/* * 86Box A hypervisor and IBM PC system emulator that specializes in * running old operating systems and software designed for IBM * PC systems and compatibles from 1981 through fairly recent * system designs based on the PCI bus. * * This file is part of the 86Box distribution. * * Implementation of the Intel DMA controllers. * * * * Authors: Sarah Walker, * Miran Grca, * Fred N. van Kempen, * * Copyright 2008-2020 Sarah Walker. * Copyright 2016-2020 Miran Grca. * Copyright 2017-2020 Fred N. van Kempen. */ #include #include #include #include #include "86box.h" #include "cpu_common/cpu.h" #include "cpu_common/x86.h" #include "machine/machine.h" #include "mca.h" #include "mem.h" #include "86box_io.h" #include "dma.h" dma_t dma[8]; uint8_t dma_e; static uint8_t dmaregs[16]; static uint8_t dma16regs[16]; static uint8_t dmapages[16]; static int dma_wp, dma16_wp; static uint8_t dma_m; static uint8_t dma_stat; static uint8_t dma_stat_rq; static uint8_t dma_stat_rq_pc; static uint8_t dma_command, dma16_command; static uint8_t dma_req_is_soft; static uint8_t dma_buffer[65536]; static uint16_t dma16_buffer[65536]; static struct { int xfr_command, xfr_channel; int byte_ptr; int is_ps2; } dma_ps2; #define DMA_PS2_IOA (1 << 0) #define DMA_PS2_XFER_MEM_TO_IO (1 << 2) #define DMA_PS2_XFER_IO_TO_MEM (3 << 2) #define DMA_PS2_XFER_MASK (3 << 2) #define DMA_PS2_DEC2 (1 << 4) #define DMA_PS2_SIZE16 (1 << 6) static void dma_ps2_run(int channel); int dma_get_drq(int channel) { return !!(dma_stat_rq_pc & (1 << channel)); } void dma_set_drq(int channel, int set) { dma_stat_rq_pc &= ~(1 << channel); if (set) dma_stat_rq_pc |= (1 << channel); } static void dma_block_transfer(int channel) { int i, bit16; bit16 = (channel >= 4); dma_req_is_soft = 1; for (i = 0; i <= dma[channel].cb; i++) { if ((dma[channel].mode & 0x8c) == 0x84) { if (bit16) dma_channel_write(channel, dma16_buffer[i]); else dma_channel_write(channel, dma_buffer[i]); } else if ((dma[channel].mode & 0x8c) == 0x88) { if (bit16) dma16_buffer[i] = dma_channel_read(channel); else dma_buffer[i] = dma_channel_read(channel); } } dma_req_is_soft = 0; } static uint8_t dma_read(uint16_t addr, void *priv) { int channel = (addr >> 1) & 3; uint8_t temp; switch (addr & 0xf) { case 0: case 2: case 4: case 6: /*Address registers*/ dma_wp ^= 1; if (dma_wp) return(dma[channel].ac & 0xff); return((dma[channel].ac >> 8) & 0xff); case 1: case 3: case 5: case 7: /*Count registers*/ dma_wp ^= 1; if (dma_wp) temp = dma[channel].cc & 0xff; else temp = dma[channel].cc >> 8; return(temp); case 8: /*Status register*/ temp = dma_stat_rq_pc & 0xf; temp <<= 4; temp |= dma_stat & 0xf; dma_stat &= ~0xf; return(temp); case 0xd: /*Temporary register*/ return(0); } return(dmaregs[addr & 0xf]); } static void dma_write(uint16_t addr, uint8_t val, void *priv) { int channel = (addr >> 1) & 3; dmaregs[addr & 0xf] = val; switch (addr & 0xf) { case 0: case 2: case 4: case 6: /*Address registers*/ dma_wp ^= 1; if (dma_wp) dma[channel].ab = (dma[channel].ab & 0xffff00) | val; else dma[channel].ab = (dma[channel].ab & 0xff00ff) | (val << 8); dma[channel].ac = dma[channel].ab; return; case 1: case 3: case 5: case 7: /*Count registers*/ dma_wp ^= 1; if (dma_wp) dma[channel].cb = (dma[channel].cb & 0xff00) | val; else dma[channel].cb = (dma[channel].cb & 0x00ff) | (val << 8); dma[channel].cc = dma[channel].cb; return; case 8: /*Control register*/ dma_command = val; if (val & 0x01) fatal("Memory-to-memory enable\n"); return; case 9: /*Request register */ channel = (val & 3); if (val & 4) { dma_stat_rq_pc |= (1 << channel); dma_block_transfer(channel); } else dma_stat_rq_pc &= ~(1 << channel); break; case 0xa: /*Mask*/ channel = (val & 3); if (val & 4) dma_m |= (1 << channel); else dma_m &= ~(1 << channel); return; case 0xb: /*Mode*/ channel = (val & 3); dma[channel].mode = val; if (dma_ps2.is_ps2) { dma[channel].ps2_mode &= ~0x1c; if (val & 0x20) dma[channel].ps2_mode |= 0x10; if ((val & 0xc) == 8) dma[channel].ps2_mode |= 4; else if ((val & 0xc) == 4) dma[channel].ps2_mode |= 0xc; } return; case 0xc: /*Clear FF*/ dma_wp = 0; return; case 0xd: /*Master clear*/ dma_wp = 0; dma_m |= 0xf; dma_stat_rq_pc &= ~0x0f; return; case 0xe: /*Clear mask*/ dma_m &= 0xf0; return; case 0xf: /*Mask write*/ dma_m = (dma_m & 0xf0) | (val & 0xf); return; } } static uint8_t dma_ps2_read(uint16_t addr, void *priv) { dma_t *dma_c = &dma[dma_ps2.xfr_channel]; uint8_t temp = 0xff; switch (addr) { case 0x1a: switch (dma_ps2.xfr_command) { case 2: /*Address*/ case 3: switch (dma_ps2.byte_ptr) { case 0: temp = dma_c->ac & 0xff; dma_ps2.byte_ptr = 1; break; case 1: temp = (dma_c->ac >> 8) & 0xff; dma_ps2.byte_ptr = 2; break; case 2: temp = (dma_c->ac >> 16) & 0xff; dma_ps2.byte_ptr = 0; break; } break; case 4: /*Count*/ case 5: if (dma_ps2.byte_ptr) temp = dma_c->cc >> 8; else temp = dma_c->cc & 0xff; dma_ps2.byte_ptr = (dma_ps2.byte_ptr + 1) & 1; break; case 6: /*Read DMA status*/ if (dma_ps2.byte_ptr) { temp = ((dma_stat_rq & 0xf0) >> 4) | (dma_stat & 0xf0); dma_stat &= ~0xf0; dma_stat_rq &= ~0xf0; } else { temp = (dma_stat_rq & 0xf) | ((dma_stat & 0xf) << 4); dma_stat &= ~0xf; dma_stat_rq &= ~0xf; } dma_ps2.byte_ptr = (dma_ps2.byte_ptr + 1) & 1; break; case 7: /*Mode*/ temp = dma_c->ps2_mode; break; case 8: /*Arbitration Level*/ temp = dma_c->arb_level; break; default: fatal("Bad XFR Read command %i channel %i\n", dma_ps2.xfr_command, dma_ps2.xfr_channel); } break; } return(temp); } static void dma_ps2_write(uint16_t addr, uint8_t val, void *priv) { dma_t *dma_c = &dma[dma_ps2.xfr_channel]; uint8_t mode; switch (addr) { case 0x18: dma_ps2.xfr_channel = val & 0x7; dma_ps2.xfr_command = val >> 4; dma_ps2.byte_ptr = 0; switch (dma_ps2.xfr_command) { case 9: /*Set DMA mask*/ dma_m |= (1 << dma_ps2.xfr_channel); break; case 0xa: /*Reset DMA mask*/ dma_m &= ~(1 << dma_ps2.xfr_channel); break; case 0xb: if (!