2467 lines
58 KiB
C
2467 lines
58 KiB
C
/* Copyright holders: Peter Grehan, SA1988, Tenshi
|
|
see COPYING for more details
|
|
*/
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: ne2k.cc,v 1.56.2.1 2004/02/02 22:37:22 cbothamy Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2002 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
|
|
// Peter Grehan (grehan@iprg.nokia.com) coded all of this
|
|
// NE2000/ether stuff.
|
|
//#include "vl.h"
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
|
|
#include "slirp/slirp.h"
|
|
#include "slirp/queue.h"
|
|
#include <pcap.h>
|
|
|
|
#include "ibm.h"
|
|
#include "device.h"
|
|
|
|
#include "config.h"
|
|
#include "nethandler.h"
|
|
|
|
#include "io.h"
|
|
#include "mem.h"
|
|
#include "nethandler.h"
|
|
#include "rom.h"
|
|
|
|
#include "ne2000.h"
|
|
#include "pci.h"
|
|
#include "pic.h"
|
|
#include "timer.h"
|
|
|
|
//THIS IS THE DEFAULT MAC ADDRESS .... so it wont place nice with multiple VMs. YET.
|
|
uint8_t maclocal[6] = {0xac, 0xde, 0x48, 0x88, 0xbb, 0xaa};
|
|
|
|
#define NETBLOCKING 0 //we won't block our pcap
|
|
|
|
pcap_t *net_pcap;
|
|
|
|
queueADT slirpq;
|
|
int net_slirp_inited=0;
|
|
int net_is_pcap=0; //and pretend pcap is dead.
|
|
int fizz=0;
|
|
void slirp_tic();
|
|
|
|
#define BX_RESET_HARDWARE 0
|
|
#define BX_RESET_SOFTWARE 1
|
|
|
|
//Never completely fill the ne2k ring so that we never
|
|
// hit the unclear completely full buffer condition.
|
|
#define BX_NE2K_NEVER_FULL_RING (1)
|
|
|
|
#define BX_NE2K_MEMSIZ (32*1024)
|
|
#define BX_NE2K_MEMSTART (16*1024)
|
|
#define BX_NE2K_MEMEND (BX_NE2K_MEMSTART + BX_NE2K_MEMSIZ)
|
|
|
|
uint8_t rtl8029as_eeprom[128];
|
|
|
|
typedef struct ne2000_t
|
|
{
|
|
//
|
|
// ne2k register state
|
|
|
|
//
|
|
// Page 0
|
|
//
|
|
// Command Register - 00h read/write
|
|
struct CR_t
|
|
{
|
|
int stop; // STP - Software Reset command
|
|
int start; // START - start the NIC
|
|
int tx_packet; // TXP - initiate packet transmission
|
|
uint8_t rdma_cmd; // RD0,RD1,RD2 - Remote DMA command
|
|
uint8_t pgsel; // PS0,PS1 - Page select
|
|
} CR;
|
|
// Interrupt Status Register - 07h read/write
|
|
struct ISR_t
|
|
{
|
|
int pkt_rx; // PRX - packet received with no errors
|
|
int pkt_tx; // PTX - packet transmitted with no errors
|
|
int rx_err; // RXE - packet received with 1 or more errors
|
|
int tx_err; // TXE - packet tx'd " " " " "
|
|
int overwrite; // OVW - rx buffer resources exhausted
|
|
int cnt_oflow; // CNT - network tally counter MSB's set
|
|
int rdma_done; // RDC - remote DMA complete
|
|
int reset; // RST - reset status
|
|
} ISR;
|
|
// Interrupt Mask Register - 0fh write
|
|
struct IMR_t
|
|
{
|
|
int rx_inte; // PRXE - packet rx interrupt enable
|
|
int tx_inte; // PTXE - packet tx interrput enable
|
|
int rxerr_inte; // RXEE - rx error interrupt enable
|
|
int txerr_inte; // TXEE - tx error interrupt enable
|
|
int overw_inte; // OVWE - overwrite warn int enable
|
|
int cofl_inte; // CNTE - counter o'flow int enable
|
|
int rdma_inte; // RDCE - remote DMA complete int enable
|
|
int reserved; // D7 - reserved
|
|
} IMR;
|
|
// Data Configuration Register - 0eh write
|
|
struct DCR_t
|
|
{
|
|
int wdsize; // WTS - 8/16-bit select
|
|
int endian; // BOS - byte-order select
|
|
int longaddr; // LAS - long-address select
|
|
int loop; // LS - loopback select
|
|
int auto_rx; // AR - auto-remove rx packets with remote DMA
|
|
uint8_t fifo_size; // FT0,FT1 - fifo threshold
|
|
} DCR;
|
|
// Transmit Configuration Register - 0dh write
|
|
struct TCR_t
|
|
{
|
|
int crc_disable; // CRC - inhibit tx CRC
|
|
uint8_t loop_cntl; // LB0,LB1 - loopback control
|
|
int ext_stoptx; // ATD - allow tx disable by external mcast
|
|
int coll_prio; // OFST - backoff algorithm select
|
|
uint8_t reserved; // D5,D6,D7 - reserved
|
|
} TCR;
|
|
// Transmit Status Register - 04h read
|
|
struct TSR_t
|
|
{
|
|
int tx_ok; // PTX - tx complete without error
|
|
int reserved; // D1 - reserved
|
|
int collided; // COL - tx collided >= 1 times
|
|
int aborted; // ABT - aborted due to excessive collisions
|
|
int no_carrier; // CRS - carrier-sense lost
|
|
int fifo_ur; // FU - FIFO underrun
|
|
int cd_hbeat; // CDH - no tx cd-heartbeat from transceiver
|
|
int ow_coll; // OWC - out-of-window collision
|
|
} TSR;
|
|
// Receive Configuration Register - 0ch write
|
|
struct RCR_t
|
|
{
|
|
int errors_ok; // SEP - accept pkts with rx errors
|
|
int runts_ok; // AR - accept < 64-byte runts
|
|
int broadcast; // AB - accept eth broadcast address
|
|
int multicast; // AM - check mcast hash array
|
|
int promisc; // PRO - accept all packets
|
|
int monitor; // MON - check pkts, but don't rx
|
|
uint8_t reserved; // D6,D7 - reserved
|
|
} RCR;
|
|
// Receive Status Register - 0ch read
|
|
struct RSR_t
|
|
{
|
|
int rx_ok; // PRX - rx complete without error
|
|
int bad_crc; // CRC - Bad CRC detected
|
|
int bad_falign; // FAE - frame alignment error
|
|
int fifo_or; // FO - FIFO overrun
|
|
int rx_missed; // MPA - missed packet error
|
|
int rx_mbit; // PHY - unicast or mcast/bcast address match
|
|
int rx_disabled; // DIS - set when in monitor mode
|
|
int deferred; // DFR - collision active
|
|
} RSR;
|
|
|
|
uint16_t local_dma; // 01,02h read ; current local DMA addr
|
|
uint8_t page_start; // 01h write ; page start register
|
|
uint8_t page_stop; // 02h write ; page stop register
|
|
uint8_t bound_ptr; // 03h read/write ; boundary pointer
|
|
uint8_t tx_page_start; // 04h write ; transmit page start register
|
|
uint8_t num_coll; // 05h read ; number-of-collisions register
|
|
uint16_t tx_bytes; // 05,06h write ; transmit byte-count register
|
|
uint8_t fifo; // 06h read ; FIFO
|
|
uint16_t remote_dma; // 08,09h read ; current remote DMA addr
|
|
uint16_t remote_start; // 08,09h write ; remote start address register
|
|
uint16_t remote_bytes; // 0a,0bh write ; remote byte-count register
|
|
uint8_t tallycnt_0; // 0dh read ; tally counter 0 (frame align errors)
|
|
uint8_t tallycnt_1; // 0eh read ; tally counter 1 (CRC errors)
|
|
uint8_t tallycnt_2; // 0fh read ; tally counter 2 (missed pkt errors)
|
|
|
|
//
|
|
// Page 1
|
|
//
|
|
// Command Register 00h (repeated)
|
|
//
|
|
uint8_t physaddr[6]; // 01-06h read/write ; MAC address
|
|
uint8_t curr_page; // 07h read/write ; current page register
|
|
uint8_t mchash[8]; // 08-0fh read/write ; multicast hash array
|
|
|
|
//
|
|
// Page 2 - diagnostic use only
|
|
//
|
|
// Command Register 00h (repeated)
|
|
//
|
|
// Page Start Register 01h read (repeated)
|
|
// Page Stop Register 02h read (repeated)
|
|
// Current Local DMA Address 01,02h write (repeated)
|
|
// Transmit Page start address 04h read (repeated)
|
|
// Receive Configuration Register 0ch read (repeated)
|
|
// Transmit Configuration Register 0dh read (repeated)
|
|
// Data Configuration Register 0eh read (repeated)
|
|
// Interrupt Mask Register 0fh read (repeated)
|
|
//
|
|
uint8_t rempkt_ptr; // 03h read/write ; remote next-packet pointer
|
|
uint8_t localpkt_ptr; // 05h read/write ; local next-packet pointer
|
|
uint16_t address_cnt; // 06,07h read/write ; address counter
|
|
|
|
//
|
|
// Page 3 - should never be modified.
