Files
86Box/src/network/net_rtl8139.c

3299 lines
91 KiB
C

/*
* 86Box A hypervisor and IBM PC system emulator that specializes in
* running old operating systems and software designed for IBM
* PC systems and compatibles from 1981 through fairly recent
* system designs based on the PCI bus.
*
* This file is part of the 86Box distribution.
*
* Emulation of Realtek RTL8139C+ NIC.
*
* Authors: Igor Kovalenko,
* Mark Malakanov,
* Jurgen Lock,
* Frediano Ziglio,
* Benjamin Poirier.
* Cacodemon345,
*
* Copyright 2006-2023 Igor Kovalenko.
* Copyright 2006-2023 Mark Malakanov.
* Copyright 2006-2023 Jurgen Lock.
* Copyright 2010-2023 Frediano Ziglio.
* Copyright 2011-2023 Benjamin Poirier.
* Copyright 2023 Cacodemon345.
*/
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <stdio.h>
#include <time.h>
#include <86box/86box.h>
#include <86box/timer.h>
#include <86box/pci.h>
#include <86box/random.h>
#include <86box/io.h>
#include <86box/mem.h>
#include <86box/dma.h>
#include <86box/device.h>
#include <86box/thread.h>
#include <86box/network.h>
#include <86box/net_eeprom_nmc93cxx.h>
#include <86box/bswap.h>
#include <86box/nvr.h>
#include "cpu.h"
#include <86box/net_rtl8139.h>
#include <86box/plat_unused.h>
#define PCI_PERIOD 30 /* 30 ns period = 33.333333 Mhz frequency */
#define SET_MASKED(input, mask, curr) \
(((input) & ~(mask)) | ((curr) & (mask)))
/* arg % size for size which is a power of 2 */
#define MOD2(input, size) \
((input) & (size - 1))
#define ETHER_TYPE_LEN 2
#define VLAN_TCI_LEN 2
#define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
#ifdef ENABLE_RTL8139_LOG
int rtl8139_do_log = ENABLE_RTL8139_LOG;
static void
rtl8139_log(const char *fmt, ...)
{
va_list ap;
if (rtl8139_do_log) {
va_start(ap, fmt);
pclog_ex(fmt, ap);
va_end(ap);
}
}
#else
# define rtl8139_log(fmt, ...)
#endif
struct RTL8139State;
typedef struct RTL8139State RTL8139State;
/* Symbolic offsets to registers. */
enum RTL8139_registers {
MAC0 = 0, /* Ethernet hardware address. */
MAR0 = 8, /* Multicast filter. */
TxStatus0 = 0x10, /* Transmit status (Four 32bit registers). C mode only */
/* Dump Tally Conter control register(64bit). C+ mode only */
TxAddr0 = 0x20, /* Tx descriptors (also four 32bit). */
RxBuf = 0x30,
ChipCmd = 0x37,
RxBufPtr = 0x38,
RxBufAddr = 0x3A,
IntrMask = 0x3C,
IntrStatus = 0x3E,
TxConfig = 0x40,
RxConfig = 0x44,
Timer = 0x48, /* A general-purpose counter. */
RxMissed = 0x4C, /* 24 bits valid, write clears. */
Cfg9346 = 0x50,
Config0 = 0x51,
Config1 = 0x52,
FlashReg = 0x54,
MediaStatus = 0x58,
Config3 = 0x59,
Config4 = 0x5A, /* absent on RTL-8139A */
HltClk = 0x5B,
MultiIntr = 0x5C,
PCIRevisionID = 0x5E,
TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
BasicModeCtrl = 0x62,
BasicModeStatus = 0x64,
NWayAdvert = 0x66,
NWayLPAR = 0x68,
NWayExpansion = 0x6A,
/* Undocumented registers, but required for proper operation. */
FIFOTMS = 0x70, /* FIFO Control and test. */
CSCR = 0x74, /* Chip Status and Configuration Register. */
PARA78 = 0x78,
PARA7c = 0x7c, /* Magic transceiver parameter register. */
Config5 = 0xD8, /* absent on RTL-8139A */
/* C+ mode */
TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
RxRingAddrLO = 0xE4, /* 64-bit start addr of Rx ring */
RxRingAddrHI = 0xE8, /* 64-bit start addr of Rx ring */
TxThresh = 0xEC, /* Early Tx threshold */
};
enum ClearBitMasks {
MultiIntrClear = 0xF000,
ChipCmdClear = 0xE2,
Config1Clear = (1 << 7) | (1 << 6) | (1 << 3) | (1 << 2) | (1 << 1),
};
enum ChipCmdBits {
CmdReset = 0x10,
CmdRxEnb = 0x08,
CmdTxEnb = 0x04,
RxBufEmpty = 0x01,
};
/* C+ mode */
enum CplusCmdBits {
CPlusRxVLAN = 0x0040, /* enable receive VLAN detagging */
CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
CPlusRxEnb = 0x0002,
CPlusTxEnb = 0x0001,
};
/* Interrupt register bits, using my own meaningful names. */
enum IntrStatusBits {
PCIErr = 0x8000,
PCSTimeout = 0x4000,
RxFIFOOver = 0x40,
RxUnderrun = 0x20, /* Packet Underrun / Link Change */
RxOverflow = 0x10,
TxErr = 0x08,
TxOK = 0x04,
RxErr = 0x02,
RxOK = 0x01,
RxAckBits = RxFIFOOver | RxOverflow | RxOK,
};
enum TxStatusBits {
TxHostOwns = 0x2000,
TxUnderrun = 0x4000,
TxStatOK = 0x8000,
TxOutOfWindow = 0x20000000,
TxAborted = 0x40000000,
TxCarrierLost = 0x80000000,
};
enum RxStatusBits {
RxMulticast = 0x8000,
RxPhysical = 0x4000,
RxBroadcast = 0x2000,
RxBadSymbol = 0x0020,
RxRunt = 0x0010,
RxTooLong = 0x0008,
RxCRCErr = 0x0004,
RxBadAlign = 0x0002,
RxStatusOK = 0x0001,
};
/* Bits in RxConfig. */
enum rx_mode_bits {
AcceptErr = 0x20,
AcceptRunt = 0x10,
AcceptBroadcast = 0x08,
AcceptMulticast = 0x04,
AcceptMyPhys = 0x02,
AcceptAllPhys = 0x01,
};
/* Bits in TxConfig. */
enum tx_config_bits {
/* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
TxIFGShift = 24,
TxIFG84 = (0 << TxIFGShift), /* 8.4us / 840ns (10 / 100Mbps) */
TxIFG88 = (1 << TxIFGShift), /* 8.8us / 880ns (10 / 100Mbps) */
TxIFG92 = (2 << TxIFGShift), /* 9.2us / 920ns (10 / 100Mbps) */
TxIFG96 = (3 << TxIFGShift), /* 9.6us / 960ns (10 / 100Mbps) */
TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
TxCRC = (1 << 16), /* DISABLE appending CRC to end of Tx packets */
TxClearAbt = (1 << 0), /* Clear abort (WO) */
TxDMAShift = 8, /* DMA burst value (0-7) is shifted this many bits */
TxRetryShift = 4, /* TXRR value (0-15) is shifted this many bits */
TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
};
/* Transmit Status of All Descriptors (TSAD) Register */
enum TSAD_bits {
TSAD_TOK3 = 1 << 15, // TOK bit of Descriptor 3
TSAD_TOK2 = 1 << 14, // TOK bit of Descriptor 2
TSAD_TOK1 = 1 << 13, // TOK bit of Descriptor 1
TSAD_TOK0 = 1 << 12, // TOK bit of Descriptor 0
TSAD_TUN3 = 1 << 11, // TUN bit of Descriptor 3
TSAD_TUN2 = 1 << 10, // TUN bit of Descriptor 2
TSAD_TUN1 = 1 << 9, // TUN bit of Descriptor 1
TSAD_TUN0 = 1 << 8, // TUN bit of Descriptor 0
TSAD_TABT3 = 1 << 07, // TABT bit of Descriptor 3
TSAD_TABT2 = 1 << 06, // TABT bit of Descriptor 2
TSAD_TABT1 = 1 << 05, // TABT bit of Descriptor 1
TSAD_TABT0 = 1 << 04, // TABT bit of Descriptor 0
TSAD_OWN3 = 1 << 03, // OWN bit of Descriptor 3
TSAD_OWN2 = 1 << 02, // OWN bit of Descriptor 2
TSAD_OWN1 = 1 << 01, // OWN bit of Descriptor 1
TSAD_OWN0 = 1 << 00, // OWN bit of Descriptor 0
};
/* Bits in Config1 */
enum Config1Bits {
Cfg1_PM_Enable = 0x01,
Cfg1_VPD_Enable = 0x02,
Cfg1_PIO = 0x04,
Cfg1_MMIO = 0x08,
LWAKE = 0x10, /* not on 8139, 8139A */
Cfg1_Driver_Load = 0x20,
Cfg1_LED0 = 0x40,
Cfg1_LED1 = 0x80,
SLEEP = (1 << 1), /* only on 8139, 8139A */
PWRDN = (1 << 0), /* only on 8139, 8139A */
};
/* Bits in Config3 */
enum Config3Bits {
Cfg3_FBtBEn = (1 << 0), /* 1 = Fast Back to Back */
Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
Cfg3_CardB_En = (1 << 3), /* 1 = enable CardBus registers */
Cfg3_LinkUp = (1 << 4), /* 1 = wake up on link up */
Cfg3_Magic = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
Cfg3_PARM_En = (1 << 6), /* 0 = software can set twister parameters */
Cfg3_GNTSel = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
};
/* Bits in Config4 */
enum Config4Bits {
LWPTN = (1 << 2), /* not on 8139, 8139A */
};
/* Bits in Config5 */
enum Config5Bits {
Cfg5_PME_STS = (1 << 0), /* 1 = PCI reset resets PME_Status */
Cfg5_LANWake = (1 << 1), /* 1 = enable LANWake signal */
Cfg5_LDPS = (1 << 2), /* 0 = save power when link is down */
Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
Cfg5_UWF = (1 << 4), /* 1 = accept unicast wakeup frame */
Cfg5_MWF = (1 << 5), /* 1 = accept multicast wakeup frame */
Cfg5_BWF = (1 << 6), /* 1 = accept broadcast wakeup frame */
};
enum RxConfigBits {
/* rx fifo threshold */
RxCfgFIFOShift = 13,
RxCfgFIFONone = (7 << RxCfgFIFOShift),
/* Max DMA burst */
RxCfgDMAShift = 8,
RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
/* rx ring buffer length */
RxCfgRcv8K = 0,
RxCfgRcv16K = (1 << 11),
RxCfgRcv32K = (1 << 12),
RxCfgRcv64K = (1 << 11) | (1 << 12),
/* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
RxNoWrap = (1 << 7),
};
/* Twister tuning parameters from RealTek.
