Files
86Box/src/sound/resid-fp/Integrator6581.cpp
2024-12-09 19:05:30 -05:00

98 lines
3.2 KiB
C++

/*
* This file is part of libsidplayfp, a SID player engine.
*
* Copyright 2014 Leandro Nini <drfiemost@users.sourceforge.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "Integrator6581.h"
#ifdef SLOPE_FACTOR
# include <cmath>
# include "sidcxx11.h"
#endif
namespace reSIDfp
{
int Integrator6581::solve(int vi) const
{
// Make sure Vgst>0 so we're not in subthreshold mode
assert(vx < nVddt);
// Check that transistor is actually in triode mode
// Vds < Vgs - Vth
assert(vi < nVddt);
// "Snake" voltages for triode mode calculation.
const unsigned int Vgst = nVddt - vx;
const unsigned int Vgdt = nVddt - vi;
const unsigned int Vgst_2 = Vgst * Vgst;
const unsigned int Vgdt_2 = Vgdt * Vgdt;
// "Snake" current, scaled by (1/m)*2^13*m*2^16*m*2^16*2^-15 = m*2^30
const int n_I_snake = fmc.getNormalizedCurrentFactor(wlSnake) * (static_cast<int>(Vgst_2 - Vgdt_2) >> 15);
// VCR gate voltage. // Scaled by m*2^16
// Vg = Vddt - sqrt(((Vddt - Vw)^2 + Vgdt^2)/2)
const int nVg = static_cast<int>(fmc.getVcr_nVg((nVddt_Vw_2 + (Vgdt_2 >> 1)) >> 16));
#ifdef SLOPE_FACTOR
const double nVp = static_cast<double>(nVg - nVt) / n; // Pinch-off voltage
const int kVgt = static_cast<int>(nVp + 0.5) - nVmin;
#else
const int kVgt = (nVg - nVt) - nVmin;
#endif
// VCR voltages for EKV model table lookup.
const int kVgt_Vs = (kVgt - vx) + (1 << 15);
assert((kVgt_Vs >= 0) && (kVgt_Vs < (1 << 16)));
const int kVgt_Vd = (kVgt - vi) + (1 << 15);
assert((kVgt_Vd >= 0) && (kVgt_Vd < (1 << 16)));
// VCR current, scaled by m*2^15*2^15 = m*2^30
const unsigned int If = static_cast<unsigned int>(fmc.getVcr_n_Ids_term(kVgt_Vs)) << 15;
const unsigned int Ir = static_cast<unsigned int>(fmc.getVcr_n_Ids_term(kVgt_Vd)) << 15;
#ifdef SLOPE_FACTOR
const double iVcr = static_cast<double>(If - Ir);
const int n_I_vcr = static_cast<int>(iVcr * n);
#else
const int n_I_vcr = If - Ir;
#endif
#ifdef SLOPE_FACTOR
// estimate new slope factor based on gate voltage
constexpr double gamma = 1.0; // body effect factor
constexpr double phi = 0.8; // bulk Fermi potential
const double Vp = nVp / fmc.getN16();
n = 1. + (gamma / (2. * std::sqrt(Vp + phi + 4. * fmc.getUt())));
assert((n > 1.2) && (n < 1.8));
#endif
// Change in capacitor charge.
vc += n_I_snake + n_I_vcr;
// vx = g(vc)
const int tmp = (vc >> 15) + (1 << 15);
assert(tmp < (1 << 16));
vx = fmc.getOpampRev(tmp);
// Return vo.
return vx - (vc >> 14);
}
} // namespace reSIDfp