|
|
//
|
|
|
|
// Novell ASIC state
|
|
uint8_t macaddr[32]; // ASIC ROM'd MAC address, even bytes
|
|
uint8_t mem[BX_NE2K_MEMSIZ]; // on-chip packet memory
|
|
|
|
// ne2k internal state
|
|
uint32_t base_address;
|
|
int base_irq;
|
|
int tx_timer_index;
|
|
int tx_timer_active;
|
|
|
|
rom_t bios_rom;
|
|
|
|
} ne2000_t;
|
|
|
|
int disable_netbios = 0;
|
|
|
|
void ne2000_tx_event(void *p, uint32_t val);
|
|
uint32_t ne2000_chipmem_read(ne2000_t *ne2000, uint32_t address, unsigned int io_len);
|
|
void ne2000_page0_write(ne2000_t *ne2000, uint32_t offset, uint32_t value, unsigned io_len);
|
|
void ne2000_rx_frame(void *p, const void *buf, int io_len);
|
|
|
|
int ne2000_do_log = 0;
|
|
|
|
void ne2000_log(const char *format, ...)
|
|
{
|
|
#ifdef ENABLE_NE2000_LOG
|
|
if (ne2000_do_log)
|
|
{
|
|
va_list ap;
|
|
va_start(ap, format);
|
|
vprintf(format, ap);
|
|
va_end(ap);
|
|
fflush(stdout);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void ne2000_setirq(ne2000_t *ne2000, int irq)
|
|
{
|
|
ne2000->base_irq = irq;
|
|
}
|
|
|
|
//
|
|
// reset - restore state to power-up, cancelling all i/o
|
|
//
|
|
static void ne2000_reset(void *p, int reset)
|
|
{
|
|
ne2000_t *ne2000 = (ne2000_t *)p;
|
|
int i;
|
|
|
|
ne2000_log("ne2000 reset\n");
|
|
|
|
// Initialise the mac address area by doubling the physical address
|
|
ne2000->macaddr[0] = ne2000->physaddr[0];
|
|
ne2000->macaddr[1] = ne2000->physaddr[0];
|
|
ne2000->macaddr[2] = ne2000->physaddr[1];
|
|
ne2000->macaddr[3] = ne2000->physaddr[1];
|
|
ne2000->macaddr[4] = ne2000->physaddr[2];
|
|
ne2000->macaddr[5] = ne2000->physaddr[2];
|
|
ne2000->macaddr[6] = ne2000->physaddr[3];
|
|
ne2000->macaddr[7] = ne2000->physaddr[3];
|
|
ne2000->macaddr[8] = ne2000->physaddr[4];
|
|
ne2000->macaddr[9] = ne2000->physaddr[4];
|
|
ne2000->macaddr[10] = ne2000->physaddr[5];
|
|
ne2000->macaddr[11] = ne2000->physaddr[5];
|
|
|
|
// ne2k signature
|
|
for (i = 12; i < 32; i++)
|
|
{
|
|
ne2000->macaddr[i] = 0x57;
|
|
}
|
|
|
|
// Zero out registers and memory
|
|
memset( & ne2000->CR, 0, sizeof(ne2000->CR) );
|
|
memset( & ne2000->ISR, 0, sizeof(ne2000->ISR));
|
|
memset( & ne2000->IMR, 0, sizeof(ne2000->IMR));
|
|
memset( & ne2000->DCR, 0, sizeof(ne2000->DCR));
|
|
memset( & ne2000->TCR, 0, sizeof(ne2000->TCR));
|
|
memset( & ne2000->TSR, 0, sizeof(ne2000->TSR));
|
|
// memset( & ne2000->RCR, 0, sizeof(ne2000->RCR));
|
|
memset( & ne2000->RSR, 0, sizeof(ne2000->RSR));
|
|
ne2000->tx_timer_active = 0;
|
|
ne2000->local_dma = 0;
|
|
ne2000->page_start = 0;
|
|
ne2000->page_stop = 0;
|
|
ne2000->bound_ptr = 0;
|
|
ne2000->tx_page_start = 0;
|
|
ne2000->num_coll = 0;
|
|
ne2000->tx_bytes = 0;
|
|
ne2000->fifo = 0;
|
|
ne2000->remote_dma = 0;
|
|
ne2000->remote_start = 0;
|
|
ne2000->remote_bytes = 0;
|
|
ne2000->tallycnt_0 = 0;
|
|
ne2000->tallycnt_1 = 0;
|
|
ne2000->tallycnt_2 = 0;
|
|
|
|
ne2000->curr_page = 0;
|
|
|
|
ne2000->rempkt_ptr = 0;
|
|
ne2000->localpkt_ptr = 0;
|
|
ne2000->address_cnt = 0;
|
|
|
|
memset( & ne2000->mem, 0, sizeof(ne2000->mem));
|
|
|
|
// Set power-up conditions
|
|
ne2000->CR.stop = 1;
|
|
ne2000->CR.rdma_cmd = 4;
|
|
ne2000->ISR.reset = 1;
|
|
ne2000->DCR.longaddr = 1;
|
|
picint(1 << ne2000->base_irq);
|
|
picintc(1 << ne2000->base_irq);
|
|
}
|
|
|
|
#include "bswap.h"
|
|
|
|
//
|
|
// read_cr/write_cr - utility routines for handling reads/writes to
|
|
// the Command Register
|
|
//
|
|
uint32_t ne2000_read_cr(ne2000_t *ne2000)
|
|
{
|
|
uint32_t val;
|
|
|
|
val = (((ne2000->CR.pgsel & 0x03) << 6) |
|
|
((ne2000->CR.rdma_cmd & 0x07) << 3) |
|
|
(ne2000->CR.tx_packet << 2) |
|
|
(ne2000->CR.start << 1) |
|
|
(ne2000->CR.stop));
|
|
ne2000_log("%s: read CR returns 0x%02x\n", (network_card_current == 1) ? "NE2000" : "RTL8029AS", val);
|
|
return val;
|
|
}
|
|
|
|
void ne2000_write_cr(ne2000_t *ne2000, uint32_t value)
|
|
{
|
|
ne2000_log("%s: wrote 0x%02x to CR\n", (network_card_current == 1) ? "NE2000" : "RTL8029AS", value);
|
|
|
|
// Validate remote-DMA
|
|
if ((value & 0x38) == 0x00)
|
|
{
|
|
ne2000_log("CR write - invalid rDMA value 0\n");
|
|
value |= 0x20; /* dma_cmd == 4 is a safe default */
|
|
}
|
|
|
|
// Check for s/w reset
|
|
if (value & 0x01)
|
|
{
|
|
ne2000->ISR.reset = 1;
|
|
ne2000->CR.stop = 1;
|
|
} else {
|
|
ne2000->CR.stop = 0;
|
|
}
|
|
|
|
ne2000->CR.rdma_cmd = (value & 0x38) >> 3;
|
|
|
|
// If start command issued, the RST bit in the ISR
|
|
// must be cleared
|
|
if ((value & 0x02) && !ne2000->CR.start)
|
|
{
|
|
ne2000->ISR.reset = 0;
|
|
}
|
|
|
|
ne2000->CR.start = ((value & 0x02) == 0x02);
|
|
ne2000->CR.pgsel = (value & 0xc0) >> 6;
|
|
|
|
// Check for send-packet command
|
|
if (ne2000->CR.rdma_cmd == 3)
|
|
{
|
|
// Set up DMA read from receive ring
|
|
ne2000->remote_start = ne2000->remote_dma = ne2000->bound_ptr * 256;
|
|
ne2000->remote_bytes = (uint16_t) ne2000_chipmem_read(ne2000, ne2000->bound_ptr * 256 + 2, 2);
|
|
ne2000_log("Sending buffer #x%x length %d\n", ne2000->remote_start, ne2000->remote_bytes);
|
|
}
|
|
|
|
// Check for start-tx
|
|
if ((value & 0x04) && ne2000->TCR.loop_cntl)
|
|
{
|
|
if (ne2000->TCR.loop_cntl != 1)
|
|
{
|
|
ne2000_log("Loop mode %d not supported\n", ne2000->TCR.loop_cntl);
|
|
}
|
|
else
|
|
{
|
|
ne2000_rx_frame(ne2000, &ne2000->mem[ne2000->tx_page_start*256 - BX_NE2K_MEMSTART], ne2000->tx_bytes);
|
|
}
|
|
}
|
|
else if (value & 0x04)
|
|