Completely undocumented, but required to tune bad links on some boards. */
#if 0
enum CSCRBits {
CSCR_LinkOKBit = 0x0400,
CSCR_LinkChangeBit = 0x0800,
CSCR_LinkStatusBits = 0x0f000,
CSCR_LinkDownOffCmd = 0x003c0,
CSCR_LinkDownCmd = 0x0f3c0,
#endif
enum CSCRBits {
CSCR_Testfun = 1 << 15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
CSCR_LD = 1 << 9, /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
CSCR_HEART_BIT = 1 << 8, /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
CSCR_JBEN = 1 << 7, /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
CSCR_F_LINK_100 = 1 << 6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
CSCR_F_Connect = 1 << 5, /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
CSCR_Con_status = 1 << 3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
CSCR_Con_status_En = 1 << 2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
CSCR_PASS_SCR = 1 << 0, /* Bypass Scramble, def 0*/
};
enum Cfg9346Bits {
Cfg9346_Normal = 0x00,
Cfg9346_Autoload = 0x40,
Cfg9346_Programming = 0x80,
Cfg9346_ConfigWrite = 0xC0,
};
typedef enum {
CH_8139 = 0,
CH_8139_K,
CH_8139A,
CH_8139A_G,
CH_8139B,
CH_8130,
CH_8139C,
CH_8100,
CH_8100B_8139D,
CH_8101,
} chip_t;
enum chip_flags {
HasHltClk = (1 << 0),
HasLWake = (1 << 1),
};
#define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
(b30 << 30 | b29 << 29 | b28 << 28 | b27 << 27 | b26 << 26 | b23 << 23 | b22 << 22)
#define HW_REVID_MASK HW_REVID(1, 1, 1, 1, 1, 1, 1)
#define RTL8139_PCI_REVID_8139 0x10
#define RTL8139_PCI_REVID_8139CPLUS 0x20
#define RTL8139_PCI_REVID RTL8139_PCI_REVID_8139CPLUS
#pragma pack(push, 1)
typedef struct RTL8139TallyCounters {
/* Tally counters */
uint64_t TxOk;
uint64_t RxOk;
uint64_t TxERR;
uint32_t RxERR;
uint16_t MissPkt;
uint16_t FAE;
uint32_t Tx1Col;
uint32_t TxMCol;
uint64_t RxOkPhy;
uint64_t RxOkBrd;
uint32_t RxOkMul;
uint16_t TxAbt;
uint16_t TxUndrn;
} RTL8139TallyCounters;
#pragma pack(pop)
/* Clears all tally counters */
static void RTL8139TallyCounters_clear(RTL8139TallyCounters *counters);
struct RTL8139State {
/*< private >*/
uint8_t pci_slot;
uint8_t inst;
uint8_t irq_state;
uint8_t pad;
/*< public >*/
uint8_t phys[8]; /* mac address */
uint8_t mult[8]; /* multicast mask array */
uint8_t pci_conf[256];
uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
uint32_t TxAddr[4]; /* TxAddr0 */
uint32_t RxBuf; /* Receive buffer */
uint32_t RxBufferSize; /* internal variable, receive ring buffer size in C mode */
uint32_t RxBufPtr;
uint32_t RxBufAddr;
uint16_t IntrStatus;
uint16_t IntrMask;
uint32_t TxConfig;
uint32_t RxConfig;
uint32_t RxMissed;
uint16_t CSCR;
uint8_t Cfg9346;
uint8_t Config0;
uint8_t Config1;
uint8_t Config3;
uint8_t Config4;
uint8_t Config5;
uint8_t clock_enabled;
uint8_t bChipCmdState;
uint16_t MultiIntr;
uint16_t BasicModeCtrl;
uint16_t BasicModeStatus;
uint16_t NWayAdvert;
uint16_t NWayLPAR;
uint16_t NWayExpansion;
uint16_t CpCmd;
uint8_t TxThresh;
uint8_t pci_latency;
netcard_t *nic;
/* C ring mode */
uint32_t currTxDesc;
/* C+ mode */
uint32_t cplus_enabled;
uint32_t currCPlusRxDesc;
uint32_t currCPlusTxDesc;
uint32_t RxRingAddrLO;
uint32_t RxRingAddrHI;
uint32_t TCTR;
uint32_t TimerInt;
int64_t TCTR_base;
/* Tally counters */
RTL8139TallyCounters tally_counters;
/* Non-persistent data */
uint8_t *cplus_txbuffer;
int cplus_txbuffer_len;
int cplus_txbuffer_offset;
uint32_t mem_base;
/* PCI interrupt timer */
pc_timer_t timer;
mem_mapping_t bar_mem;
/* Support migration to/from old versions */
int rtl8139_mmio_io_addr_dummy;
nmc93cxx_eeprom_t *eeprom;
uint8_t eeprom_data[128];
};
/* Writes tally counters to memory via DMA */
static void RTL8139TallyCounters_dma_write(RTL8139State *s, uint32_t tc_addr);
static void
rtl8139_update_irq(RTL8139State *s)
{
uint8_t d = s->pci_slot;
int isr;
isr = (s->IntrStatus & s->IntrMask) & 0xffff;
rtl8139_log("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
s->IntrMask);
if (isr != 0)
pci_set_irq(d, PCI_INTA, &s->irq_state);
else
pci_clear_irq(d, PCI_INTA, &s->irq_state);
}
static int
rtl8139_RxWrap(RTL8139State *s)
{
/* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
return (s->RxConfig & (1 << 7));
}
static int
rtl8139_receiver_enabled(RTL8139State *s)
{
return s->bChipCmdState & CmdRxEnb;
}
static int
rtl8139_transmitter_enabled(RTL8139State *s)
{
return s->bChipCmdState & CmdTxEnb;
}
static int
rtl8139_cp_receiver_enabled(RTL8139State *s)
{
return s->CpCmd & CPlusRxEnb;
}
static int
rtl8139_cp_transmitter_enabled(RTL8139State *s)
{
return s->CpCmd & CPlusTxEnb;
}
static void
rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
{
if (s->RxBufAddr + size > s->RxBufferSize) {
int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
/* write packet data */
if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s))) {
rtl8139_log(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
if (size > wrapped) {
dma_bm_write(s->RxBuf + s->RxBufAddr,
buf, size - wrapped, 1);
}
/* reset buffer pointer */
s->RxBufAddr = 0;
dma_bm_write(s->RxBuf + s->RxBufAddr,
buf + (size - wrapped), wrapped, 1);
s->RxBufAddr = wrapped;
return;
}
}
/* non-wrapping path or overwrapping enabled */
dma_bm_write(s->RxBuf + s->RxBufAddr, buf, size, 1);
s->RxBufAddr += size;
}
static __inline uint32_t
rtl8139_addr64(uint32_t low, UNUSED(uint32_t high))
{
return low;
}
/* Workaround for buggy guest driver such as linux who allocates rx
* rings after the receiver were enabled. */
static bool
rtl8139_cp_rx_valid(RTL8139State *s)
{
return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
}
static bool
rtl8139_can_receive(RTL8139State *s)
{
int avail;
/* Receive (drop) packets if card is disabled. */
if (!s->clock_enabled) {
return true;
}
if (!rtl8139_receiver_enabled(s)) {
return true;
}
if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
/* ??? Flow control not implemented in c+ mode.
This is a hack to work around slirp deficiencies anyway. */
return true;
}
avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
s->RxBufferSize);
return avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow);
}
/* From FreeBSD */
/* XXX: optimize */
static uint32_t
net_crc32(const uint8_t *p, int len)
{
uint32_t crc;
int carry;
uint8_t b;
crc = 0xffffffff;
for (int i = 0; i < len; i++) {
b = *p++;
for (uint8_t j = 0; j < 8; j++) {
carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
crc <<= 1;
b >>= 1;
if (carry) {
crc = ((crc ^ 0x04c11db6) | carry);
}
}
}
return crc;
}
uint32_t
net_crc32_le(const uint8_t *p, int len)
{
uint32_t crc;
int carry;
uint8_t b;
crc = 0xffffffff;
for (int i = 0; i < len; i++) {
b = *p++;
for (uint8_t j = 0; j < 8; j++) {
carry = (crc & 0x1) ^ (b & 0x01);
crc >>= 1;
b >>= 1;
if (carry) {
crc ^= 0xedb88320;
}
}
}
return crc;
}
#define ETH_ALEN 6
static int
rtl8139_do_receive(void *priv, uint8_t *buf, int size_)
{
RTL8139State *s = (RTL8139State *) priv;
/* size is the length of the buffer passed to the driver */
size_t size = size_;
const uint8_t *dot1q_buf = NULL;
uint32_t packet_header = 0;
uint8_t buf1[60 + VLAN_HLEN];
static const uint8_t broadcast_macaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
rtl8139_log(">>> received len=%u\n", (uint32_t) size);
if (!rtl8139_can_receive(s))
return 0;
/* test if board clock is stopped */
if (!s->clock_enabled) {
rtl8139_log("stopped ==========================\n");
return -1;
}
/* first check if receiver is enabled */
if (!rtl8139_receiver_enabled(s)) {
rtl8139_log("receiver disabled ================\n");
return -1;
}
/* XXX: check this */
if (s->RxConfig & AcceptAllPhys) {
/* promiscuous: receive all */
rtl8139_log(">>> packet received in promiscuous mode\n");
} else {
if (!memcmp(buf, broadcast_macaddr, 6)) {
/* broadcast address */
if (!(s->RxConfig & AcceptBroadcast)) {
rtl8139_log(">>> broadcast packet rejected\n");
/* update tally counter */
++s->tally_counters.RxERR;
return size;
}
packet_header |= RxBroadcast;
rtl8139_log(">>> broadcast packet received\n");
/* update tally counter */
++s->tally_counters.RxOkBrd;
} else if (buf[0] & 0x01) {
/* multicast */
if (!(s->RxConfig & AcceptMulticast)) {
rtl8139_log(">>> multicast packet rejected\n");
/* update tally counter */
++s->tally_counters.RxERR;
return size;
}
int mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) {
rtl8139_log(">>> multicast address mismatch\n");
/* update tally counter */
++s->tally_counters.RxERR;
return size;
}
packet_header |= RxMulticast;
rtl8139_log(">>> multicast packet received\n");
/* update tally counter */
++s->tally_counters.RxOkMul;
} else if (s->phys[0] == buf[0] && s->phys[1] == buf[1] && s->phys[2] == buf[2] && s->phys[3] == buf[3] && s->phys[4] == buf[4] && s->phys[5] == buf[5]) {
/* match */
if (!(s->RxConfig & AcceptMyPhys)) {
rtl8139_log(">>> rejecting physical address matching packet\n");
/* update tally counter */
++s->tally_counters.RxERR;
return size;
}
packet_header |= RxPhysical;
rtl8139_log(">>> physical address matching packet received\n");
/* update tally counter */
++s->tally_counters.RxOkPhy;
} else {
rtl8139_log(">>> unknown packet\n");
/* update tally counter */
++s->tally_counters.RxERR;
return size;
}
}
if (size < 60 + VLAN_HLEN) {
memcpy(buf1, buf, size);
memset(buf1 + size, 0, 60 + VLAN_HLEN - size);
buf = buf1;
if (size < 60) {
size = 60;
}
}
if (rtl8139_cp_receiver_enabled(s)) {
if (!rtl8139_cp_rx_valid(s)) {
return size;
}