(dma_m & (1 << dma_ps2.xfr_channel))) dma_ps2_run(dma_ps2.xfr_channel); break; } break; case 0x1a: switch (dma_ps2.xfr_command) { case 0: /*I/O address*/ if (dma_ps2.byte_ptr) dma_c->io_addr = (dma_c->io_addr & 0x00ff) | (val << 8); else dma_c->io_addr = (dma_c->io_addr & 0xff00) | val; dma_ps2.byte_ptr = (dma_ps2.byte_ptr + 1) & 1; break; case 2: /*Address*/ switch (dma_ps2.byte_ptr) { case 0: dma_c->ac = (dma_c->ac & 0xffff00) | val; dma_ps2.byte_ptr = 1; break; case 1: dma_c->ac = (dma_c->ac & 0xff00ff) | (val << 8); dma_ps2.byte_ptr = 2; break; case 2: dma_c->ac = (dma_c->ac & 0x00ffff) | (val << 16); dma_ps2.byte_ptr = 0; break; } dma_c->ab = dma_c->ac; break; case 4: /*Count*/ if (dma_ps2.byte_ptr) dma_c->cc = (dma_c->cc & 0xff) | (val << 8); else dma_c->cc = (dma_c->cc & 0xff00) | val; dma_ps2.byte_ptr = (dma_ps2.byte_ptr + 1) & 1; dma_c->cb = dma_c->cc; break; case 7: /*Mode register*/ mode = 0; if (val & DMA_PS2_DEC2) mode |= 0x20; if ((val & DMA_PS2_XFER_MASK) == DMA_PS2_XFER_MEM_TO_IO) mode |= 8; else if ((val & DMA_PS2_XFER_MASK) == DMA_PS2_XFER_IO_TO_MEM) mode |= 4; dma_c->mode = (dma_c->mode & ~0x2c) | mode; dma_c->ps2_mode = val; dma_c->size = val & DMA_PS2_SIZE16; break; case 8: /*Arbitration Level*/ dma_c->arb_level = val; break; default: fatal("Bad XFR command %i channel %i val %02x\n", dma_ps2.xfr_command, dma_ps2.xfr_channel, val); } break; } } static uint8_t dma16_read(uint16_t addr, void *priv) { int channel = ((addr >> 2) & 3) + 4; uint8_t temp; addr >>= 1; switch (addr & 0xf) { case 0: case 2: case 4: case 6: /*Address registers*/ dma16_wp ^= 1; if (dma_ps2.is_ps2) { if (dma16_wp) return(dma[channel].ac); return((dma[channel].ac >> 8) & 0xff); } if (dma16_wp) return((dma[channel].ac >> 1) & 0xff); return((dma[channel].ac >> 9) & 0xff); case 1: case 3: case 5: case 7: /*Count registers*/ dma16_wp ^= 1; if (dma16_wp) temp = dma[channel].cc & 0xff; else temp = dma[channel].cc >> 8; return(temp); case 8: /*Status register*/ temp = (dma_stat_rq_pc & 0xf0); temp |= dma_stat >> 4; dma_stat &= ~0xf0; return(temp); } return(dma16regs[addr & 0xf]); } static void dma16_write(uint16_t addr, uint8_t val, void *priv) { int channel = ((addr >> 2) & 3) + 4; addr >>= 1; dma16regs[addr & 0xf] = val; switch (addr & 0xf) { case 0: case 2: case 4: case 6: /*Address registers*/ dma16_wp ^= 1; if (dma_ps2.is_ps2) { if (dma16_wp) dma[channel].ab = (dma[channel].ab & 0xffff00) | val; else dma[channel].ab = (dma[channel].ab & 0xff00ff) | (val << 8); } else { if (dma16_wp) dma[channel].ab = (dma[channel].ab & 0xfffe00) | (val << 1); else dma[channel].ab = (dma[channel].ab & 0xfe01ff) | (val << 9); } dma[channel].ac = dma[channel].ab; return; case 1: case 3: case 5: case 7: /*Count registers*/ dma16_wp ^= 1; if (dma16_wp) dma[channel].cb = (dma[channel].cb & 0xff00) | val; else dma[channel].cb = (dma[channel].cb & 0x00ff) | (val << 8); dma[channel].cc = dma[channel].cb; return; case 8: /*Control register*/ return; case 9: /*Request register */ channel = (val & 3) + 4; if (val & 4) { dma_stat_rq_pc |= (1 << channel); dma_block_transfer(channel); } else dma_stat_rq_pc &= ~(1 << channel); break; case 0xa: /*Mask*/ channel = (val & 3); if (val & 4) dma_m |= (0x10 << channel); else dma_m &= ~(0x10 << channel); return; case 0xb: /*Mode*/ channel = (val & 