{
|
|
if (ne2000->CR.stop || (!ne2000->CR.start && (network_card_current == 1)))
|
|
{
|
|
if (ne2000->tx_bytes == 0) /* njh@bandsman.co.uk */
|
|
{
|
|
return; /* Solaris9 probe */
|
|
}
|
|
ne2000_log("CR write - tx start, dev in reset\n");
|
|
}
|
|
|
|
if (ne2000->tx_bytes == 0)
|
|
{
|
|
ne2000_log("CR write - tx start, tx bytes == 0\n");
|
|
}
|
|
|
|
// Send the packet to the system driver
|
|
ne2000->CR.tx_packet = 1;
|
|
if(!net_is_pcap)
|
|
{
|
|
slirp_input(&ne2000->mem[ne2000->tx_page_start*256 - BX_NE2K_MEMSTART], ne2000->tx_bytes);
|
|
ne2000_log("ne2000 slirp sending packet\n");
|
|
}
|
|
else if (net_is_pcap && (net_pcap != NULL))
|
|
{
|
|
pcap_sendpacket(net_pcap, &ne2000->mem[ne2000->tx_page_start*256 - BX_NE2K_MEMSTART], ne2000->tx_bytes);
|
|
ne2000_log("ne2000 pcap sending packet\n");
|
|
}
|
|
|
|
// some more debug
|
|
if (ne2000->tx_timer_active)
|
|
{
|
|
ne2000_log("CR write, tx timer still active\n");
|
|
}
|
|
|
|
ne2000_tx_event(ne2000, value);
|
|
}
|
|
|
|
// Linux probes for an interrupt by setting up a remote-DMA read
|
|
// of 0 bytes with remote-DMA completion interrupts enabled.
|
|
// Detect this here
|
|
if (ne2000->CR.rdma_cmd == 0x01 &&
|
|
ne2000->CR.start &&
|
|
ne2000->remote_bytes == 0)
|
|
{
|
|
ne2000->ISR.rdma_done = 1;
|
|
if (ne2000->IMR.rdma_inte)
|
|
{
|
|
picint(1 << ne2000->base_irq);
|
|
if (network_card_current == 1)
|
|
{
|
|
picintc(1 << ne2000->base_irq);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// chipmem_read/chipmem_write - access the 64K private RAM.
|
|
// The ne2000 memory is accessed through the data port of
|
|
// the asic (offset 0) after setting up a remote-DMA transfer.
|
|
// Both byte and word accesses are allowed.
|
|
// The first 16 bytes contains the MAC address at even locations,
|
|
// and there is 16K of buffer memory starting at 16K
|
|
//
|
|
|
|
uint32_t ne2000_chipmem_read(ne2000_t *ne2000, uint32_t address, unsigned int io_len)
|
|
{
|
|
uint32_t retval = 0;
|
|
|
|
if ((io_len == 2) && (address & 0x1))
|
|
{
|
|
ne2000_log("unaligned chipmem word read\n");
|
|
}
|
|
|
|
// ROM'd MAC address
|
|
if ((address >=0) && (address <= 31))
|
|
{
|
|
retval = ne2000->macaddr[address % 32];
|
|
if ((io_len == 2) || (io_len == 4))
|
|
{
|
|
retval |= (ne2000->macaddr[(address + 1) % 32] << 8);
|
|
}
|
|
if (io_len == 4)
|
|
{
|
|
retval |= (ne2000->macaddr[(address + 2) % 32] << 16);
|
|
retval |= (ne2000->macaddr[(address + 3) % 32] << 24);
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
if ((address >= BX_NE2K_MEMSTART) && (address < BX_NE2K_MEMEND))
|
|
{
|
|
retval = ne2000->mem[address - BX_NE2K_MEMSTART];
|
|
if ((io_len == 2) || (io_len == 4))
|
|
{
|
|
retval |= (ne2000->mem[address - BX_NE2K_MEMSTART + 1] << 8);
|
|
}
|
|
if (io_len == 4)
|
|
{
|
|
retval |= (ne2000->mem[address - BX_NE2K_MEMSTART + 2] << 16);
|
|
retval |= (ne2000->mem[address - BX_NE2K_MEMSTART + 3] << 24);
|
|
}
|
|
return (retval);
|
|
}
|
|
|
|
ne2000_log("out-of-bounds chipmem read, %04X\n", address);
|
|
|
|
if (network_card_current == 1)
|
|
{
|
|
switch(io_len)
|
|
{
|
|
case 1:
|
|
return 0xff;
|
|
case 2:
|
|
return 0xffff;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return (0xff);
|
|
}
|
|
}
|
|
|
|
void ne2000_chipmem_write(ne2000_t *ne2000, uint32_t address, uint32_t value, unsigned io_len)
|
|
{
|
|
if ((io_len == 2) && (address & 0x1))
|
|
{
|
|
ne2000_log("unaligned chipmem word write\n");
|
|
}
|
|
|
|
if ((address >= BX_NE2K_MEMSTART) && (address < BX_NE2K_MEMEND))
|
|
{
|
|
ne2000->mem[address - BX_NE2K_MEMSTART] = value & 0xff;
|
|
if ((io_len == 2) || (io_len == 4))
|
|
{
|
|
ne2000->mem[address - BX_NE2K_MEMSTART + 1] = value >> 8;
|
|
}
|
|
if (io_len == 4)
|
|
{
|
|
ne2000->mem[address - BX_NE2K_MEMSTART + 2] = value >> 16;
|
|
ne2000->mem[address - BX_NE2K_MEMSTART + 3] = value >> 24;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ne2000_log("out-of-bounds chipmem write, %04X\n", address);
|
|
}
|
|
}
|
|
|
|
//
|
|
// asic_read/asic_write - This is the high 16 bytes of i/o space
|
|
// (the lower 16 bytes is for the DS8390). Only two locations
|
|
// are used: offset 0, which is used for data transfer, and
|
|
// offset 0xf, which is used to reset the device.
|
|
// The data transfer port is used to as 'external' DMA to the
|
|
// DS8390. The chip has to have the DMA registers set up, and
|
|
// after that, insw/outsw instructions can be used to move
|
|
// the appropriate number of bytes to/from the device.
|
|
//
|
|
uint32_t ne2000_asic_read(ne2000_t *ne2000, uint32_t offset, unsigned int io_len)
|
|
{
|
|
uint32_t retval = 0;
|
|
|
|
switch (offset)
|
|
{
|
|
case 0x0: // Data register
|
|
//
|
|
// A read remote-DMA command must have been issued,
|
|
// and the source-address and length registers must
|
|
// have been initialised.
|
|
//
|
|
if (io_len > ne2000->remote_bytes)
|
|
{
|
|
ne2000_log("dma read underrun iolen=%d remote_bytes=%d\n",io_len,ne2000->remote_bytes);
|
|
}
|
|
|
|
ne2000_log("%s read DMA: addr=%4x remote_bytes=%d\n",(network_card_current == 1) ? "NE2000" : "RTL8029AS",ne2000->remote_dma,ne2000->remote_bytes);
|
|
retval = ne2000_chipmem_read(ne2000, ne2000->remote_dma, io_len);
|
|
//
|
|
// The 8390 bumps the address and decreases the byte count
|
|
// by the selected word size after every access, not by
|
|
// the amount of data requested by the host (io_len).