rtl8139_log("in C+ Rx mode ================\n");
/* begin C+ receiver mode */
/* w0 ownership flag */
#define CP_RX_OWN (1 << 31)
/* w0 end of ring flag */
#define CP_RX_EOR (1 << 30)
/* w0 bits 0...12 : buffer size */
#define CP_RX_BUFFER_SIZE_MASK ((1 << 13) - 1)
/* w1 tag available flag */
#define CP_RX_TAVA (1 << 16)
/* w1 bits 0...15 : VLAN tag */
#define CP_RX_VLAN_TAG_MASK ((1 << 16) - 1)
/* w2 low 32bit of Rx buffer ptr */
/* w3 high 32bit of Rx buffer ptr */
int descriptor = s->currCPlusRxDesc;
uint32_t cplus_rx_ring_desc;
cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
cplus_rx_ring_desc += 16 * descriptor;
rtl8139_log("+++ C+ mode reading RX descriptor %d from host memory at "
"%08x %08x = "
"0x%8X"
"\n",
descriptor, s->RxRingAddrHI,
s->RxRingAddrLO, cplus_rx_ring_desc);
uint32_t val;
uint32_t rxdw0;
uint32_t rxdw1;
uint32_t rxbufLO;
uint32_t rxbufHI;
dma_bm_read(cplus_rx_ring_desc, (uint8_t *) &val, 4, 4);
rxdw0 = val;
dma_bm_read(cplus_rx_ring_desc + 4, (uint8_t *) &val, 4, 4);
rxdw1 = val;
dma_bm_read(cplus_rx_ring_desc + 8, (uint8_t *) &val, 4, 4);
rxbufLO = val;
dma_bm_read(cplus_rx_ring_desc + 12, (uint8_t *) &val, 4, 4);
rxbufHI = val;
rtl8139_log("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
if (!(rxdw0 & CP_RX_OWN)) {
rtl8139_log("C+ Rx mode : descriptor %d is owned by host\n",
descriptor);
s->IntrStatus |= RxOverflow;
++s->RxMissed;
/* update tally counter */
++s->tally_counters.RxERR;
++s->tally_counters.MissPkt;
rtl8139_update_irq(s);
return size_;
}
uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
/* write VLAN info to descriptor variables. */
if (s->CpCmd & CPlusRxVLAN && bswap16(*((uint16_t *) &buf[ETH_ALEN * 2])) == 0x8100) {
dot1q_buf = &buf[ETH_ALEN * 2];
size -= VLAN_HLEN;
/* if too small buffer, use the tailroom added duing expansion */
if (size < 60) {
size = 60;
}
rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
/* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
rxdw1 |= CP_RX_TAVA | *((uint16_t *) (&dot1q_buf[ETHER_TYPE_LEN]));
rtl8139_log("C+ Rx mode : extracted vlan tag with tci: "
"%u\n",
bswap16(*((uint16_t *) &dot1q_buf[ETHER_TYPE_LEN])));
} else {
/* reset VLAN tag flag */
rxdw1 &= ~CP_RX_TAVA;
}
/* TODO: scatter the packet over available receive ring descriptors space */
if (size + 4 > rx_space) {
rtl8139_log("C+ Rx mode : descriptor %d size %d received %u + 4\n",
descriptor, rx_space, (uint32_t) size);
s->IntrStatus |= RxOverflow;
++s->RxMissed;
/* update tally counter */
++s->tally_counters.RxERR;
++s->tally_counters.MissPkt;
rtl8139_update_irq(s);
return size_;
}
uint32_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
/* receive/copy to target memory */
if (dot1q_buf) {
dma_bm_write(rx_addr, buf, 2 * ETH_ALEN, 1);
dma_bm_write(rx_addr + 2 * ETH_ALEN,
buf + 2 * ETH_ALEN + VLAN_HLEN,
size - 2 * ETH_ALEN, 1);
} else {
dma_bm_write(rx_addr, buf, size, 1);
}
if (s->CpCmd & CPlusRxChkSum) {
/* do some packet checksumming */
}
/* write checksum */
val = (net_crc32_le(buf, size_));
dma_bm_write(rx_addr + size, (uint8_t *) &val, 4, 4);
/* first segment of received packet flag */
#define CP_RX_STATUS_FS (1 << 29)
/* last segment of received packet flag */
#define CP_RX_STATUS_LS (1 << 28)
/* multicast packet flag */
#define CP_RX_STATUS_MAR (1 << 26)
/* physical-matching packet flag */
#define CP_RX_STATUS_PAM (1 << 25)
/* broadcast packet flag */
#define CP_RX_STATUS_BAR (1 << 24)
/* runt packet flag */
#define CP_RX_STATUS_RUNT (1 << 19)
/* crc error flag */
#define CP_RX_STATUS_CRC (1 << 18)
/* IP checksum error flag */
#define CP_RX_STATUS_IPF (1 << 15)
/* UDP checksum error flag */
#define CP_RX_STATUS_UDPF (1 << 14)
/* TCP checksum error flag */
#define CP_RX_STATUS_TCPF (1 << 13)
/* transfer ownership to target */
rxdw0 &= ~CP_RX_OWN;
/* set first segment bit */
rxdw0 |= CP_RX_STATUS_FS;
/* set last segment bit */
rxdw0 |= CP_RX_STATUS_LS;
/* set received packet type flags */
if (packet_header & RxBroadcast)
rxdw0 |= CP_RX_STATUS_BAR;
if (packet_header & RxMulticast)
rxdw0 |= CP_RX_STATUS_MAR;
if (packet_header & RxPhysical)
rxdw0 |= CP_RX_STATUS_PAM;
/* set received size */
rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
rxdw0 |= (size + 4);
/* update ring data */
val = rxdw0;
dma_bm_write(cplus_rx_ring_desc, (uint8_t *) &val, 4, 4);
val = rxdw1;
dma_bm_write(cplus_rx_ring_desc + 4, (uint8_t *) &val, 4, 4);
/* update tally counter */
++s->tally_counters.RxOk;
/* seek to next Rx descriptor */
if (rxdw0 & CP_RX_EOR) {
s->currCPlusRxDesc = 0;
} else {
++s->currCPlusRxDesc;
}
rtl8139_log("done C+ Rx mode ----------------\n");
} else {
rtl8139_log("in ring Rx mode ================\n");
/* begin ring receiver mode */
int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
/* if receiver buffer is empty then avail == 0 */
#define RX_ALIGN(x) (((x) + 3) & ~0x3)
if (avail != 0 && RX_ALIGN(size + 8) >= avail) {
rtl8139_log("rx overflow: rx buffer length %d head 0x%04x "
"read 0x%04x === available 0x%04x need 0x%04zx\n",
s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
s->IntrStatus |= RxOverflow;
++s->RxMissed;
rtl8139_update_irq(s);
return 0;
}
packet_header |= RxStatusOK;
packet_header |= (((size + 4) << 16) & 0xffff0000);
/* write header */
uint32_t val = packet_header;
rtl8139_write_buffer(s, (uint8_t *) &val, 4);
rtl8139_write_buffer(s, buf, size);
/* write checksum */
val = (net_crc32_le(buf, size));
rtl8139_write_buffer(s, (uint8_t *) &val, 4);
/* correct buffer write pointer */
s->RxBufAddr = MOD2(RX_ALIGN(s->RxBufAddr), s->RxBufferSize);
/* now we can signal we have received something */
rtl8139_log("received: rx buffer length %d head 0x%04x read 0x%04x\n",
s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
}
s->IntrStatus |= RxOK;
{
rtl8139_update_irq(s);
}
return size_;
}
static void
rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
{
s->RxBufferSize = bufferSize;
s->RxBufPtr = 0;
s->RxBufAddr = 0;
}
static void
rtl8139_reset_phy(RTL8139State *s)
{
s->BasicModeStatus = 0x7809;
s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
/* preserve link state */
s->BasicModeStatus |= (net_cards_conf[s->nic->card_num].link_state & NET_LINK_DOWN) ? 0 : 0x04;
s->NWayAdvert = 0x05e1; /* all modes, full duplex */
s->NWayLPAR = 0x05e1; /* all modes, full duplex */
s->NWayExpansion = 0x0001; /* autonegotiation supported */
s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
}
static void
rtl8139_reset(void *priv)
{
RTL8139State *s = (RTL8139State *) priv;
/* reset interrupt mask */
s->IntrStatus = 0;
s->IntrMask = 0;
rtl8139_update_irq(s);
/* mark all status registers as owned by host */
for (uint8_t i = 0; i < 4; ++i) {
s->TxStatus[i] = TxHostOwns;
}
s->currTxDesc = 0;
s->currCPlusRxDesc = 0;
s->currCPlusTxDesc = 0;
s->RxRingAddrLO = 0;
s->RxRingAddrHI = 0;
s->RxBuf = 0;
rtl8139_reset_rxring(s, 8192);
/* ACK the reset */
s->TxConfig = 0;
#if 0
// s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139 HasHltClk
s->clock_enabled = 0;
#else
s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
s->clock_enabled = 1;
#endif
s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */
/* set initial state data */
s->Config0 = 0x0; /* No boot ROM */
s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
s->Config3 = 0x1; /* fast back-to-back compatible */
s->Config5 = 0x0;
s->CpCmd = 0x0; /* reset C+ mode */
s->cplus_enabled = 0;
#if 0
s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
#endif
s->BasicModeCtrl = 0x1000; // autonegotiation
rtl8139_reset_phy(s);
/* also reset timer and disable timer interrupt */
s->TCTR = 0;
s->TimerInt = 0;
s->TCTR_base = 0;
#if 0
rtl8139_set_next_tctr_time(s);
#endif
/* reset tally counters */
RTL8139TallyCounters_clear(&s->tally_counters);
}
static void
RTL8139TallyCounters_clear(RTL8139TallyCounters *counters)
{
counters->TxOk = 0;
counters->RxOk = 0;
counters->TxERR = 0;
counters->RxERR = 0;
counters->MissPkt = 0;
counters->FAE = 0;
counters->Tx1Col = 0;
counters->TxMCol = 0;
counters->RxOkPhy = 0;
counters->RxOkBrd = 0;
counters->RxOkMul = 0;
counters->TxAbt = 0;
counters->TxUndrn = 0;
}
static void
RTL8139TallyCounters_dma_write(RTL8139State *s, uint32_t tc_addr)
{
RTL8139TallyCounters *tally_counters = &s->tally_counters;
dma_bm_write(tc_addr, (uint8_t *) tally_counters, sizeof(RTL8139TallyCounters), 1);
}
static void
rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
{
val &= 0xff;
rtl8139_log("ChipCmd write val=0x%08x\n", val);
if (val & CmdReset) {
rtl8139_log("ChipCmd reset\n");
rtl8139_reset(s);
}
if (val & CmdRxEnb) {
rtl8139_log("ChipCmd enable receiver\n");
s->currCPlusRxDesc = 0;
}
if (val & CmdTxEnb) {
rtl8139_log("ChipCmd enable transmitter\n");
s->currCPlusTxDesc = 0;
}
/* mask unwritable bits */
val = SET_MASKED(val, 0xe3, s->bChipCmdState);
/* Deassert reset pin before next read */
val &= ~CmdReset;
s->bChipCmdState = val;
}
static int
rtl8139_RxBufferEmpty(RTL8139State *s)
{
int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
if (unread != 0) {
rtl8139_log("receiver buffer data available 0x%04x\n", unread);
return 0;
}
rtl8139_log("receiver buffer is empty\n");
return 1;
}
static uint32_t
rtl8139_ChipCmd_read(RTL8139State *s)
{
uint32_t ret = s->bChipCmdState;
if (rtl8139_RxBufferEmpty(s))
ret |= RxBufEmpty;
rtl8139_log("ChipCmd read val=0x%04x\n", ret);
return ret;
}
static void
rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