3) + 4; dma[channel].mode = val; if (dma_ps2.is_ps2) { dma[channel].ps2_mode &= ~0x1c; if (val & 0x20) dma[channel].ps2_mode |= 0x10; if ((val & 0xc) == 8) dma[channel].ps2_mode |= 4; else if ((val & 0xc) == 4) dma[channel].ps2_mode |= 0xc; } return; case 0xc: /*Clear FF*/ dma16_wp = 0; return; case 0xd: /*Master clear*/ dma16_wp = 0; dma_m |= 0xf0; dma_stat_rq_pc &= ~0xf0; return; case 0xe: /*Clear mask*/ dma_m &= 0x0f; return; case 0xf: /*Mask write*/ dma_m = (dma_m & 0x0f) | ((val & 0xf) << 4); return; } } static void dma_page_write(uint16_t addr, uint8_t val, void *priv) { dmapages[addr & 0xf] = val; switch (addr & 0xf) { case 1: dma[2].page = (AT) ? val : val & 0xf; dma[2].ab = (dma[2].ab & 0xffff) | (dma[2].page << 16); dma[2].ac = (dma[2].ac & 0xffff) | (dma[2].page << 16); break; case 2: dma[3].page = (AT) ? val : val & 0xf; dma[3].ab = (dma[3].ab & 0xffff) | (dma[3].page << 16); dma[3].ac = (dma[3].ac & 0xffff) | (dma[3].page << 16); break; case 3: dma[1].page = (AT) ? val : val & 0xf; dma[1].ab = (dma[1].ab & 0xffff) | (dma[1].page << 16); dma[1].ac = (dma[1].ac & 0xffff) | (dma[1].page << 16); break; case 7: dma[0].page = (AT) ? val : val & 0xf; dma[0].ab = (dma[0].ab & 0xffff) | (dma[0].page << 16); dma[0].ac = (dma[0].ac & 0xffff) | (dma[0].page << 16); break; case 0x9: dma[6].page = val & 0xfe; dma[6].ab = (dma[6].ab & 0x1ffff) | (dma[6].page << 16); dma[6].ac = (dma[6].ac & 0x1ffff) | (dma[6].page << 16); break; case 0xa: dma[7].page = val & 0xfe; dma[7].ab = (dma[7].ab & 0x1ffff) | (dma[7].page << 16); dma[7].ac = (dma[7].ac & 0x1ffff) | (dma[7].page << 16); break; case 0xb: dma[5].page = val & 0xfe; dma[5].ab = (dma[5].ab & 0x1ffff) | (dma[5].page << 16); dma[5].ac = (dma[5].ac & 0x1ffff) | (dma[5].page << 16); break; case 0xf: dma[4].page = val & 0xfe; dma[4].ab = (dma[4].ab & 0x1ffff) | (dma[4].page << 16); dma[4].ac = (dma[4].ac & 0x1ffff) | (dma[4].page << 16); break; } } static uint8_t dma_page_read(uint16_t addr, void *priv) { return(dmapages[addr & 0xf]); } void dma_reset(void) { int c; dma_wp = dma16_wp = 0; dma_m = 0; dma_e = 0xff; for (c = 0; c < 16; c++) dmaregs[c] = dma16regs[c] = 0; for (c = 0; c < 8; c++) { dma[c].mode = 0; dma[c].ac = 0; dma[c].cc = 0; dma[c].ab = 0; dma[c].cb = 0; dma[c].size = (c & 4) ? 1 : 0; } dma_stat = 0x00; dma_stat_rq = 0x00; dma_stat_rq_pc = 0x00; dma_req_is_soft = 0; memset(dma_buffer, 0x00, sizeof(dma_buffer)); memset(dma16_buffer, 0x00, sizeof(dma16_buffer)); } void dma_init(void) { dma_reset(); io_sethandler(0x0000, 16, dma_read,NULL,NULL, dma_write,NULL,NULL, NULL); io_sethandler(0x0080, 8, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); dma_ps2.is_ps2 = 0; } void dma16_init(void) { dma_reset(); io_sethandler(0x00C0, 32, dma16_read,NULL,NULL, dma16_write,NULL,NULL, NULL); io_sethandler(0x0088, 8, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); } void dma_alias_set(void) { io_sethandler(0x0090, 16, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); } void dma_alias_set_piix(void) { io_sethandler(0x0090, 1, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); io_sethandler(0x0094, 3, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); io_sethandler(0x0098, 1, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); io_sethandler(0x009C, 3, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); } void dma_alias_remove(void) { io_removehandler(0x0090, 16, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); } void dma_alias_remove_piix(void) { io_removehandler(0x0090, 1, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); io_removehandler(0x0094, 3, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); io_removehandler(0x0098, 1, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); io_removehandler(0x009C, 3, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); } void ps2_dma_init(void) { dma_reset(); io_sethandler(0x0018, 1, dma_ps2_read,NULL,NULL, dma_ps2_write,NULL,NULL, NULL); io_sethandler(0x001a, 1, dma_ps2_read,NULL,NULL, dma_ps2_write,NULL,NULL, NULL); dma_ps2.is_ps2 = 1; } uint8_t _dma_read(uint32_t addr) { uint8_t temp = mem_readb_phys(addr); return(temp); } void _dma_write(uint32_t addr, uint8_t val) { mem_writeb_phys(addr, val); mem_invalidate_range(addr, addr); } int dma_channel_read(int channel) { dma_t *dma_c = &dma[channel]; uint16_t temp; int tc = 0; if (channel < 4) { if (dma_command & 0x04) return(DMA_NODATA); } else { if (dma16_command & 0x04) return(DMA_NODATA); } if (!(dma_e & (1 << channel))) return(DMA_NODATA); if ((dma_m & (1 << channel)) && !dma_req_is_soft) return(DMA_NODATA); if ((dma_c->mode & 0xC) != 8) return(DMA_NODATA); if (!AT && !channel) refreshread(); /* if (!AT && channel) pclog("DMA refresh read on channel %i\n", channel); */ if (! dma_c->size) { temp = _dma_read(dma_c->ac); if (dma_c->mode & 0x20) { if (dma_ps2.is_ps2) dma_c->ac--; else dma_c->ac = (dma_c->ac & 0xff0000) | ((dma_c->ac - 1) & 0xffff); } else { if (dma_ps2.is_ps2) dma_c->ac++; else dma_c->ac = (dma_c->ac & 0xff0000) | ((dma_c->ac + 1) & 0xffff); } } else { temp = _dma_read(dma_c->ac) | (_dma_read(dma_c->ac + 1) << 8); if (dma_c->mode & 0x20) { if (dma_ps2.is_ps2) dma_c->ac -= 2; else dma_c->ac = (dma_c->ac & 0xfe0000) | ((dma_c->ac - 2) & 0x1ffff); } else { if (dma_ps2.is_ps2) dma_c->ac += 2; else dma_c->ac = (dma_c->ac & 0xfe0000) | ((dma_c->ac + 2) & 0x1ffff); } } dma_stat_rq |= (1 << channel); dma_c->cc--; if (dma_c->cc < 0) { tc = 1; if (dma_c->mode & 0x10) { /*Auto-init*/ dma_c->cc = dma_c->cb; dma_c->ac = dma_c->ab; } else dma_m |= (1 << channel); dma_stat |= (1 << channel); } if (tc) return(temp | DMA_OVER); return(temp); } int dma_channel_write(int channel, uint16_t val) { dma_t *dma_c = &dma[channel]; if (channel < 4) { if (dma_command & 0x04) return(DMA_NODATA); } else { if (dma16_command & 0x04) return(DMA_NODATA); } if (!