|
|
//
|
|
if (io_len == 4)
|
|
{
|
|
ne2000->remote_dma += io_len;
|
|
}
|
|
else
|
|
{
|
|
ne2000->remote_dma += (ne2000->DCR.wdsize + 1);
|
|
}
|
|
|
|
if (ne2000->remote_dma == ne2000->page_stop << 8)
|
|
{
|
|
ne2000->remote_dma = ne2000->page_start << 8;
|
|
}
|
|
|
|
// keep s.remote_bytes from underflowing
|
|
if (ne2000->remote_bytes > ne2000->DCR.wdsize)
|
|
{
|
|
if (io_len == 4)
|
|
{
|
|
ne2000->remote_bytes -= io_len;
|
|
}
|
|
else
|
|
{
|
|
ne2000->remote_bytes -= (ne2000->DCR.wdsize + 1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ne2000->remote_bytes = 0;
|
|
}
|
|
|
|
// If all bytes have been written, signal remote-DMA complete
|
|
if (ne2000->remote_bytes == 0)
|
|
{
|
|
ne2000->ISR.rdma_done = 1;
|
|
if (ne2000->IMR.rdma_inte)
|
|
{
|
|
picint(1 << ne2000->base_irq);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 0xf: // Reset register
|
|
ne2000_reset(ne2000, BX_RESET_SOFTWARE);
|
|
break;
|
|
|
|
default:
|
|
ne2000_log("asic read invalid address %04x\n", (unsigned) offset);
|
|
break;
|
|
}
|
|
|
|
return (retval);
|
|
}
|
|
|
|
void ne2000_asic_write(ne2000_t *ne2000, uint32_t offset, uint32_t value, unsigned io_len)
|
|
{
|
|
ne2000_log("%s: asic write addr=0x%02x, value=0x%04x\n", (network_card_current == 1) ? "NE2000" : "RTL8029AS",(unsigned) offset, (unsigned) value);
|
|
switch (offset)
|
|
{
|
|
case 0x0: // Data register - see asic_read for a description
|
|
if ((io_len > 1) && (ne2000->DCR.wdsize == 0))
|
|
{
|
|
ne2000_log("dma write length %d on byte mode operation\n", io_len);
|
|
break;
|
|
}
|
|
if (ne2000->remote_bytes == 0)
|
|
{
|
|
ne2000_log("dma write, byte count 0\n");
|
|
}
|
|
|
|
ne2000_chipmem_write(ne2000, ne2000->remote_dma, value, io_len);
|
|
if (io_len == 4)
|
|
{
|
|
ne2000->remote_dma += io_len;
|
|
}
|
|
else
|
|
{
|
|
ne2000->remote_dma += (ne2000->DCR.wdsize + 1);
|
|
}
|
|
|
|
if (ne2000->remote_dma == ne2000->page_stop << 8)
|
|
{
|
|
ne2000->remote_dma = ne2000->page_start << 8;
|
|
}
|
|
|
|
if (io_len == 4)
|
|
{
|
|
ne2000->remote_bytes -= io_len;
|
|
}
|
|
else
|
|
{
|
|
ne2000->remote_bytes -= (ne2000->DCR.wdsize + 1);
|
|
}
|
|
|
|
if (ne2000->remote_bytes > BX_NE2K_MEMSIZ)
|
|
{
|
|
ne2000->remote_bytes = 0;
|
|
}
|
|
|
|
// If all bytes have been written, signal remote-DMA complete
|
|
if (ne2000->remote_bytes == 0)
|
|
{
|
|
ne2000->ISR.rdma_done = 1;
|
|
if (ne2000->IMR.rdma_inte)
|
|
{
|
|
picint(1 << ne2000->base_irq);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 0xf: // Reset register
|
|
// end of reset pulse
|
|
break;
|
|
|
|
default: // this is invalid, but happens under win95 device detection
|
|
ne2000_log("asic write invalid address %04x, ignoring\n", (unsigned) offset);
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// page0_read/page0_write - These routines handle reads/writes to
|
|
// the 'zeroth' page of the DS8390 register file
|
|
//
|
|
uint32_t ne2000_page0_read(ne2000_t *ne2000, uint32_t offset, unsigned int io_len)
|
|
{
|
|
uint8_t value = 0;
|
|
|
|
if (io_len > 1)
|
|
{
|
|
ne2000_log("bad length! page 0 read from register 0x%02x, len=%u\n", offset, io_len); /* encountered with win98 hardware probe */
|
|
return value;
|
|
}
|
|
|
|
switch (offset)
|
|
{
|
|
case 0x1: // CLDA0
|
|
value = (ne2000->local_dma & 0xff);
|
|
break;
|
|
|
|
case 0x2: // CLDA1
|
|
value = (ne2000->local_dma >> 8);
|
|
break;
|
|
|
|
case 0x3: // BNRY
|
|
value = ne2000->bound_ptr;
|
|
break;
|
|
|
|
case 0x4: // TSR
|
|
value = ((ne2000->TSR.ow_coll << 7) |
|
|
(ne2000->TSR.cd_hbeat << 6) |
|
|
(ne2000->TSR.fifo_ur << 5) |
|
|
(ne2000->TSR.no_carrier << 4) |
|
|
(ne2000->TSR.aborted << 3) |
|
|
(ne2000->TSR.collided << 2) |
|
|
(ne2000->TSR.tx_ok));
|
|
break;
|
|
|
|
case 0x5: // NCR
|
|
value = ne2000->num_coll;
|
|
break;
|
|
|
|
case 0x6: // FIFO
|
|
// reading FIFO is only valid in loopback mode
|
|
ne2000_log("reading FIFO not supported yet\n");
|
|
value = ne2000->fifo;
|
|
break;
|
|
|
|
case 0x7: // ISR
|
|
value = ((ne2000->ISR.reset << 7) |
|
|
(ne2000->ISR.rdma_done << 6) |
|
|
(ne2000->ISR.cnt_oflow << 5) |
|
|
(ne2000->ISR.overwrite << 4) |
|
|
(ne2000->ISR.tx_err << 3) |
|
|
(ne2000->ISR.rx_err << 2) |
|
|
(ne2000->ISR.pkt_tx << 1) |
|
|
(ne2000->ISR.pkt_rx));
|
|
break;
|
|
|
|
case 0x8: // CRDA0
|
|
value = (ne2000->remote_dma & 0xff);
|
|
break;
|
|
|
|
case 0x9: // CRDA1
|
|
value = (ne2000->remote_dma >> 8);
|
|
break;
|
|
|
|
case 0xa: // reserved / RTL8029ID0
|
|
if (network_card_current == 2)
|
|
{
|
|
value = 0x50;
|
|
}
|
|
else
|
|
{
|
|
ne2000_log("reserved read - page 0, 0xa\n");
|
|
value = 0xff;
|
|
}
|
|
break;
|
|
|
|
case 0xb: // reserved / RTL8029ID1
|
|
if (network_card_current == 2)
|
|
{
|
|
value = 0x43;
|
|
}
|
|
else
|
|
{
|
|
ne2000_log("reserved read - page 0, 0xb\n");
|
|
value = 0xff;
|
|
}
|
|
break;
|
|
|
|
case 0xc: // RSR
|
|
value = ((ne2000->RSR.deferred << 7) |
|
|
(ne2000->RSR.rx_disabled << 6) |
|
|
(ne2000->RSR.rx_mbit << 5) |
|
|
(ne2000->RSR.rx_missed << 4) |
|
|
(ne2000->RSR.fifo_or << 3) |
|
|
(ne2000->RSR.bad_falign << 2) |
|
|
(ne2000->RSR.bad_crc << 1) |
|
|
(ne2000->RSR.rx_ok));
|
|
break;
|
|
|
|
case 0xd: // CNTR0
|
|
value = ne2000->tallycnt_0;
|
|
break;
|
|
|
|
case 0xe: // CNTR1
|
|
value = ne2000->tallycnt_1;
|
|
break;
|
|
|
|
case 0xf: // CNTR2
|
|
value = ne2000->tallycnt_2;
|
|
break;
|
|
|
|
default:
|
|
ne2000_log("page 0 register 0x%02x out of range\n", offset);
|
|
break;
|
|
}
|
|
|
|
ne2000_log("page 0 read from register 0x%02x, value=0x%02x\n", offset, value);
|
|
return value;
|
|
}
|
|
|
|
void ne2000_page0_write(ne2000_t *ne2000, uint32_t offset, uint32_t value, unsigned io_len)
|
|
{
|
|
uint8_t value2;
|
|
|
|
// It appears to be a common practice to use outw on page0 regs...