{
val &= 0xffff;
rtl8139_log("C+ command register write(w) val=0x%04x\n", val);
s->cplus_enabled = 1;
/* mask unwritable bits */
val = SET_MASKED(val, 0xff84, s->CpCmd);
s->CpCmd = val;
}
static uint32_t
rtl8139_CpCmd_read(RTL8139State *s)
{
uint32_t ret = s->CpCmd;
rtl8139_log("C+ command register read(w) val=0x%04x\n", ret);
return ret;
}
static void
rtl8139_IntrMitigate_write(UNUSED(RTL8139State *s), uint32_t val)
{
rtl8139_log("C+ IntrMitigate register write(w) val=0x%04x\n", val);
}
static uint32_t
rtl8139_IntrMitigate_read(UNUSED(RTL8139State *s))
{
uint32_t ret = 0;
rtl8139_log("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
return ret;
}
static int
rtl8139_config_writable(RTL8139State *s)
{
if ((s->Cfg9346 & 0xc0) == 0xc0)
return 1;
rtl8139_log("Configuration registers are write-protected\n");
return 0;
}
static void
rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
{
val &= 0xffff;
rtl8139_log("BasicModeCtrl register write(w) val=0x%04x\n", val);
/* mask unwritable bits */
uint32_t mask = 0xccff;
if (1 || !rtl8139_config_writable(s)) {
/* Speed setting and autonegotiation enable bits are read-only */
mask |= 0x3000;
/* Duplex mode setting is read-only */
mask |= 0x0100;
}
if (val & 0x8000) {
/* Reset PHY */
rtl8139_reset_phy(s);
}
val = SET_MASKED(val, mask, s->BasicModeCtrl);
s->BasicModeCtrl = val;
}
static uint32_t
rtl8139_BasicModeCtrl_read(RTL8139State *s)
{
uint32_t ret = s->BasicModeCtrl;
rtl8139_log("BasicModeCtrl register read(w) val=0x%04x\n", ret);
return ret;
}
static void
rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
{
val &= 0xffff;
rtl8139_log("BasicModeStatus register write(w) val=0x%04x\n", val);
/* mask unwritable bits */
val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
s->BasicModeStatus = val;
}
static uint32_t
rtl8139_BasicModeStatus_read(RTL8139State *s)
{
uint32_t ret = s->BasicModeStatus;
rtl8139_log("BasicModeStatus register read(w) val=0x%04x\n", ret);
return ret;
}
static void
rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
{
val &= 0xff;
rtl8139_log("Cfg9346 write val=0x%02x\n", val);
/* mask unwritable bits */
val = SET_MASKED(val, 0x31, s->Cfg9346);
uint32_t opmode = val & 0xc0;
uint32_t eeprom_val = val & 0xf;
if (opmode == 0x80) {
/* eeprom access */
nmc93cxx_eeprom_write(s->eeprom,
!!(eeprom_val & 0x08),
!!(eeprom_val & 0x04),
!!(eeprom_val & 0x02));
} else if (opmode == 0x40) {
/* Reset. */
val = 0;
rtl8139_reset(s);
}
s->Cfg9346 = val;
}
static uint32_t
rtl8139_Cfg9346_read(RTL8139State *s)
{
uint32_t ret = s->Cfg9346;
uint32_t opmode = ret & 0xc0;
if (opmode == 0x80) {
if (nmc93cxx_eeprom_read(s->eeprom))
ret |= 0x01;
else
ret &= ~0x01;
}
rtl8139_log("Cfg9346 read val=0x%02x\n", ret);
return ret;
}
static void
rtl8139_Config0_write(RTL8139State *s, uint32_t val)
{
val &= 0xff;
rtl8139_log("Config0 write val=0x%02x\n", val);
if (!rtl8139_config_writable(s)) {
return;
}
/* mask unwritable bits */
val = SET_MASKED(val, 0xf8, s->Config0);
s->Config0 = val;
}
static uint32_t
rtl8139_Config0_read(RTL8139State *s)
{
uint32_t ret = s->Config0;
rtl8139_log("Config0 read val=0x%02x\n", ret);
return ret;
}
static void
rtl8139_Config1_write(RTL8139State *s, uint32_t val)
{
val &= 0xff;
rtl8139_log("Config1 write val=0x%02x\n", val);
if (!rtl8139_config_writable(s)) {
return;
}
/* mask unwritable bits */
val = SET_MASKED(val, 0xC, s->Config1);
s->Config1 = val;
}
static uint32_t
rtl8139_Config1_read(RTL8139State *s)
{
uint32_t ret = s->Config1;
rtl8139_log("Config1 read val=0x%02x\n", ret);
return ret;
}
static void
rtl8139_Config3_write(RTL8139State *s, uint32_t val)
{
val &= 0xff;
rtl8139_log("Config3 write val=0x%02x\n", val);
if (!rtl8139_config_writable(s)) {
return;
}
/* mask unwritable bits */
val = SET_MASKED(val, 0x8F, s->Config3);
s->Config3 = val;
}
static uint32_t
rtl8139_Config3_read(RTL8139State *s)
{
uint32_t ret = s->Config3;
rtl8139_log("Config3 read val=0x%02x\n", ret);
return ret;
}
static void
rtl8139_Config4_write(RTL8139State *s, uint32_t val)
{
val &= 0xff;
rtl8139_log("Config4 write val=0x%02x\n", val);
if (!rtl8139_config_writable(s)) {
return;
}
/* mask unwritable bits */
val = SET_MASKED(val, 0x0a, s->Config4);
s->Config4 = val;
}
static uint32_t
rtl8139_Config4_read(RTL8139State *s)
{
uint32_t ret = s->Config4;
rtl8139_log("Config4 read val=0x%02x\n", ret);
return ret;
}
static void
rtl8139_Config5_write(RTL8139State *s, uint32_t val)
{
val &= 0xff;
rtl8139_log("Config5 write val=0x%02x\n", val);
/* mask unwritable bits */
val = SET_MASKED(val, 0x80, s->Config5);
s->Config5 = val;
}
static uint32_t
rtl8139_Config5_read(RTL8139State *s)
{
uint32_t ret = s->Config5;
rtl8139_log("Config5 read val=0x%02x\n", ret);
return ret;
}
static void
rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
{
if (!rtl8139_transmitter_enabled(s)) {
rtl8139_log("transmitter disabled; no TxConfig write val=0x%08x\n", val);
return;
}
rtl8139_log("TxConfig write val=0x%08x\n", val);
val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
s->TxConfig = val;
}
static void
rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
{
rtl8139_log("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
uint32_t tc = s->TxConfig;
tc &= 0xFFFFFF00;
tc |= (val & 0x000000FF);
rtl8139_TxConfig_write(s, tc);
}
static uint32_t
rtl8139_TxConfig_read(RTL8139State *s)
{
uint32_t ret = s->TxConfig;
rtl8139_log("TxConfig read val=0x%04x\n", ret);
return ret;
}
static void
rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
{
rtl8139_log("RxConfig write val=0x%08x\n", val);
/* mask unwritable bits */
val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
s->RxConfig = val;
/* reset buffer size and read/write pointers */
rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
rtl8139_log("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
}
static uint32_t
rtl8139_RxConfig_read(RTL8139State *s)
{
uint32_t ret = s->RxConfig;
rtl8139_log("RxConfig read val=0x%08x\n", ret);
return ret;
}
void
rtl8139_network_rx_put(netcard_t *card, uint8_t *bufp, int len)
{
(void) network_rx_put(card, bufp, len);
}
static void
rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
UNUSED(int do_interrupt), const uint8_t *dot1q_buf)
{
void (*network_func)(netcard_t *, uint8_t *, int) = (TxLoopBack == (s->TxConfig & TxLoopBack)) ? rtl8139_network_rx_put : network_tx;
if (!size) {
rtl8139_log("+++ empty ethernet frame\n");
return;
}
if (dot1q_buf && size >= ETH_ALEN * 2) {
network_func(s->nic, buf, ETH_ALEN * 2);
network_func(s->nic, (uint8_t *) dot1q_buf, VLAN_HLEN);
network_func(s->nic, buf + ETH_ALEN * 2, size - ETH_ALEN * 2);
return;
}
network_func(s->nic, buf, size);
return;
}
static int
rtl8139_transmit_one(RTL8139State *s, int descriptor)
{
int txsize = s->TxStatus[descriptor] & 0x1fff;
uint8_t txbuffer[0x2000];
if (!rtl8139_transmitter_enabled(s)) {
rtl8139_log("+++ cannot transmit from descriptor %d: transmitter "
"disabled\n", descriptor);
return 0;
}
if (s->TxStatus[descriptor] & TxHostOwns) {
rtl8139_log("+++ cannot transmit from descriptor %d: owned by host "
"(%08x)\n", descriptor, s->TxStatus[descriptor]);
return 0;
}
rtl8139_log("+++ transmitting from descriptor %d\n", descriptor);
rtl8139_log("+++ transmit reading %d bytes from host memory at 0x%08x\n",
txsize, s->TxAddr[descriptor]);
dma_bm_read(s->TxAddr[descriptor], txbuffer, txsize, 1);
/* Mark descriptor as transferred */
s->TxStatus[descriptor] |= TxHostOwns;
s->TxStatus[descriptor] |= TxStatOK;
rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
rtl8139_log("+++ transmitted %d bytes from descriptor %d\n", txsize,
descriptor);
/* update interrupt */
s->IntrStatus |= TxOK;
rtl8139_update_irq(s);
return 1;
}
#define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
/* produces ones' complement sum of data */
static uint16_t
ones_complement_sum(uint8_t *data, size_t len)
{
uint32_t result = 0;
for (; len > 1; data += 2, len -= 2) {
result += *(uint16_t *) data;
}
/* add the remainder byte */
if (len) {
uint8_t odd[2] = { *data, 0 };
result += *(uint16_t *) odd;
}
while (result >> 16)
result = (result & 0xffff) + (result >> 16);
return result;
}
static uint16_t
ip_checksum(void *data, size_t len)
{
return ~ones_complement_sum((uint8_t *) data, len);
}
/* TODO: Replace these with equivalents in 86Box if applicable. */
struct ip_header {
uint8_t ip_ver_len; /* version and header length */
uint8_t ip_tos; /* type of service */
uint16_t ip_len; /* total length */
uint16_t ip_id; /* identification */
uint16_t ip_off; /* fragment offset field */
uint8_t ip_ttl; /* time to live */
uint8_t ip_p; /* protocol */
uint16_t ip_sum; /* checksum */
uint32_t ip_src, ip_dst; /* source and destination address */
};
typedef struct tcp_header {
uint16_t th_sport; /* source port */
uint16_t th_dport; /* destination port */
uint32_t th_seq; /* sequence number */
uint32_t th_ack; /* acknowledgment number */
uint16_t th_offset_flags; /* data offset, reserved 6 bits, */
/* TCP protocol flags */
uint16_t th_win; /* window */
uint16_t th_sum; /* checksum */
uint16_t th_urp; /* urgent pointer */
} tcp_header;
typedef struct ip_pseudo_header {
uint32_t ip_src;
uint32_t ip_dst;
uint8_t zeros;
uint8_t ip_proto;
uint16_t ip_payload;
} ip_pseudo_header;
typedef struct udp_header {
uint16_t uh_sport; /* source port */
uint16_t uh_dport; /* destination port */
