writebuf->data = val; time1 = chip->writebuf_lasttime + OPL_WRITEBUF_DELAY; time2 = chip->writebuf_samplecnt; if (time1 < time2) time1 = time2; writebuf->time = time1; chip->writebuf_lasttime = time1; chip->writebuf_last = (writebuf_last + 1) % OPL_WRITEBUF_SIZE; } void OPL3_Generate4ChStream(opl3_chip *chip, int32_t *sndptr1, int32_t *sndptr2, uint32_t numsamples) { int32_t samples[4]; for (uint_fast32_t i = 0; i < numsamples; i++) { OPL3_Generate4Ch(chip, samples); sndptr1[0] = samples[0]; sndptr1[1] = samples[1]; sndptr2[0] = samples[2]; sndptr2[1] = samples[3]; sndptr1 += 2; sndptr2 += 2; } } void OPL3_GenerateStream(opl3_chip *chip, int32_t *sndptr, uint32_t numsamples) { for (uint_fast32_t i = 0; i < numsamples; i++) { OPL3_Generate(chip, sndptr); sndptr += 2; } } static void nuked_timer_tick(nuked_drv_t *dev, int tmr) { dev->timer_cur_count[tmr] = (dev->timer_cur_count[tmr] + 1) & 0xff; nuked_log("Ticking timer %i, count now %02X...\n", tmr, dev->timer_cur_count[tmr]); if (dev->timer_cur_count[tmr] == 0x00) { dev->status |= ((STAT_TMR1_OVER >> tmr) & ~dev->timer_ctrl); dev->timer_cur_count[tmr] = dev->timer_count[tmr]; nuked_log("Count wrapped around to zero, reloading timer %i (%02X), status = %02X...\n", tmr, (STAT_TMR1_OVER >> tmr), dev->status); } timer_on_auto(&dev->timers[tmr], (tmr == 1) ? 320.0 : 80.0); } static void nuked_timer_control(nuked_drv_t *dev, int tmr, int start) { timer_on_auto(&dev->timers[tmr], 0.0); if (start) { nuked_log("Loading timer %i count: %02X = %02X\n", tmr, dev->timer_cur_count[tmr], dev->timer_count[tmr]); dev->timer_cur_count[tmr] = dev->timer_count[tmr]; if (dev->flags & FLAG_OPL3) nuked_timer_tick(dev, tmr); /* Per the YMF 262 datasheet, OPL3 starts counting immediately, unlike OPL2. */ else timer_on_auto(&dev->timers[tmr], (tmr == 1) ? 320.0 : 80.0); } else { nuked_log("Timer %i stopped\n", tmr); if (tmr == 1) { dev->status &= ~STAT_TMR2_OVER; } else dev->status &= ~STAT_TMR1_OVER; } } static void nuked_timer_1(void *priv) { nuked_drv_t *dev = (nuked_drv_t *) priv; nuked_timer_tick(dev, 0); } static void nuked_timer_2(void *priv) { nuked_drv_t *dev = (nuked_drv_t *) priv; nuked_timer_tick(dev, 1); } static void nuked_drv_set_do_cycles(void *priv, int8_t do_cycles) { nuked_drv_t *dev = (nuked_drv_t *) priv; if (do_cycles) dev->flags |= FLAG_CYCLES; else dev->flags &= ~FLAG_CYCLES; } static void * nuked_drv_init(const device_t *info) { nuked_drv_t *dev = (nuked_drv_t *) calloc(1, sizeof(nuked_drv_t)); dev->flags = FLAG_CYCLES; if (info->local == FM_YMF262) dev->flags |= FLAG_OPL3; else dev->status = 0x06; /* Initialize the NukedOPL object. */ OPL3_Reset(&dev->opl, FREQ_49716); timer_add(&dev->timers[0], nuked_timer_1, dev, 0); timer_add(&dev->timers[1], nuked_timer_2, dev, 0); return dev; } static void nuked_drv_close(void *priv) { nuked_drv_t *dev = (nuked_drv_t *) priv; free(dev); } static int32_t * nuked_drv_update(void *priv) { nuked_drv_t *dev = (nuked_drv_t *) priv; if (dev->pos >= music_pos_global) return dev->buffer; OPL3_GenerateStream(&dev->opl, &dev->buffer[dev->pos * 2], music_pos_global - dev->pos); for (; dev->pos < music_pos_global; dev->pos++) { dev->buffer[dev->pos * 2] /= 2; dev->buffer[(dev->pos * 2) + 1] /= 2; } return dev->buffer; } static uint8_t nuked_drv_read(uint16_t port, void *priv) { nuked_drv_t *dev = (nuked_drv_t *) priv; if (dev->flags & FLAG_CYCLES) cycles -= ((int) (isa_timing * 8)); nuked_drv_update(dev); uint8_t ret = 0xff; if ((port & 0x0003) == 0x0000) { ret = dev->status; if (dev->status & STAT_TMR_OVER) ret |= STAT_TMR_ANY; } nuked_log("OPL statret = %02x, status = %02x\n", ret, dev->status); return ret; } static void nuked_drv_write(uint16_t port, uint8_t val, void *priv) { nuked_drv_t *dev = (nuked_drv_t *) priv; nuked_drv_update(dev); if ((port & 0x0001) == 0x0001) { OPL3_WriteRegBuffered(&dev->opl, dev->port, val); switch (dev->port) { case 0x002: /* Timer 1 */ dev->timer_count[0] = val; nuked_log("Timer 0 count now: %i\n", dev->timer_count[0]); break; case 0x003: /* Timer 2 */ dev->timer_count[1] = val; nuked_log("Timer 1 count now: %i\n", dev->timer_count[1]); break; case 0x004: /* Timer control */ if (val & CTRL_RESET) { nuked_log("Resetting timer status...\n"); dev->status &= ~STAT_TMR_OVER; } else { dev->timer_ctrl = val; nuked_timer_control(dev, 0, val & CTRL_TMR1_START); nuked_timer_control(dev, 1, val & CTRL_TMR2_START); nuked_log("Status mask now %02X (val = %02X)\n", (val & ~CTRL_TMR_MASK) & CTRL_TMR_MASK, val); } break; case 0x105: dev->opl.newm = val & 0x01; break; default: break; } } else { dev->port = nuked_write_addr(&dev->opl, port, val) & 0x01ff; if (!(dev->flags & FLAG_OPL3)) dev->port &= 0x00ff; } } static void nuked_drv_reset_buffer(void *priv) { nuked_drv_t *dev = (nuked_drv_t *) priv; dev->pos = 0; } const device_t ym3812_nuked_device = { .name = "Yamaha YM3812 OPL2 (NUKED)", .internal_name = "ym3812_nuked", .flags = 0, .local = FM_YM3812, .init = nuked_drv_init, .close = nuked_drv_close, .reset = NULL, .available = NULL , .speed_changed = NULL, .force_redraw = NULL, .config = NULL }; const device_t ymf262_nuked_device = { .name = "Yamaha YMF262 OPL3 (NUKED)", .internal_name = "ymf262_nuked", .flags = 0, .local = FM_YMF262, .init = nuked_drv_init, .close = nuked_drv_close, .reset = NULL, .available = NULL, .speed_changed = NULL, .force_redraw = NULL, .config = NULL }; const fm_drv_t nuked_opl_drv = { .read = &nuked_drv_read, .write = &nuked_drv_write, .update = &nuked_drv_update, .reset_buffer = &nuked_drv_reset_buffer, .set_do_cycles = &nuked_drv_set_do_cycles, .priv = NULL, .generate = NULL, };