|
|
|
|
// break up outw into two outb's
|
|
if (io_len == 2)
|
|
{
|
|
ne2000_page0_write(ne2000, offset, (value & 0xff), 1);
|
|
if (offset < 0x0f)
|
|
{
|
|
ne2000_page0_write(ne2000, offset + 1, ((value >> 8) & 0xff), 1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
ne2000_log("page 0 write to register 0x%02x, value=0x%02x\n", offset, value);
|
|
|
|
switch (offset)
|
|
{
|
|
case 0x1: // PSTART
|
|
ne2000->page_start = value;
|
|
break;
|
|
|
|
case 0x2: // PSTOP
|
|
ne2000->page_stop = value;
|
|
break;
|
|
|
|
case 0x3: // BNRY
|
|
ne2000->bound_ptr = value;
|
|
break;
|
|
|
|
case 0x4: // TPSR
|
|
ne2000->tx_page_start = value;
|
|
break;
|
|
|
|
case 0x5: // TBCR0
|
|
// Clear out low byte and re-insert
|
|
ne2000->tx_bytes &= 0xff00;
|
|
ne2000->tx_bytes |= (value & 0xff);
|
|
break;
|
|
|
|
case 0x6: // TBCR1
|
|
// Clear out high byte and re-insert
|
|
ne2000->tx_bytes &= 0x00ff;
|
|
ne2000->tx_bytes |= ((value & 0xff) << 8);
|
|
break;
|
|
|
|
case 0x7: // ISR
|
|
value &= 0x7f; // clear RST bit - status-only bit
|
|
// All other values are cleared iff the ISR bit is 1
|
|
ne2000->ISR.pkt_rx &= ~((int)((value & 0x01) == 0x01));
|
|
ne2000->ISR.pkt_tx &= ~((int)((value & 0x02) == 0x02));
|
|
ne2000->ISR.rx_err &= ~((int)((value & 0x04) == 0x04));
|
|
ne2000->ISR.tx_err &= ~((int)((value & 0x08) == 0x08));
|
|
ne2000->ISR.overwrite &= ~((int)((value & 0x10) == 0x10));
|
|
ne2000->ISR.cnt_oflow &= ~((int)((value & 0x20) == 0x20));
|
|
ne2000->ISR.rdma_done &= ~((int)((value & 0x40) == 0x40));
|
|
value = ((ne2000->ISR.rdma_done << 6) |
|
|
(ne2000->ISR.cnt_oflow << 5) |
|
|
(ne2000->ISR.overwrite << 4) |
|
|
(ne2000->ISR.tx_err << 3) |
|
|
(ne2000->ISR.rx_err << 2) |
|
|
(ne2000->ISR.pkt_tx << 1) |
|
|
(ne2000->ISR.pkt_rx));
|
|
value &= ((ne2000->IMR.rdma_inte << 6) |
|
|
(ne2000->IMR.cofl_inte << 5) |
|
|
(ne2000->IMR.overw_inte << 4) |
|
|
(ne2000->IMR.txerr_inte << 3) |
|
|
(ne2000->IMR.rxerr_inte << 2) |
|
|
(ne2000->IMR.tx_inte << 1) |
|
|
(ne2000->IMR.rx_inte));
|
|
if (value == 0)
|
|
{
|
|
picintc(1 << ne2000->base_irq);
|
|
}
|
|
break;
|
|
|
|
case 0x8: // RSAR0
|
|
// Clear out low byte and re-insert
|
|
ne2000->remote_start &= 0xff00;
|
|
ne2000->remote_start |= (value & 0xff);
|
|
ne2000->remote_dma = ne2000->remote_start;
|
|
break;
|
|
|
|
case 0x9: // RSAR1
|
|
// Clear out high byte and re-insert
|
|
ne2000->remote_start &= 0x00ff;
|
|
ne2000->remote_start |= ((value & 0xff) << 8);
|
|
ne2000->remote_dma = ne2000->remote_start;
|
|
break;
|
|
|
|
case 0xa: // RBCR0
|
|
// Clear out low byte and re-insert
|
|
ne2000->remote_bytes &= 0xff00;
|
|
ne2000->remote_bytes |= (value & 0xff);
|
|
break;
|
|
|
|
case 0xb: // RBCR1
|
|
// Clear out high byte and re-insert
|
|
ne2000->remote_bytes &= 0x00ff;
|
|
ne2000->remote_bytes |= ((value & 0xff) << 8);
|
|
break;
|
|
|
|
case 0xc: // RCR
|
|
// Check if the reserved bits are set
|
|
if (value & 0xc0)
|
|
{
|
|
ne2000_log("RCR write, reserved bits set\n");
|
|
}
|
|
|
|
// Set all other bit-fields
|
|
ne2000->RCR.errors_ok = ((value & 0x01) == 0x01);
|
|
ne2000->RCR.runts_ok = ((value & 0x02) == 0x02);
|
|
ne2000->RCR.broadcast = ((value & 0x04) == 0x04);
|
|
ne2000->RCR.multicast = ((value & 0x08) == 0x08);
|
|
ne2000->RCR.promisc = ((value & 0x10) == 0x10);
|
|
ne2000->RCR.monitor = ((value & 0x20) == 0x20);
|
|
|
|
// Monitor bit is a little suspicious...
|
|
if (value & 0x20)
|
|
{
|
|
ne2000_log("RCR write, monitor bit set!\n");
|
|
}
|
|
break;
|
|
|
|
case 0xd: // TCR
|
|
// Check reserved bits
|
|
if (value & 0xe0)
|
|
{
|
|
ne2000_log("TCR write, reserved bits set\n");
|
|
}
|
|
|
|
// Test loop mode (not supported)
|
|
if (value & 0x06)
|
|
{
|
|
ne2000->TCR.loop_cntl = (value & 0x6) >> 1;
|
|
ne2000_log("TCR write, loop mode %d not supported\n", ne2000->TCR.loop_cntl);
|
|
}
|
|
else
|
|
{
|
|
ne2000->TCR.loop_cntl = 0;
|
|
}
|
|
|
|
// Inhibit-CRC not supported.
|
|
if (value & 0x01)
|
|
{
|
|
ne2000_log("TCR write, inhibit-CRC not supported\n");
|
|
}
|
|
|
|
// Auto-transmit disable very suspicious
|
|
if (value & 0x08)
|
|
{
|
|
ne2000_log("TCR write, auto transmit disable not supported\n");
|
|
}
|
|
|
|
// Allow collision-offset to be set, although not used
|
|
ne2000->TCR.coll_prio = ((value & 0x08) == 0x08);
|
|
break;
|
|
|
|
case 0xe: // DCR
|
|
// the loopback mode is not suppported yet
|
|
if (!(value & 0x08))
|
|
{
|
|
ne2000_log("DCR write, loopback mode selected\n");
|
|
}
|
|
// It is questionable to set longaddr and auto_rx, since they
|
|
// aren't supported on the ne2000. Print a warning and continue
|
|
if (value & 0x04)
|
|
{
|
|
ne2000_log("DCR write - LAS set ???\n");
|
|
}
|
|
if (value & 0x10)
|
|
{
|
|
ne2000_log("DCR write - AR set ???\n");
|
|
}
|
|
|
|
// Set other values.
|
|
ne2000->DCR.wdsize = ((value & 0x01) == 0x01);
|
|
ne2000->DCR.endian = ((value & 0x02) == 0x02);
|
|
ne2000->DCR.longaddr = ((value & 0x04) == 0x04); // illegal ?