uint16_t uh_ulen; /* udp length */
uint16_t uh_sum; /* udp checksum */
} udp_header;
#define ETH_HLEN 14
#define ETH_P_IP (0x0800)
#define IP_PROTO_TCP (6)
#define IP_PROTO_UDP (17)
#define IP_HEADER_VERSION_4 (4)
#define TH_PUSH 0x08
#define TH_FIN 0x01
#define IP_HDR_GET_LEN(p) \
((*(uint8_t *) ((p + __builtin_offsetof(struct ip_header, ip_ver_len))) & 0x0F) << 2)
#define IP_HEADER_VERSION(ip) \
(((ip)->ip_ver_len >> 4) & 0xf)
#define TCP_HEADER_DATA_OFFSET(tcp) \
(((be16_to_cpu((tcp)->th_offset_flags) >> 12) & 0xf) << 2)
static int
rtl8139_cplus_transmit_one(RTL8139State *s)
{
if (!rtl8139_transmitter_enabled(s)) {
rtl8139_log("+++ C+ mode: transmitter disabled\n");
return 0;
}
if (!rtl8139_cp_transmitter_enabled(s)) {
rtl8139_log("+++ C+ mode: C+ transmitter disabled\n");
return 0;
}
int descriptor = s->currCPlusTxDesc;
uint32_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
/* Normal priority ring */
cplus_tx_ring_desc += 16 * descriptor;
rtl8139_log("+++ C+ mode reading TX descriptor %d from host memory at "
"%08x %08x = 0x%08X\n", descriptor, s->TxAddr[1],
s->TxAddr[0], cplus_tx_ring_desc);
uint32_t val;
uint32_t txdw0;
uint32_t txdw1;
uint32_t txbufLO;
uint32_t txbufHI;
dma_bm_read(cplus_tx_ring_desc, (uint8_t *) &val, 4, 4);
txdw0 = le32_to_cpu(val);
dma_bm_read(cplus_tx_ring_desc + 4, (uint8_t *) &val, 4, 4);
txdw1 = le32_to_cpu(val);
dma_bm_read(cplus_tx_ring_desc + 8, (uint8_t *) &val, 4, 4);
txbufLO = le32_to_cpu(val);
dma_bm_read(cplus_tx_ring_desc + 12, (uint8_t *) &val, 4, 4);
txbufHI = le32_to_cpu(val);
rtl8139_log("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
txdw0, txdw1, txbufLO, txbufHI);
/* w0 ownership flag */
#define CP_TX_OWN (1 << 31)
/* w0 end of ring flag */
#define CP_TX_EOR (1 << 30)
/* first segment of received packet flag */
#define CP_TX_FS (1 << 29)
/* last segment of received packet flag */
#define CP_TX_LS (1 << 28)
/* large send packet flag */
#define CP_TX_LGSEN (1 << 27)
/* large send MSS mask, bits 16...26 */
#define CP_TC_LGSEN_MSS_SHIFT 16
#define CP_TC_LGSEN_MSS_MASK ((1 << 11) - 1)
/* IP checksum offload flag */
#define CP_TX_IPCS (1 << 18)
/* UDP checksum offload flag */
#define CP_TX_UDPCS (1 << 17)
/* TCP checksum offload flag */
#define CP_TX_TCPCS (1 << 16)
/* w0 bits 0...15 : buffer size */
#define CP_TX_BUFFER_SIZE (1 << 16)
#define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
/* w1 add tag flag */
#define CP_TX_TAGC (1 << 17)
/* w1 bits 0...15 : VLAN tag (big endian) */
#define CP_TX_VLAN_TAG_MASK ((1 << 16) - 1)
/* w2 low 32bit of Rx buffer ptr */
/* w3 high 32bit of Rx buffer ptr */
/* set after transmission */
/* FIFO underrun flag */
#define CP_TX_STATUS_UNF (1 << 25)
/* transmit error summary flag, valid if set any of three below */
#define CP_TX_STATUS_TES (1 << 23)
/* out-of-window collision flag */
#define CP_TX_STATUS_OWC (1 << 22)
/* link failure flag */
#define CP_TX_STATUS_LNKF (1 << 21)
/* excessive collisions flag */
#define CP_TX_STATUS_EXC (1 << 20)
if (!(txdw0 & CP_TX_OWN)) {
rtl8139_log("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
return 0;
}
rtl8139_log("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
if (txdw0 & CP_TX_FS) {
rtl8139_log("+++ C+ Tx mode : descriptor %d is first segment "
"descriptor\n", descriptor);
/* reset internal buffer offset */
s->cplus_txbuffer_offset = 0;
}
int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
uint32_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
/* make sure we have enough space to assemble the packet */
if (!s->cplus_txbuffer) {
s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
s->cplus_txbuffer = calloc(s->cplus_txbuffer_len, 1);
s->cplus_txbuffer_offset = 0;
rtl8139_log("+++ C+ mode transmission buffer allocated space %d\n",
s->cplus_txbuffer_len);
}
if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len) {
/* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
rtl8139_log("+++ C+ mode transmission buffer overrun, truncated descriptor"
"length to %d\n", txsize);
}
/* append more data to the packet */
rtl8139_log("+++ C+ mode transmit reading %d bytes from host memory at "
"%08X to offset %d\n", txsize, tx_addr, s->cplus_txbuffer_offset);
dma_bm_read(tx_addr,
s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize, 1);
s->cplus_txbuffer_offset += txsize;
/* seek to next Rx descriptor */
if (txdw0 & CP_TX_EOR) {
s->currCPlusTxDesc = 0;
} else {
++s->currCPlusTxDesc;
if (s->currCPlusTxDesc >= 64)
s->currCPlusTxDesc = 0;
}
/* Build the Tx Status Descriptor */
uint32_t tx_status = txdw0;
/* transfer ownership to target */
tx_status &= ~CP_TX_OWN;
/* reset error indicator bits */
tx_status &= ~CP_TX_STATUS_UNF;
tx_status &= ~CP_TX_STATUS_TES;
tx_status &= ~CP_TX_STATUS_OWC;
tx_status &= ~CP_TX_STATUS_LNKF;
tx_status &= ~CP_TX_STATUS_EXC;
/* update ring data */
val = cpu_to_le32(tx_status);
dma_bm_write(cplus_tx_ring_desc, (uint8_t *) &val, 4, 4);
/* Now decide if descriptor being processed is holding the last segment of packet */
if (txdw0 & CP_TX_LS) {
uint8_t dot1q_buffer_space[VLAN_HLEN];
uint16_t *dot1q_buffer;
rtl8139_log("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
descriptor);
/* can transfer fully assembled packet */
uint8_t *saved_buffer = s->cplus_txbuffer;
int saved_size = s->cplus_txbuffer_offset;
int saved_buffer_len = s->cplus_txbuffer_len;
/* create vlan tag */
if (txdw1 & CP_TX_TAGC) {
/* the vlan tag is in BE byte order in the descriptor
* BE + le_to_cpu() + ~swap()~ = cpu */
rtl8139_log("+++ C+ Tx mode : inserting vlan tag with "
"tci: %u\n", bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
dot1q_buffer = (uint16_t *) dot1q_buffer_space;
dot1q_buffer[0] = cpu_to_be16(0x8100);
/* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
} else {
dot1q_buffer = NULL;
}
/* reset the card space to protect from recursive call */
s->cplus_txbuffer = NULL;
s->cplus_txbuffer_offset = 0;
s->cplus_txbuffer_len = 0;
if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN)) {
rtl8139_log("+++ C+ mode offloaded task checksum\n");
/* Large enough for Ethernet and IP headers? */
if (saved_size < ETH_HLEN + sizeof(struct ip_header)) {
goto skip_offload;
}
/* ip packet header */
struct ip_header *ip = NULL;
int hlen = 0;
uint8_t ip_protocol = 0;
uint16_t ip_data_len = 0;
uint8_t *eth_payload_data = NULL;
size_t eth_payload_len = 0;
int proto = be16_to_cpu(*(uint16_t *) (saved_buffer + 12));
if (proto != ETH_P_IP) {
goto skip_offload;
}
rtl8139_log("+++ C+ mode has IP packet\n");
/* Note on memory alignment: eth_payload_data is 16-bit aligned
* since saved_buffer is allocated with g_malloc() and ETH_HLEN is
* even. 32-bit accesses must use ldl/stl wrappers to avoid
* unaligned accesses.
*/
eth_payload_data = saved_buffer + ETH_HLEN;
eth_payload_len = saved_size - ETH_HLEN;
ip = (struct ip_header *) eth_payload_data;
if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
rtl8139_log("+++ C+ mode packet has bad IP version %d "
"expected %d\n", IP_HEADER_VERSION(ip),
IP_HEADER_VERSION_4);
goto skip_offload;
}
hlen = IP_HDR_GET_LEN(ip);
if (hlen < sizeof(struct ip_header) || hlen > eth_payload_len) {
goto skip_offload;
}
ip_protocol = ip->ip_p;
ip_data_len = be16_to_cpu(ip->ip_len);
if (ip_data_len < hlen || ip_data_len > eth_payload_len) {
goto skip_offload;
}
ip_data_len -= hlen;
if (!(txdw0 & CP_TX_LGSEN) && (txdw0 & CP_TX_IPCS)) {
rtl8139_log("+++ C+ mode need IP checksum\n");
ip->ip_sum = 0;
ip->ip_sum = ip_checksum(ip, hlen);
rtl8139_log("+++ C+ mode IP header len=%d checksum=%04x\n",
hlen, ip->ip_sum);
}
if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP) {
/* Large enough for the TCP header? */
if (ip_data_len < sizeof(tcp_header)) {
goto skip_offload;
}
int large_send_mss = (txdw0 >> CP_TC_LGSEN_MSS_SHIFT) & CP_TC_LGSEN_MSS_MASK;
if (large_send_mss == 0) {
goto skip_offload;
}
rtl8139_log("+++ C+ mode offloaded task TSO IP data %d "
"frame data %d specified MSS=%d\n",
ip_data_len, saved_size - ETH_HLEN, large_send_mss);
/* maximum IP header length is 60 bytes */
uint8_t saved_ip_header[60];
/* save IP header template; data area is used in tcp checksum calculation */
memcpy(saved_ip_header, eth_payload_data, hlen);
/* a placeholder for checksum calculation routine in tcp case */
uint8_t *data_to_checksum = eth_payload_data + hlen - 12;
#if 0
size_t data_to_checksum_len = eth_payload_len - hlen + 12;
#endif
/* pointer to TCP header */
tcp_header *p_tcp_hdr = (tcp_header *) (eth_payload_data + hlen);
int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
/* Invalid TCP data offset? */
if (tcp_hlen < sizeof(tcp_header) || tcp_hlen > ip_data_len) {
goto skip_offload;
}
int tcp_data_len = ip_data_len - tcp_hlen;
rtl8139_log("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
"data len %d\n", ip_data_len, tcp_hlen, tcp_data_len);
/* note the cycle below overwrites IP header data,
but restores it from saved_ip_header before sending packet */
int is_last_frame = 0;
for (int tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += large_send_mss) {
uint16_t chunk_size = large_send_mss;
/* check if this is the last frame */
if (tcp_send_offset + large_send_mss >= tcp_data_len) {
is_last_frame = 1;
chunk_size = tcp_data_len - tcp_send_offset;
}
#if 0
rtl8139_log("+++ C+ mode TSO TCP seqno %08x\n",
ldl_be_p(&p_tcp_hdr->th_seq));
#endif
/* add 4 TCP pseudoheader fields */