(dma_e & (1 << channel))) return(DMA_NODATA); if ((dma_m & (1 << channel)) && !dma_req_is_soft) return(DMA_NODATA); if ((dma_c->mode & 0xC) != 4) return(DMA_NODATA); /* if (!AT) refreshread(); if (!AT) pclog("DMA refresh write on channel %i\n", channel); */ if (! dma_c->size) { _dma_write(dma_c->ac, val & 0xff); if (dma_c->mode & 0x20) { if (dma_ps2.is_ps2) dma_c->ac--; else dma_c->ac = (dma_c->ac & 0xff0000) | ((dma_c->ac - 1) & 0xffff); } else { if (dma_ps2.is_ps2) dma_c->ac++; else dma_c->ac = (dma_c->ac & 0xff0000) | ((dma_c->ac + 1) & 0xffff); } } else { _dma_write(dma_c->ac, val & 0xff); _dma_write(dma_c->ac + 1, val >> 8); if (dma_c->mode & 0x20) { if (dma_ps2.is_ps2) dma_c->ac -= 2; else dma_c->ac = (dma_c->ac & 0xfe0000) | ((dma_c->ac - 2) & 0x1ffff); dma_c->ac = (dma_c->ac & 0xfe0000) | ((dma_c->ac - 2) & 0x1ffff); } else { if (dma_ps2.is_ps2) dma_c->ac += 2; else dma_c->ac = (dma_c->ac & 0xfe0000) | ((dma_c->ac + 2) & 0x1ffff); } } dma_stat_rq |= (1 << channel); dma_c->cc--; if (dma_c->cc < 0) { if (dma_c->mode & 0x10) { /*Auto-init*/ dma_c->cc = dma_c->cb; dma_c->ac = dma_c->ab; } else dma_m |= (1 << channel); dma_stat |= (1 << channel); } if (dma_m & (1 << channel)) return(DMA_OVER); return(0); } static void dma_ps2_run(int channel) { dma_t *dma_c = &dma[channel]; switch (dma_c->ps2_mode & DMA_PS2_XFER_MASK) { case DMA_PS2_XFER_MEM_TO_IO: do { if (! dma_c->size) { uint8_t temp = _dma_read(dma_c->ac); outb(dma_c->io_addr, temp); if (dma_c->ps2_mode & DMA_PS2_DEC2) dma_c->ac--; else dma_c->ac++; } else { uint16_t temp = _dma_read(dma_c->ac) | (_dma_read(dma_c->ac + 1) << 8); outw(dma_c->io_addr, temp); if (dma_c->ps2_mode & DMA_PS2_DEC2) dma_c->ac -= 2; else dma_c->ac += 2; } dma_stat_rq |= (1 << channel); dma_c->cc--; } while (dma_c->cc > 0); dma_stat |= (1 << channel); break; case DMA_PS2_XFER_IO_TO_MEM: do { if (! dma_c->size) { uint8_t temp = inb(dma_c->io_addr); _dma_write(dma_c->ac, temp); if (dma_c->ps2_mode & DMA_PS2_DEC2) dma_c->ac--; else dma_c->ac++; } else { uint16_t temp = inw(dma_c->io_addr); _dma_write(dma_c->ac, temp & 0xff); _dma_write(dma_c->ac + 1, temp >> 8); if (dma_c->ps2_mode & DMA_PS2_DEC2) dma_c->ac -= 2; else dma_c->ac += 2; } dma_stat_rq |= (1 << channel); dma_c->cc--; } while (dma_c->cc > 0); ps2_cache_clean(); dma_stat |= (1 << channel); break; default: /*Memory verify*/ do { if (! dma_c->size) { if (dma_c->ps2_mode & DMA_PS2_DEC2) dma_c->ac--; else dma_c->ac++; } else { if (dma_c->ps2_mode & DMA_PS2_DEC2) dma_c->ac -= 2; else dma_c->ac += 2; } dma_stat_rq |= (1 << channel); dma->cc--; } while (dma->cc > 0); dma_stat |= (1 << channel); break; } } int dma_mode(int channel) { return(dma[channel].mode); } /* DMA Bus Master Page Read/Write */ void DMAPageRead(uint32_t PhysAddress, uint8_t *DataRead, uint32_t TotalSize) { uint32_t i = 0; #if 0 memcpy(DataRead, &ram[PhysAddress], TotalSize); #else for (i = 0; i < TotalSize; i++) DataRead[i] = mem_readb_phys(PhysAddress + i); #endif } void DMAPageWrite(uint32_t PhysAddress, const uint8_t *DataWrite, uint32_t TotalSize) { uint32_t i = 0; #if 0 mem_invalidate_range(PhysAddress, PhysAddress + TotalSize - 1); memcpy(&ram[PhysAddress], DataWrite, TotalSize); #else for (i = 0; i < TotalSize; i++) mem_writeb_phys(PhysAddress + i, DataWrite[i]); mem_invalidate_range(PhysAddress, PhysAddress + TotalSize - 1); #endif }