|
|
ne2000->DCR.loop = ((value & 0x08) == 0x08);
|
|
ne2000->DCR.auto_rx = ((value & 0x10) == 0x10); // also illegal ?
|
|
ne2000->DCR.fifo_size = (value & 0x50) >> 5;
|
|
break;
|
|
|
|
case 0xf: // IMR
|
|
// Check for reserved bit
|
|
if (value & 0x80)
|
|
{
|
|
ne2000_log("IMR write, reserved bit set\n");
|
|
}
|
|
|
|
// Set other values
|
|
ne2000->IMR.rx_inte = ((value & 0x01) == 0x01);
|
|
ne2000->IMR.tx_inte = ((value & 0x02) == 0x02);
|
|
ne2000->IMR.rxerr_inte = ((value & 0x04) == 0x04);
|
|
ne2000->IMR.txerr_inte = ((value & 0x08) == 0x08);
|
|
ne2000->IMR.overw_inte = ((value & 0x10) == 0x10);
|
|
ne2000->IMR.cofl_inte = ((value & 0x20) == 0x20);
|
|
ne2000->IMR.rdma_inte = ((value & 0x40) == 0x40);
|
|
value2 = ((ne2000->ISR.rdma_done << 6) |
|
|
(ne2000->ISR.cnt_oflow << 5) |
|
|
(ne2000->ISR.overwrite << 4) |
|
|
(ne2000->ISR.tx_err << 3) |
|
|
(ne2000->ISR.rx_err << 2) |
|
|
(ne2000->ISR.pkt_tx << 1) |
|
|
(ne2000->ISR.pkt_rx));
|
|
if (((value & value2) & 0x7f) == 0)
|
|
{
|
|
picintc(1 << ne2000->base_irq);
|
|
}
|
|
else
|
|
{
|
|
picint(1 << ne2000->base_irq);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ne2000_log("page 0 write, bad register 0x%02x\n", offset);
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// page1_read/page1_write - These routines handle reads/writes to
|
|
// the first page of the DS8390 register file
|
|
//
|
|
uint32_t ne2000_page1_read(ne2000_t *ne2000, uint32_t offset, unsigned int io_len)
|
|
{
|
|
ne2000_log("page 1 read from register 0x%02x, len=%u\n", offset, io_len);
|
|
|
|
switch (offset)
|
|
{
|
|
case 0x1: // PAR0-5
|
|
case 0x2:
|
|
case 0x3:
|
|
case 0x4:
|
|
case 0x5:
|
|
case 0x6:
|
|
return (ne2000->physaddr[offset - 1]);
|
|
|
|
case 0x7: // CURR
|
|
ne2000_log("returning current page: 0x%02x\n", (ne2000->curr_page));
|
|
return (ne2000->curr_page);
|
|
|
|
case 0x8: // MAR0-7
|
|
case 0x9:
|
|
case 0xa:
|
|
case 0xb:
|
|
case 0xc:
|
|
case 0xd:
|
|
case 0xe:
|
|
case 0xf:
|
|
return (ne2000->mchash[offset - 8]);
|
|
|
|
default:
|
|
ne2000_log("page 1 read register 0x%02x out of range\n", offset);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void ne2000_page1_write(ne2000_t *ne2000, uint32_t offset, uint32_t value, unsigned io_len)
|
|
{
|
|
ne2000_log("page 1 write to register 0x%02x, len=%u, value=0x%04x\n", offset, io_len, value);
|
|
|
|
switch (offset)
|
|
{
|
|
case 0x1: // PAR0-5
|
|
case 0x2:
|
|
case 0x3:
|
|
case 0x4:
|
|
case 0x5:
|
|
case 0x6:
|
|
ne2000->physaddr[offset - 1] = value;
|
|
if (offset == 6)
|
|
{
|
|
ne2000_log("Physical address set to %02x:%02x:%02x:%02x:%02x:%02x\n", ne2000->physaddr[0], ne2000->physaddr[1], ne2000->physaddr[2], ne2000->physaddr[3], ne2000->physaddr[4], ne2000->physaddr[5]);
|
|
}
|
|
break;
|
|
|
|
case 0x7: // CURR
|
|
ne2000->curr_page = value;
|
|
break;
|
|
|
|
case 0x8: // MAR0-7
|
|
case 0x9:
|
|
case 0xa:
|
|
case 0xb:
|
|
case 0xc:
|
|
case 0xd:
|
|
case 0xe:
|
|
case 0xf:
|
|
ne2000->mchash[offset - 8] = value;
|
|
break;
|
|
|
|
default:
|
|
ne2000_log("page 1 write register 0x%02x out of range\n", offset);
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// page2_read/page2_write - These routines handle reads/writes to
|
|
// the second page of the DS8390 register file
|
|
//
|
|
uint32_t ne2000_page2_read(ne2000_t *ne2000, uint32_t offset, unsigned int io_len)
|
|
{
|
|
ne2000_log("page 2 read from register 0x%02x, len=%u\n", offset, io_len);
|
|
|
|
switch (offset)
|
|
{
|
|
case 0x1: // PSTART
|
|
return (ne2000->page_start);
|
|
|
|
case 0x2: // PSTOP
|
|
return (ne2000->page_stop);
|
|
|
|
case 0x3: // Remote Next-packet pointer
|
|
return (ne2000->rempkt_ptr);
|
|
|
|
case 0x4: // TPSR
|
|
return (ne2000->tx_page_start);
|
|
|
|
case 0x5: // Local Next-packet pointer
|
|
return (ne2000->localpkt_ptr);
|
|
|
|
case 0x6: // Address counter (upper)
|
|
return (ne2000->address_cnt >> 8);
|
|
|
|
case 0x7: // Address counter (lower)
|
|
return (ne2000->address_cnt & 0xff);
|
|
|
|
case 0x8: // Reserved
|
|
case 0x9:
|
|
case 0xa:
|
|
case 0xb:
|
|
ne2000_log("reserved read - page 2, register 0x%02x\n", offset);
|
|
return (0xff);
|
|
|
|
case 0xc: // RCR
|
|
return ((ne2000->RCR.monitor << 5) |
|
|
(ne2000->RCR.promisc << 4) |
|
|
(ne2000->RCR.multicast << 3) |
|
|
(ne2000->RCR.broadcast << 2) |
|
|
(ne2000->RCR.runts_ok << 1) |
|
|
(ne2000->RCR.errors_ok));
|
|
|
|
case 0xd: // TCR
|
|
return ((ne2000->TCR.coll_prio << 4) |
|
|
(ne2000->TCR.ext_stoptx << 3) |
|
|
((ne2000->TCR.loop_cntl & 0x3) << 1) |
|
|
(ne2000->TCR.crc_disable));
|
|
|
|
case 0xe: // DCR
|
|
return (((ne2000->DCR.fifo_size & 0x3) << 5) |
|
|
(ne2000->DCR.auto_rx << 4) |
|
|
(ne2000->DCR.loop << 3) |
|
|
(ne2000->DCR.longaddr << 2) |
|
|
(ne2000->DCR.endian << 1) |
|
|
(ne2000->DCR.wdsize));
|
|
|
|
case 0xf: // IMR
|
|
return ((ne2000->IMR.rdma_inte << 6) |
|
|
(ne2000->IMR.cofl_inte << 5) |
|
|
(ne2000->IMR.overw_inte << 4) |
|
|
(ne2000->IMR.txerr_inte << 3) |
|
|
(ne2000->IMR.rxerr_inte << 2) |
|
|
(ne2000->IMR.tx_inte << 1) |
|
|
(ne2000->IMR.rx_inte));
|
|
|
|
default:
|
|
ne2000_log("page 2 register 0x%02x out of range\n", offset);
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void ne2000_page2_write(ne2000_t *ne2000, uint32_t offset, uint32_t value, unsigned io_len)
|
|
{
|
|
// Maybe all writes here should be BX_PANIC()'d, since they
|
|
// affect internal operation, but let them through for now
|
|
// and print a warning.