/* copy IP source and destination fields */
memcpy(data_to_checksum, saved_ip_header + 12, 8);
rtl8139_log("+++ C+ mode TSO calculating TCP checksum for "
"packet with %d bytes data\n", tcp_hlen + chunk_size);
if (tcp_send_offset) {
memcpy((uint8_t *) p_tcp_hdr + tcp_hlen, (uint8_t *) p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
}
#define TCP_FLAGS_ONLY(flags) ((flags) &0x3f)
#define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
/* keep PUSH and FIN flags only for the last frame */
if (!is_last_frame) {
TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TH_PUSH | TH_FIN);
}
/* recalculate TCP checksum */
ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *) data_to_checksum;
p_tcpip_hdr->zeros = 0;
p_tcpip_hdr->ip_proto = IP_PROTO_TCP;
p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
p_tcp_hdr->th_sum = 0;
int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
rtl8139_log("+++ C+ mode TSO TCP checksum %04x\n", tcp_checksum);
p_tcp_hdr->th_sum = tcp_checksum;
/* restore IP header */
memcpy(eth_payload_data, saved_ip_header, hlen);
/* set IP data length and recalculate IP checksum */
ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
/* increment IP id for subsequent frames */
ip->ip_id = cpu_to_be16(tcp_send_offset / large_send_mss + be16_to_cpu(ip->ip_id));
ip->ip_sum = 0;
ip->ip_sum = ip_checksum(eth_payload_data, hlen);
rtl8139_log("+++ C+ mode TSO IP header len=%d checksum=%04x\n",
hlen, ip->ip_sum);
int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
rtl8139_log("+++ C+ mode TSO transferring packet size %d\n",
tso_send_size);
rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
0, (uint8_t *) dot1q_buffer);
/* add transferred count to TCP sequence number */
#if 0
stl_be_p(&p_tcp_hdr->th_seq,
chunk_size + ldl_be_p(&p_tcp_hdr->th_seq));
#endif
p_tcp_hdr->th_seq = bswap32(chunk_size + bswap32(p_tcp_hdr->th_seq));
}
/* Stop sending this frame */
saved_size = 0;
} else if (!(txdw0 & CP_TX_LGSEN) && (txdw0 & (CP_TX_TCPCS | CP_TX_UDPCS))) {
rtl8139_log("+++ C+ mode need TCP or UDP checksum\n");
/* maximum IP header length is 60 bytes */
uint8_t saved_ip_header[60];
memcpy(saved_ip_header, eth_payload_data, hlen);
uint8_t *data_to_checksum = eth_payload_data + hlen - 12;
#if 0
size_t data_to_checksum_len = eth_payload_len - hlen + 12;
#endif
/* add 4 TCP pseudoheader fields */
/* copy IP source and destination fields */
memcpy(data_to_checksum, saved_ip_header + 12, 8);
if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP) {
rtl8139_log("+++ C+ mode calculating TCP checksum for "
"packet with %d bytes data\n", ip_data_len);
ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *) data_to_checksum;
p_tcpip_hdr->zeros = 0;
p_tcpip_hdr->ip_proto = IP_PROTO_TCP;
p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
tcp_header *p_tcp_hdr = (tcp_header *) (data_to_checksum + 12);
p_tcp_hdr->th_sum = 0;
int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
rtl8139_log("+++ C+ mode TCP checksum %04x\n", tcp_checksum);
p_tcp_hdr->th_sum = tcp_checksum;
} else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP) {
rtl8139_log("+++ C+ mode calculating UDP checksum for "
"packet with %d bytes data\n", ip_data_len);
ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *) data_to_checksum;
p_udpip_hdr->zeros = 0;
p_udpip_hdr->ip_proto = IP_PROTO_UDP;
p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
udp_header *p_udp_hdr = (udp_header *) (data_to_checksum + 12);
p_udp_hdr->uh_sum = 0;
int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
rtl8139_log("+++ C+ mode UDP checksum %04x\n", udp_checksum);
p_udp_hdr->uh_sum = udp_checksum;
}
/* restore IP header */
memcpy(eth_payload_data, saved_ip_header, hlen);
}
}
skip_offload:
/* update tally counter */
++s->tally_counters.TxOk;
rtl8139_log("+++ C+ mode transmitting %d bytes packet\n", saved_size);
rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
(uint8_t *) dot1q_buffer);
/* restore card space if there was no recursion and reset offset */
if (!s->cplus_txbuffer) {
s->cplus_txbuffer = saved_buffer;
s->cplus_txbuffer_len = saved_buffer_len;
s->cplus_txbuffer_offset = 0;
} else
free(saved_buffer);
} else {
rtl8139_log("+++ C+ mode transmission continue to next descriptor\n");
}
return 1;
}
static void
rtl8139_cplus_transmit(RTL8139State *s)
{
int txcount = 0;
while (txcount < 64 && rtl8139_cplus_transmit_one(s)) {
++txcount;
}
/* Mark transfer completed */
if (!txcount) {
rtl8139_log("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
s->currCPlusTxDesc);
} else {
/* update interrupt status */
s->IntrStatus |= TxOK;
rtl8139_update_irq(s);
}
}
static void
rtl8139_transmit(RTL8139State *s)
{
int descriptor = s->currTxDesc;
int txcount = 0;
/*while*/
if (rtl8139_transmit_one(s, descriptor)) {
++s->currTxDesc;
s->currTxDesc %= 4;
++txcount;
}
/* Mark transfer completed */
if (!txcount) {
rtl8139_log("transmitter queue stalled, current TxDesc = %d\n",
s->currTxDesc);
}
}
static void
rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
{
int descriptor = txRegOffset / 4;
/* handle C+ transmit mode register configuration */
if (s->cplus_enabled) {
rtl8139_log("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
"descriptor=%d\n", txRegOffset, val, descriptor);
/* handle Dump Tally Counters command */
s->TxStatus[descriptor] = val;
if (descriptor == 0 && (val & 0x8)) {
uint32_t tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
/* dump tally counters to specified memory location */
RTL8139TallyCounters_dma_write(s, tc_addr);
/* mark dump completed */
s->TxStatus[0] &= ~0x8;
}
return;
}
rtl8139_log("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
txRegOffset, val, descriptor);
/* mask only reserved bits */
val &= ~0xff00c000; /* these bits are reset on write */
val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
s->TxStatus[descriptor] = val;
/* attempt to start transmission */
rtl8139_transmit(s);
}
static uint32_t
rtl8139_TxStatus_TxAddr_read(UNUSED(RTL8139State *s), uint32_t regs[],
uint32_t base, uint8_t addr,
int size)
{
uint32_t reg = (addr - base) / 4;
uint32_t offset = addr & 0x3;
uint32_t ret = 0;
if (addr & (size - 1)) {
rtl8139_log("not implemented read for TxStatus/TxAddr "
"addr=0x%x size=0x%x\n", addr, size);
return ret;
}
switch (size) {
case 1: /* fall through */
case 2: /* fall through */
case 4:
ret = (regs[reg] >> offset * 8) & (((uint64_t) 1 << (size * 8)) - 1);
rtl8139_log("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
reg, addr, size, ret);
break;
default:
rtl8139_log("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
break;
}
return ret;
}
static uint16_t
rtl8139_TSAD_read(RTL8139State *s)
{
uint16_t ret = 0;
/* Simulate TSAD, it is read only anyway */
ret = ((s->TxStatus[3] & TxStatOK) ? TSAD_TOK3 : 0)
| ((s->TxStatus[2] & TxStatOK) ? TSAD_TOK2 : 0)
| ((s->TxStatus[1] & TxStatOK) ? TSAD_TOK1 : 0)
| ((s->TxStatus[0] & TxStatOK) ? TSAD_TOK0 : 0)
| ((s->TxStatus[3] & TxUnderrun) ? TSAD_TUN3 : 0)
| ((s->TxStatus[2] & TxUnderrun) ? TSAD_TUN2 : 0)
| ((s->TxStatus[1] & TxUnderrun) ? TSAD_TUN1 : 0)
| ((s->TxStatus[0] & TxUnderrun) ? TSAD_TUN0 : 0)
| ((s->TxStatus[3] & TxAborted) ? TSAD_TABT3 : 0)
| ((s->TxStatus[2] & TxAborted) ? TSAD_TABT2 : 0)
| ((s->TxStatus[1] & TxAborted) ? TSAD_TABT1 : 0)
| ((s->TxStatus[0] & TxAborted) ? TSAD_TABT0 : 0)
| ((s->TxStatus[3] & TxHostOwns) ? TSAD_OWN3 : 0)
| ((s->TxStatus[2] & TxHostOwns) ? TSAD_OWN2 : 0)
| ((s->TxStatus[1] & TxHostOwns) ? TSAD_OWN1 : 0)
| ((s->TxStatus[0] & TxHostOwns) ? TSAD_OWN0 : 0);
rtl8139_log("TSAD read val=0x%04x\n", ret);
return ret;
}
static uint16_t
rtl8139_CSCR_read(RTL8139State *s)
{
uint16_t ret = s->CSCR;
rtl8139_log("CSCR read val=0x%04x\n", ret);
return ret;
}
static void
rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
{
rtl8139_log("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
s->TxAddr[txAddrOffset / 4] = val;
}
static uint32_t
rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
{
uint32_t ret = s->TxAddr[txAddrOffset / 4];
rtl8139_log("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
return ret;
}
static void
rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
{
rtl8139_log("RxBufPtr write val=0x%04x\n", val);
/* this value is off by 16 */
s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
rtl8139_log(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
}
static uint32_t
rtl8139_RxBufPtr_read(RTL8139State *s)
{
/* this value is off by 16 */
uint32_t ret = s->RxBufPtr - 0x10;
rtl8139_log("RxBufPtr read val=0x%04x\n", ret);
return ret;
}
static uint32_t
rtl8139_RxBufAddr_read(RTL8139State *s)
{
/* this value is NOT off by 16 */
uint32_t ret = s->RxBufAddr;
rtl8139_log("RxBufAddr read val=0x%04x\n", ret);
return ret;
}
static void
rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
{
rtl8139_log("RxBuf write val=0x%08x\n", val);
s->RxBuf = val;
/* may need to reset rxring here */
}
static uint32_t
rtl8139_RxBuf_read(RTL8139State *s)
{
uint32_t ret = s->RxBuf;
rtl8139_log("RxBuf read val=0x%08x\n", ret);
return ret;
}
static void
rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
{
rtl8139_log("IntrMask write(w) val=0x%04x\n", val);
/* mask unwritable bits */
val = SET_MASKED(val, 0x1e00, s->IntrMask);
s->IntrMask = val;
rtl8139_update_irq(s);
}
static uint32_t
rtl8139_IntrMask_read(RTL8139State *s)
{
uint32_t ret = s->IntrMask;