|
|
ne2000_log("page 2 write to register 0x%02x, len=%u, value=0x%04x\n", offset, io_len, value);
|
|
|
|
switch (offset)
|
|
{
|
|
case 0x1: // CLDA0
|
|
// Clear out low byte and re-insert
|
|
ne2000->local_dma &= 0xff00;
|
|
ne2000->local_dma |= (value & 0xff);
|
|
break;
|
|
|
|
case 0x2: // CLDA1
|
|
// Clear out high byte and re-insert
|
|
ne2000->local_dma &= 0x00ff;
|
|
ne2000->local_dma |= ((value & 0xff) << 8);
|
|
break;
|
|
|
|
case 0x3: // Remote Next-pkt pointer
|
|
ne2000->rempkt_ptr = value;
|
|
break;
|
|
|
|
case 0x4:
|
|
ne2000_log("page 2 write to reserved register 0x04\n");
|
|
break;
|
|
|
|
case 0x5: // Local Next-packet pointer
|
|
ne2000->localpkt_ptr = value;
|
|
break;
|
|
|
|
case 0x6: // Address counter (upper)
|
|
// Clear out high byte and re-insert
|
|
ne2000->address_cnt &= 0x00ff;
|
|
ne2000->address_cnt |= ((value & 0xff) << 8);
|
|
break;
|
|
|
|
case 0x7: // Address counter (lower)
|
|
// Clear out low byte and re-insert
|
|
ne2000->address_cnt &= 0xff00;
|
|
ne2000->address_cnt |= (value & 0xff);
|
|
break;
|
|
|
|
case 0x8:
|
|
case 0x9:
|
|
case 0xa:
|
|
case 0xb:
|
|
case 0xc:
|
|
case 0xd:
|
|
case 0xe:
|
|
case 0xf:
|
|
ne2000_log("page 2 write to reserved register 0x%02x\n", offset);
|
|
break;
|
|
|
|
default:
|
|
ne2000_log("page 2 write, illegal register 0x%02x\n", offset);
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// page3_read/page3_write - writes to this page are illegal
|
|
//
|
|
uint32_t ne2000_page3_read(ne2000_t *ne2000, uint32_t offset, unsigned int io_len)
|
|
{
|
|
if (network_card_current == 2)
|
|
{
|
|
switch (offset)
|
|
{
|
|
case 0x3: // CONFIG0
|
|
return (0);
|
|
case 0x5: // CONFIG2
|
|
return (0x40);
|
|
case 0x6: // CONFIG3
|
|
return (0x40);
|
|
default:
|
|
ne2000_log("page 3 read register 0x%02x attempted\n", offset);
|
|
return (0);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ne2000_log("page 3 read register 0x%02x attempted\n", offset);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
void ne2000_page3_write(ne2000_t *ne2000, uint32_t offset, uint32_t value, unsigned io_len)
|
|
{
|
|
ne2000_log("page 3 write register 0x%02x attempted\n", offset);
|
|
return;
|
|
}
|
|
|
|
void ne2000_tx_event(void *p, uint32_t val)
|
|
{
|
|
ne2000_t *ne2000 = (ne2000_t *)p;
|
|
|
|
ne2000_log("tx_timer\n");
|
|
ne2000->CR.tx_packet = 0;
|
|
ne2000->TSR.tx_ok = 1;
|
|
ne2000->ISR.pkt_tx = 1;
|
|
// Generate an interrupt if not masked
|
|
if (ne2000->IMR.tx_inte)
|
|
{
|
|
picint(1 << ne2000->base_irq);
|
|
}
|
|
ne2000->tx_timer_active = 0;
|
|
}
|
|
|
|
//
|
|
// read_handler/read - i/o 'catcher' function called from BOCHS
|
|
// mainline when the CPU attempts a read in the i/o space registered
|
|
// by this ne2000 instance
|
|
//
|
|
uint32_t ne2000_read(ne2000_t *ne2000, uint32_t address, unsigned io_len)
|
|
{
|
|
ne2000_log("%s: read addr %x, len %d\n", (network_card_current == 1) ? "NE2000" : "RTL8029AS", address, io_len);
|
|
uint32_t retval = 0;
|
|
int offset = address - ne2000->base_address;
|
|
|
|
if (offset >= 0x10)
|
|
{
|
|
retval = ne2000_asic_read(ne2000, offset - 0x10, io_len);
|
|
}
|
|
else if (offset == 0x00)
|
|
{
|
|
retval = ne2000_read_cr(ne2000);
|
|
}
|
|
else
|
|
{
|
|
switch (ne2000->CR.pgsel)
|
|
{
|
|
case 0x00:
|
|
retval = ne2000_page0_read(ne2000, offset, io_len);
|
|
break;
|
|
|
|
case 0x01:
|
|
retval = ne2000_page1_read(ne2000, offset, io_len);
|
|
break;
|
|
|
|
case 0x02:
|
|
retval = ne2000_page2_read(ne2000, offset, io_len);
|
|
break;
|
|
|
|
case 0x03:
|
|
retval = ne2000_page3_read(ne2000, offset, io_len);
|
|
break;
|
|
|
|
default:
|
|
ne2000_log("unknown value of pgsel in read - %d\n", ne2000->CR.pgsel);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (retval);
|
|
}
|
|
|
|
void ne2000_write(ne2000_t *ne2000, uint32_t address, uint32_t value, unsigned io_len)
|
|
{
|
|
ne2000_log("%s: write addr %x, value %x len %d\n", (network_card_current == 1) ? "NE2000" : "RTL8029AS", address, value, io_len);
|
|
int offset = address - ne2000->base_address;
|
|
|
|
//
|
|
// The high 16 bytes of i/o space are for the ne2000 asic -
|
|
// the low 16 bytes are for the DS8390, with the current
|
|
// page being selected by the PS0,PS1 registers in the
|
|
// command register
|
|
//
|
|
if (offset >= 0x10)
|
|
{
|
|
ne2000_asic_write(ne2000, offset - 0x10, value, io_len);
|
|
}
|
|
else if (offset == 0x00)
|
|
{
|
|
ne2000_write_cr(ne2000, value);
|
|
}
|
|
else
|
|
{
|
|
switch (ne2000->CR.pgsel)
|
|
{
|
|
case 0x00:
|
|
ne2000_page0_write(ne2000, offset, value, io_len);
|
|
break;
|
|
|
|
case 0x01:
|
|
ne2000_page1_write(ne2000, offset, value, io_len);
|
|
break;
|
|
|
|
case 0x02:
|
|
ne2000_page2_write(ne2000, offset, value, io_len);
|
|
break;
|
|
|
|
case 0x03:
|
|
ne2000_page3_write(ne2000, offset, value, io_len);
|
|
break;
|
|
|
|
default:
|
|
ne2000_log("unknown value of pgsel in write - %d\n", ne2000->CR.pgsel);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* mcast_index() - return the 6-bit index into the multicast
|
|
* table. Stolen unashamedly from FreeBSD's if_ed.c
|
|
*/
|
|
static int mcast_index(const void *dst)
|
|
{
|
|
#define POLYNOMIAL 0x04c11db6
|
|
unsigned long crc = 0xffffffffL;
|
|
int carry, i, j;
|
|
unsigned char b;
|
|
unsigned char *ep = (unsigned char *) dst;
|
|
|
|
for (i = 6; --i >= 0;)
|
|
{
|
|
b = *ep++;
|
|
for (j = 8; --j >= 0;)
|
|
{
|
|
carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
|
|
crc <<= 1;
|
|
b >>= 1;
|
|
if (carry)
|
|
{
|
|
crc = ((crc ^ POLYNOMIAL) | carry);
|
|
}
|
|
}
|
|
}
|
|
return (crc >> 26);
|
|
#undef POLYNOMIAL
|
|
}
|
|
|
|
/*
|
|
* rx_frame() - called by the platform-specific code when an
|
|
* ethernet frame has been received. The destination address
|
|
* is tested to see if it should be accepted, and if the
|
|
* rx ring has enough room, it is copied into it and
|
|
* the receive process is updated
|
|
*/
|
|
void ne2000_rx_frame(void *p, const void *buf, int io_len)
|
|
{
|
|
ne2000_t *ne2000 = (ne2000_t *)p;
|
|
|
|
int pages;
|
|
int avail;
|
|
int idx;
|
|
int wrapped;
|
|
int nextpage;
|
|
uint8_t pkthdr[4];
|
|
uint8_t *pktbuf = (uint8_t *) buf;
|
|
uint8_t *startptr;
|
|
static uint8_t bcast_addr[6] = {0xff,0xff,0xff,0xff,0xff,0xff};
|
|
uint32_t mac_cmp32[2];
|
|
uint16_t mac_cmp16[2];
|
|
|
|
if(io_len != 60)
|
|
{
|
|
ne2000_log("rx_frame with length %d\n", io_len);
|
|
}
|
|
|
|
if ((ne2000->CR.stop != 0) ||
|
|
(ne2000->page_start == 0))
|
|
{
|
|
return;
|
|
}
|
|
|
|
// Add the pkt header + CRC to the length, and work
|
|
// out how many 256-byte pages the frame would occupy
|
|
pages = (io_len + 4 + 4 + 255)/256;
|
|
|
|
if (ne2000->curr_page < ne2000->bound_ptr)
|
|
{
|
|
avail = ne2000->bound_ptr - ne2000->curr_page;
|
|
}
|
|
else
|
|
{
|
|
avail = (ne2000->page_stop - ne2000->page_start) - (ne2000->curr_page - ne2000->bound_ptr);
|
|
wrapped = 1;
|
|
}
|
|
|
|
// Avoid getting into a buffer overflow condition by not attempting
|
|
// to do partial receives. The emulation to handle this condition
|
|
// seems particularly painful.