rtl8139_log("IntrMask read(w) val=0x%04x\n", ret);
return ret;
}
static void
rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
{
rtl8139_log("IntrStatus write(w) val=0x%04x\n", val);
#if 0
/* writing to ISR has no effect */
return;
#else
uint16_t newStatus = s->IntrStatus & ~val;
/* mask unwritable bits */
newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
/* writing 1 to interrupt status register bit clears it */
s->IntrStatus = 0;
rtl8139_update_irq(s);
s->IntrStatus = newStatus;
rtl8139_update_irq(s);
#endif
}
static uint32_t
rtl8139_IntrStatus_read(RTL8139State *s)
{
uint32_t ret = s->IntrStatus;
rtl8139_log("IntrStatus read(w) val=0x%04x\n", ret);
#if 0
/* reading ISR clears all interrupts */
s->IntrStatus = 0;
rtl8139_update_irq(s);
#endif
return ret;
}
static void
rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
{
rtl8139_log("MultiIntr write(w) val=0x%04x\n", val);
/* mask unwritable bits */
val = SET_MASKED(val, 0xf000, s->MultiIntr);
s->MultiIntr = val;
}
static uint32_t
rtl8139_MultiIntr_read(RTL8139State *s)
{
uint32_t ret = s->MultiIntr;
rtl8139_log("MultiIntr read(w) val=0x%04x\n", ret);
return ret;
}
static void
rtl8139_io_writeb(uint32_t addr, uint8_t val, void *priv)
{
RTL8139State *s = priv;
addr &= 0xFF;
switch (addr) {
case MAC0 ... MAC0 + 4:
s->phys[addr - MAC0] = val;
break;
case MAC0 + 5:
s->phys[addr - MAC0] = val;
break;
case MAC0 + 6 ... MAC0 + 7:
/* reserved */
break;
case MAR0 ... MAR0 + 7:
s->mult[addr - MAR0] = val;
break;
case ChipCmd:
rtl8139_ChipCmd_write(s, val);
break;
case Cfg9346:
rtl8139_Cfg9346_write(s, val);
break;
case TxConfig: /* windows driver sometimes writes using byte-lenth call */
rtl8139_TxConfig_writeb(s, val);
break;
case Config0:
rtl8139_Config0_write(s, val);
break;
case Config1:
rtl8139_Config1_write(s, val);
break;
case Config3:
rtl8139_Config3_write(s, val);
break;
case Config4:
rtl8139_Config4_write(s, val);
break;
case Config5:
rtl8139_Config5_write(s, val);
break;
case MediaStatus:
/* ignore */
rtl8139_log("not implemented write(b) to MediaStatus val=0x%02x\n", val);
break;
case HltClk:
rtl8139_log("HltClk write val=0x%08x\n", val);
if (val == 'R') {
s->clock_enabled = 1;
} else if (val == 'H') {
s->clock_enabled = 0;
}
break;
case TxThresh:
rtl8139_log("C+ TxThresh write(b) val=0x%02x\n", val);
s->TxThresh = val;
break;
case TxPoll:
rtl8139_log("C+ TxPoll write(b) val=0x%02x\n", val);
if (val & (1 << 7)) {
rtl8139_log("C+ TxPoll high priority transmission (not "
"implemented)\n");
#if 0
rtl8139_cplus_transmit(s);
#endif
}
if (val & (1 << 6)) {
rtl8139_log("C+ TxPoll normal priority transmission\n");
rtl8139_cplus_transmit(s);
}
break;
default:
rtl8139_log("not implemented write(b) addr=0x%x val=0x%02x\n", addr, val);
break;
}
}
static void
rtl8139_io_writew(uint32_t addr, uint16_t val, void *priv)
{
RTL8139State *s = priv;
addr &= 0xFF;
switch (addr) {
case IntrMask:
rtl8139_IntrMask_write(s, val);
break;
case IntrStatus:
rtl8139_IntrStatus_write(s, val);
break;
case MultiIntr:
rtl8139_MultiIntr_write(s, val);
break;
case RxBufPtr:
rtl8139_RxBufPtr_write(s, val);
break;
case BasicModeCtrl:
rtl8139_BasicModeCtrl_write(s, val);
break;
case BasicModeStatus:
rtl8139_BasicModeStatus_write(s, val);
break;
case NWayAdvert:
rtl8139_log("NWayAdvert write(w) val=0x%04x\n", val);
s->NWayAdvert = val;
break;
case NWayLPAR:
rtl8139_log("forbidden NWayLPAR write(w) val=0x%04x\n", val);
break;
case NWayExpansion:
rtl8139_log("NWayExpansion write(w) val=0x%04x\n", val);
s->NWayExpansion = val;
break;
case CpCmd:
rtl8139_CpCmd_write(s, val);
break;
case IntrMitigate:
rtl8139_IntrMitigate_write(s, val);
break;
default:
rtl8139_log("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
addr, val);
rtl8139_io_writeb(addr, val & 0xff, priv);
rtl8139_io_writeb(addr + 1, (val >> 8) & 0xff, priv);
break;
}
}
/* TODO: Implement timer. */
static void
rtl8139_io_writel(uint32_t addr, uint32_t val, void *priv)
{
RTL8139State *s = priv;
addr &= 0xFF;
switch (addr) {
case RxMissed:
rtl8139_log("RxMissed clearing on write\n");
s->RxMissed = 0;
break;
case TxConfig:
rtl8139_TxConfig_write(s, val);
break;
case RxConfig:
rtl8139_RxConfig_write(s, val);
break;
case TxStatus0 ... TxStatus0 + 4 * 4 - 1:
rtl8139_TxStatus_write(s, addr - TxStatus0, val);
break;
case TxAddr0 ... TxAddr0 + 4 * 4 - 1:
rtl8139_TxAddr_write(s, addr - TxAddr0, val);
break;
case RxBuf:
rtl8139_RxBuf_write(s, val);
break;
case RxRingAddrLO:
rtl8139_log("C+ RxRing low bits write val=0x%08x\n", val);
s->RxRingAddrLO = val;
break;
case RxRingAddrHI:
rtl8139_log("C+ RxRing high bits write val=0x%08x\n", val);
s->RxRingAddrHI = val;
break;
case Timer:
rtl8139_log("TCTR Timer reset on write\n");
s->TCTR = 0;
#if 0
s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
rtl8139_set_next_tctr_time(s);
#endif
break;
case FlashReg:
rtl8139_log("FlashReg TimerInt write val=0x%08x\n", val);
if (s->TimerInt != val)
s->TimerInt = val;
break;
default:
rtl8139_log("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
addr, val);
rtl8139_io_writeb(addr, val & 0xff, priv);
rtl8139_io_writeb(addr + 1, (val >> 8) & 0xff, priv);
rtl8139_io_writeb(addr + 2, (val >> 16) & 0xff, priv);
rtl8139_io_writeb(addr + 3, (val >> 24) & 0xff, priv);
break;
}
}
static uint8_t
rtl8139_io_readb(uint32_t addr, void *priv)
{
RTL8139State *s = priv;
uint8_t ret;
addr &= 0xFF;
switch (addr) {
case MAC0 ... MAC0 + 5:
ret = s->phys[addr - MAC0];
break;
case MAC0 + 6 ... MAC0 + 7:
ret = 0;
break;
case MAR0 ... MAR0 + 7:
ret = s->mult[addr - MAR0];
break;
case TxStatus0 ... TxStatus0 + 4 * 4 - 1:
ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
addr, 1);
break;
case ChipCmd:
ret = rtl8139_ChipCmd_read(s);
break;
case Cfg9346:
ret = rtl8139_Cfg9346_read(s);
break;
case Config0:
ret = rtl8139_Config0_read(s);
break;
case Config1:
ret = rtl8139_Config1_read(s);
break;
case Config3:
ret = rtl8139_Config3_read(s);
break;
case Config4:
ret = rtl8139_Config4_read(s);
break;
case Config5:
ret = rtl8139_Config5_read(s);
break;
case MediaStatus:
/* The LinkDown bit of MediaStatus is inverse with link status */
ret = 0xd0 | (~s->BasicModeStatus & 0x04);
rtl8139_log("MediaStatus read 0x%x\n", ret);
break;
case HltClk:
ret = s->clock_enabled;
rtl8139_log("HltClk read 0x%x\n", ret);
break;
case PCIRevisionID:
ret = RTL8139_PCI_REVID;
rtl8139_log("PCI Revision ID read 0x%x\n", ret);
break;
case TxThresh:
ret = s->TxThresh;
rtl8139_log("C+ TxThresh read(b) val=0x%02x\n", ret);
break;
case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
ret = s->TxConfig >> 24;
rtl8139_log("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
break;
default:
rtl8139_log("not implemented read(b) addr=0x%x\n", addr);
ret = 0;
break;
}
return ret;
}
static uint16_t
rtl8139_io_readw(uint32_t addr, void *priv)
{
RTL8139State *s = priv;
uint16_t ret;
addr &= 0xFF;
switch (addr) {
case TxAddr0 ... TxAddr0 + 4 * 4 - 1:
ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
break;
case IntrMask:
ret = rtl8139_IntrMask_read(s);
break;
case IntrStatus:
ret = rtl8139_IntrStatus_read(s);
break;
case MultiIntr:
ret = rtl8139_MultiIntr_read(s);
break;
case RxBufPtr:
ret = rtl8139_RxBufPtr_read(s);
break;
case RxBufAddr:
ret = rtl8139_RxBufAddr_read(s);
break;
case BasicModeCtrl:
ret = rtl8139_BasicModeCtrl_read(s);
break;
case BasicModeStatus:
ret = rtl8139_BasicModeStatus_read(s);
break;
case NWayAdvert:
ret = s->NWayAdvert;
rtl8139_log("NWayAdvert read(w) val=0x%04x\n", ret);
break;
case NWayLPAR:
ret = s->NWayLPAR;
rtl8139_log("NWayLPAR read(w) val=0x%04x\n", ret);
break;
case NWayExpansion:
ret = s->NWayExpansion;
rtl8139_log("NWayExpansion read(w) val=0x%04x\n", ret);
break;
case CpCmd:
ret = rtl8139_CpCmd_read(s);
break;
case IntrMitigate:
ret = rtl8139_IntrMitigate_read(s);
break;
case TxSummary:
ret = rtl8139_TSAD_read(s);
break;
case CSCR:
ret = rtl8139_CSCR_read(s);
break;
default:
rtl8139_log("ioport read(w) addr=0x%x via read(b)\n", addr);
ret = rtl8139_io_readb(addr, priv);
ret |= rtl8139_io_readb(addr + 1, priv) << 8;
rtl8139_log("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
break;
}
return ret;
}
static uint32_t
rtl8139_io_readl(uint32_t addr, void *priv)
{
RTL8139State *s = priv;
uint32_t ret;
addr &= 0xFF;
switch (addr) {
case RxMissed:
ret = s->RxMissed;
rtl8139_log("RxMissed read val=0x%08x\n", ret);
break;
case TxConfig:
ret = rtl8139_TxConfig_read(s);
break;
case RxConfig:
ret = rtl8139_RxConfig_read(s);
break;
case TxStatus0 ... TxStatus0 + 4 * 4 - 1:
ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
addr, 4);
break;
case TxAddr0 ... TxAddr0 + 4 * 4 - 1:
ret = rtl8139_TxAddr_read(s, addr - TxAddr0);
break;
case RxBuf:
ret = rtl8139_RxBuf_read(s);
break;
case RxRingAddrLO:
ret = s->RxRingAddrLO;
rtl8139_log("C+ RxRing low bits read val=0x%08x\n", ret);
break;
case RxRingAddrHI:
ret = s->RxRingAddrHI;
rtl8139_log("C+ RxRing high bits read val=0x%08x\n", ret);
break;
case Timer:
#if 0
ret = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base) /
PCI_PERIOD;
#endif
ret = s->TCTR;
rtl8139_log("TCTR Timer read val=0x%08x\n", ret);
break;
case FlashReg:
ret = s->TimerInt;
rtl8139_log("FlashReg TimerInt read val=0x%08x\n", ret);
break;
default:
rtl8139_log("ioport read(l) addr=0x%x via read(b)\n", addr);
ret = rtl8139_io_readb(addr, priv);
ret |= rtl8139_io_readb(addr + 1, priv) << 8;
ret |= rtl8139_io_readb(addr + 2, priv) << 16;
ret |= rtl8139_io_readb(addr + 3, priv) << 24;
rtl8139_log("read(l) addr=0x%x val=%08x\n", addr, ret);
break;
}
return ret;
}
static uint32_t
rtl8139_io_readl_ioport(uint16_t addr, void *priv)
{
uint32_t ret = 0xffffffff;
ret = rtl8139_io_readl(addr, priv);
rtl8139_log("[%04X:%08X] [RLI] %04X = %08X\n", CS, cpu_state.pc, addr, ret);
return ret;
}
static uint16_t
rtl8139_io_readw_ioport(uint16_t addr, void *priv)
{
uint16_t ret = 0xffff;
ret = rtl8139_io_readw(addr, priv);
rtl8139_log("[%04X:%08X] [RWI] %04X = %04X\n", CS, cpu_state.pc, addr, ret);
return ret;
}
static uint8_t
rtl8139_io_readb_ioport(uint16_t addr, void *priv)
{
uint8_t ret = 0xff;
ret = rtl8139_io_readb(addr, priv);
rtl8139_log("[%04X:%08X] [RBI] %04X = %02X\n", CS, cpu_state.pc, addr, ret);
return ret;
}
static void
rtl8139_io_writel_ioport(uint16_t addr, uint32_t val, void *priv)
{
rtl8139_log("[%04X:%08X] [WLI] %04X = %08X\n", CS, cpu_state.pc, addr, val);
rtl8139_io_writel(addr, val, priv);
}
static void
rtl8139_io_writew_ioport(uint16_t addr, uint16_t val, void *priv)
{
rtl8139_log("[%04X:%08X] [WWI] %04X = %04X\n", CS, cpu_state.pc, addr, val);
rtl8139_io_writew(addr, val, priv);
}
static void
rtl8139_io_writeb_ioport(uint16_t addr, uint8_t val, void *priv)
{
rtl8139_log("[%04X:%08X] [WBI] %04X = %02X\n", CS, cpu_state.pc, addr, val);
rtl8139_io_writeb(addr, val, priv);
}
static uint32_t
rtl8139_io_readl_mem(uint32_t addr, void *priv)
{
RTL8139State *s = (RTL8139State *) priv;
uint32_t ret = 0xffffffff;
if ((addr >= s->mem_base) && (addr < (s->mem_base + 0xff)))
ret = rtl8139_io_readl(addr, priv);
rtl8139_log("[%04X:%08X] [RLM] %08X = %08X\n", CS, cpu_state.pc, addr, ret);
return ret;
}
static uint16_t
rtl8139_io_readw_mem(uint32_t addr, void *priv)
{
RTL8139State *s = (RTL8139State *) priv;
uint16_t ret = 0xffff;
if ((addr >= s->mem_base) && (addr < (s->mem_base + 0xff)))
ret = rtl8139_io_readw(addr, priv);
rtl8139_log("[%04X:%08X] [RWM] %08X = %04X\n", CS, cpu_state.pc, addr, ret);
return ret;
}
static uint8_t
rtl8139_io_readb_mem(uint32_t addr, void *priv)
{
RTL8139State *s = (RTL8139State *) priv;
uint8_t ret = 0xff;
if ((addr >= s->mem_base) && (addr < (s->mem_base + 0xff)))
ret = rtl8139_io_readb(addr, priv);
rtl8139_log("[%04X:%08X] [RBM] %08X = %02X\n", CS, cpu_state.pc, addr, ret);
return ret;
}
static void
rtl8139_io_writel_mem(uint32_t addr, uint32_t val, void *priv)
{
RTL8139State *s = (RTL8139State *) priv;
rtl8139_log("[%04X:%08X] [WLM] %08X = %08X\n", CS, cpu_state.pc, addr, val);
if ((addr >= s->mem_base) && (addr < (s->mem_base + 0xff)))
rtl8139_io_writel(addr, val, priv);
}
static void
rtl8139_io_writew_mem(uint32_t addr, uint16_t val, void *priv)
{
RTL8139State *s = (RTL8139State *) priv;
rtl8139_log("[%04X:%08X] [WWM] %08X = %04X\n", CS, cpu_state.pc, addr, val);
if ((addr >= s->mem_base) && (addr < (s->mem_base + 0xff)))
rtl8139_io_writew(addr, val, priv);
}
static void
rtl8139_io_writeb_mem(uint32_t addr, uint8_t val, void *priv)
{
RTL8139State *s = (RTL8139State *) priv;
rtl8139_log("[%04X:%08X] [WBM] %08X = %02X\n", CS, cpu_state.pc, addr, val);
if ((addr >= s->mem_base) && (addr < (s->mem_base + 0xff)))
rtl8139_io_writeb(addr, val, priv);
}
static int
rtl8139_set_link_status(void *priv, uint32_t link_state)
{
RTL8139State *s = (RTL8139State *) priv;
if (link_state & NET_LINK_DOWN) {
s->BasicModeStatus &= ~0x04;
} else {
s->BasicModeStatus |= 0x04;
}
s->IntrStatus |= RxUnderrun;
rtl8139_update_irq(s);
return 0;
}
static void
rtl8139_timer(void *priv)
{
RTL8139State *s = priv;
timer_on_auto(&s->timer, 1000000.0 / ((double) cpu_pci_speed));
if (!s->clock_enabled) {
rtl8139_log(">>> timer: clock is not running\n");
return;
}
s->TCTR++;
if (s->TCTR == s->TimerInt && s->TimerInt != 0) {
s->IntrStatus |= PCSTimeout;
rtl8139_update_irq(s);
}
}
static uint8_t
rtl8139_pci_read(UNUSED(int func), int addr, void *priv)
{
const RTL8139State *s = (RTL8139State *) priv;
switch (addr) {
default:
return s->pci_conf[addr & 0xFF];
case 0x00:
return 0xEC;
case 0x01:
return 0x10;
case 0x02:
return 0x39;
case 0x03:
return 0x81;
case 0x07:
return 0x02;
case 0x06:
return 0x80;
case 0x05:
return s->pci_conf[addr & 0xFF] & 1;
case 0x08:
return 0x20;
case 0x09:
return 0x0;
case 0x0a:
return 0x0;
case 0x0b:
return 0x2;
case 0x0d:
return s->pci_latency;
case 0x10:
return 1;
case 0x14:
return 0;
case 0x2c:
return 0xEC;
case 0x2d:
return 0x10;
case 0x2e:
return 0x39;
case 0x2f:
return 0x81;
case 0x34:
return 0xdc;
case 0x3d:
return PCI_INTA;
}
}
static void
rtl8139_pci_write(int func, int addr, uint8_t val, void *priv)
{
RTL8139State *s = (RTL8139State *) priv;
switch (addr) {
case 0x04:
mem_mapping_disable(&s->bar_mem);
io_removehandler((s->pci_conf[0x11] << 8), 256,
rtl8139_io_readb_ioport, rtl8139_io_readw_ioport, rtl8139_io_readl_ioport,
rtl8139_io_writeb_ioport, rtl8139_io_writew_ioport, rtl8139_io_writel_ioport,
priv);
s->pci_conf[addr & 0xFF] = val;
if (val & PCI_COMMAND_IO)
io_sethandler((s->pci_conf[0x11] << 8), 256,
rtl8139_io_readb_ioport, rtl8139_io_readw_ioport, rtl8139_io_readl_ioport,
rtl8139_io_writeb_ioport, rtl8139_io_writew_ioport, rtl8139_io_writel_ioport,
priv);
if ((val & PCI_COMMAND_MEM) && s->bar_mem.size)
mem_mapping_enable(&s->bar_mem);
break;
case 0x05:
s->pci_conf[addr & 0xFF] = val & 1;
break;
case 0x0c:
s->pci_conf[addr & 0xFF] = val;
break;
case 0x0d:
s->pci_latency = val;
break;
case 0x10:
case 0x11:
io_removehandler((s->pci_conf[0x11] << 8), 256,
rtl8139_io_readb_ioport, rtl8139_io_readw_ioport, rtl8139_io_readl_ioport,
rtl8139_io_writeb_ioport, rtl8139_io_writew_ioport, rtl8139_io_writel_ioport,
priv);
s->pci_conf[addr & 0xFF] = val;
rtl8139_log("New I/O base: %04X\n", s->pci_conf[0x11] << 8);
if (s->pci_conf[0x4] & PCI_COMMAND_IO)
io_sethandler((s->pci_conf[0x11] << 8), 256,
rtl8139_io_readb_ioport, rtl8139_io_readw_ioport, rtl8139_io_readl_ioport,
rtl8139_io_writeb_ioport, rtl8139_io_writew_ioport, rtl8139_io_writel_ioport,
priv);
break;
case 0x14:
case 0x15:
case 0x16:
case 0x17:
s->pci_conf[addr & 0xFF] = val;
s->mem_base = (s->pci_conf[0x15] << 8) | (s->pci_conf[0x16] << 16) | (s->pci_conf[0x17] << 24);
rtl8139_log("New memory base: %08X\n", s->mem_base);
if (s->pci_conf[0x4] & PCI_COMMAND_MEM)
mem_mapping_set_addr(&s->bar_mem, (s->pci_conf[0x15] << 8) | (s->pci_conf[0x16] << 16) | (s->pci_conf[0x17] << 24), 256);
break;
case 0x3c:
s->pci_conf[addr & 0xFF] = val;
break;
}
}
static void *
nic_init(const device_t *info)
{
RTL8139State *s = calloc(1, sizeof(RTL8139State));
nmc93cxx_eeprom_params_t params;
char eeprom_filename[1024] = { 0 };
char filename[1024] = { 0 };
uint8_t *mac_bytes;
uint16_t *eep_data;
uint32_t mac;
mem_mapping_add(&s->bar_mem, 0, 0,
rtl8139_io_readb_mem, rtl8139_io_readw_mem, rtl8139_io_readl_mem,
rtl8139_io_writeb_mem, rtl8139_io_writew_mem, rtl8139_io_writel_mem,
NULL, MEM_MAPPING_EXTERNAL, s);
pci_add_card(PCI_ADD_NORMAL, rtl8139_pci_read, rtl8139_pci_write, s, &s->pci_slot);
s->inst = device_get_instance();
snprintf(eeprom_filename, sizeof(eeprom_filename), "eeprom_rtl8139c_plus_%d.nvr", s->inst);
eep_data = (uint16_t *) s->eeprom_data;
/* prepare eeprom */
eep_data[0] = 0x8129;
/* PCI vendor and device ID should be mirrored here */
eep_data[1] = 0x10EC;
eep_data[2] = 0x8139;
/* XXX: Get proper MAC addresses from real EEPROM dumps. OID taken from net_ne2000.c */
#ifdef USE_REALTEK_OID
eep_data[7] = 0xe000;
eep_data[8] = 0x124c;
#else
eep_data[7] = 0x1400;
eep_data[8] = 0x122a;
#endif
eep_data[9] = 0x1413;
mac_bytes = (uint8_t *) &(eep_data[7]);
/* See if we have a local MAC address configured. */
mac = device_get_config_mac("mac", -1);
/* Set up our BIA. */
if (mac & 0xff000000) {
/* Generate new local MAC. */
mac_bytes[3] = random_generate();
mac_bytes[4] = random_generate();
mac_bytes[5] = random_generate();
mac = (((int) mac_bytes[3]) << 16);
mac |= (((int) mac_bytes[4]) << 8);
mac |= ((int) mac_bytes[5]);
device_set_config_mac("mac", mac);
} else {
mac_bytes[3] = (mac >> 16) & 0xff;
mac_bytes[4] = (mac >> 8) & 0xff;
mac_bytes[5] = (mac & 0xff);
}
for (uint32_t i = 0; i < 6; i++)
s->phys[MAC0 + i] = mac_bytes[i];
params.nwords = 64;
params.default_content = (uint16_t *) s->eeprom_data;
params.filename = filename;
snprintf(filename, sizeof(filename), "nmc93cxx_eeprom_%s_%d.nvr", info->internal_name, device_get_instance());
s->eeprom = device_add_parameters(&nmc93cxx_device, &params);
if (!s->eeprom) {
free(s);
return NULL;
}
s->nic = network_attach(s, (uint8_t *) &s->phys[MAC0], rtl8139_do_receive, rtl8139_set_link_status);
timer_add(&s->timer, rtl8139_timer, s, 0);
timer_on_auto(&s->timer, 1000000.0 / cpu_pci_speed);
s->cplus_txbuffer = NULL;
s->cplus_txbuffer_len = 0;
s->cplus_txbuffer_offset = 0;
return s;
}
static void
nic_close(void *priv)
{
free(priv);
}
// clang-format off
static const device_config_t rtl8139c_config[] = {
{
.name = "mac",
.description = "MAC Address",
.type = CONFIG_MAC,
.default_string = "",
.default_int = -1
},
{ .name = "", .description = "", .type = CONFIG_END }
};
// clang-format on
const device_t rtl8139c_plus_device = {
.name = "Realtek RTL8139C+",
.internal_name = "rtl8139c+",
.flags = DEVICE_PCI,
.local = 0,
.init = nic_init,
.close = nic_close,
.reset = rtl8139_reset,
{ .available = NULL },
.speed_changed = NULL,
.force_redraw = NULL,
.config = rtl8139c_config
};