|
|
if ((avail < pages)
|
|
#if BX_NE2K_NEVER_FULL_RING
|
|
|| (avail == pages)
|
|
#endif
|
|
)
|
|
{
|
|
ne2000_log("no space\n");
|
|
return;
|
|
}
|
|
|
|
if ((io_len < 40/*60*/) && !ne2000->RCR.runts_ok)
|
|
{
|
|
ne2000_log("rejected small packet, length %d\n", io_len);
|
|
return;
|
|
}
|
|
// some computers don't care...
|
|
if (io_len < 60)
|
|
{
|
|
io_len=60;
|
|
}
|
|
|
|
// Do address filtering if not in promiscuous mode
|
|
if (! ne2000->RCR.promisc)
|
|
{
|
|
/* Received. */
|
|
mac_cmp32[0] = *(uint32_t *) (buf);
|
|
mac_cmp16[0] = *(uint16_t *) (buf+4);
|
|
/* Local. */
|
|
mac_cmp32[1] = *(uint32_t *) (bcast_addr);
|
|
mac_cmp16[1] = *(uint16_t *) (bcast_addr+4);
|
|
if ((mac_cmp32[0] == mac_cmp32[1]) && (mac_cmp16[0] == mac_cmp16[1]))
|
|
{
|
|
if (!ne2000->RCR.broadcast)
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
else if (pktbuf[0] & 0x01)
|
|
{
|
|
if (! ne2000->RCR.multicast)
|
|
{
|
|
return;
|
|
}
|
|
idx = mcast_index(buf);
|
|
if (!(ne2000->mchash[idx >> 3] & (1 << (idx & 0x7))))
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
else if (0 != memcmp(buf, ne2000->physaddr, 6))
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ne2000_log("rx_frame promiscuous receive\n");
|
|
}
|
|
|
|
ne2000_log("rx_frame %d to %x:%x:%x:%x:%x:%x from %x:%x:%x:%x:%x:%x\n", io_len, pktbuf[0], pktbuf[1], pktbuf[2], pktbuf[3], pktbuf[4], pktbuf[5], pktbuf[6], pktbuf[7], pktbuf[8], pktbuf[9], pktbuf[10], pktbuf[11]);
|
|
|
|
nextpage = ne2000->curr_page + pages;
|
|
if (nextpage >= ne2000->page_stop)
|
|
{
|
|
nextpage -= ne2000->page_stop - ne2000->page_start;
|
|
}
|
|
|
|
// Setup packet header
|
|
pkthdr[0] = 0; // rx status - old behavior
|
|
pkthdr[0] = 1; // Probably better to set it all the time
|
|
// rather than set it to 0, which is clearly wrong.
|
|
if (pktbuf[0] & 0x01)
|
|
{
|
|
pkthdr[0] |= 0x20; // rx status += multicast packet
|
|
}
|
|
pkthdr[1] = nextpage; // ptr to next packet
|
|
pkthdr[2] = (io_len + 4) & 0xff; // length-low
|
|
pkthdr[3] = (io_len + 4) >> 8; // length-hi
|
|
|
|
// copy into buffer, update curpage, and signal interrupt if config'd
|
|
startptr = & ne2000->mem[ne2000->curr_page * 256 - BX_NE2K_MEMSTART];
|
|
if ((nextpage > ne2000->curr_page) || ((ne2000->curr_page + pages) == ne2000->page_stop))
|
|
{
|
|
*(uint32_t *) startptr = *(uint32_t *) pkthdr;
|
|
memcpy(startptr + 4, buf, io_len);
|
|
ne2000->curr_page = nextpage;
|
|
}
|
|
else
|
|
{
|
|
int endbytes = (ne2000->page_stop - ne2000->curr_page) * 256;
|
|
*(uint32_t *) startptr = *(uint32_t *) pkthdr;
|
|
memcpy(startptr + 4, buf, endbytes - 4);
|
|
startptr = & ne2000->mem[ne2000->page_start * 256 - BX_NE2K_MEMSTART];
|
|
memcpy(startptr, (void *)(pktbuf + endbytes - 4), io_len - endbytes + 8);
|
|
ne2000->curr_page = nextpage;
|
|
}
|
|
|
|
ne2000->RSR.rx_ok = 1;
|
|
if (pktbuf[0] & 0x80)
|
|
{
|
|
ne2000->RSR.rx_mbit = 1;
|
|
}
|
|
|
|
ne2000->ISR.pkt_rx = 1;
|
|
|
|
if (ne2000->IMR.rx_inte)
|
|
{
|
|
picint(1 << ne2000->base_irq);
|
|
}
|
|
}
|
|
|
|
uint8_t ne2000_readb(uint16_t addr, void *p)
|
|
{
|
|
ne2000_t *ne2000 = (ne2000_t *)p;
|
|
return ne2000_read(ne2000, addr, 1);
|
|
}
|
|
|
|
uint16_t ne2000_readw(uint16_t addr, void *p)
|
|
{
|
|
ne2000_t *ne2000 = (ne2000_t *)p;
|
|
if (ne2000->DCR.wdsize & 1)
|
|
{
|
|
return ne2000_read(ne2000, addr, 2);
|
|
}
|
|
else
|
|
{
|
|
return ne2000_read(ne2000, addr, 1);
|
|
}
|
|
}
|
|
|
|
uint32_t ne2000_readl(uint16_t addr, void *p)
|
|
{
|
|
ne2000_t *ne2000 = (ne2000_t *)p;
|
|
return ne2000_read(ne2000, addr, 4);
|
|
}
|
|
|
|
void ne2000_writeb(uint16_t addr, uint8_t val, void *p)
|
|
{
|
|
ne2000_t *ne2000 = (ne2000_t *)p;
|
|
ne2000_write(ne2000, addr, val, 1);
|
|
}
|
|
|
|
void ne2000_writew(uint16_t addr, uint16_t val, void *p)
|
|
{
|
|
ne2000_t *ne2000 = (ne2000_t *)p;
|
|
if (ne2000->DCR.wdsize & 1)
|
|
{
|
|
ne2000_write(ne2000, addr, val, 2);
|
|
}
|
|
else
|
|
{
|
|
ne2000_write(ne2000, addr, val, 1);
|
|
}
|
|
}
|
|
|
|
void ne2000_writel(uint16_t addr, uint32_t val, void *p)
|
|
{
|
|
ne2000_t *ne2000 = (ne2000_t *)p;
|
|
ne2000_write(ne2000, addr, val, 4);
|
|
}
|
|
|
|
void ne2000_poller(void *p)
|
|
{
|
|
ne2000_t *ne2000 = (ne2000_t *)p;
|
|
struct queuepacket *qp;
|
|
const unsigned char *data;
|
|
struct pcap_pkthdr h;
|
|
uint32_t mac_cmp32[2];
|
|
uint16_t mac_cmp16[2];
|
|
|
|
int res;
|
|
if (!net_is_pcap)
|
|
{
|
|
while(QueuePeek(slirpq) > 0)
|
|
{
|
|
qp=QueueDelete(slirpq);
|
|
if((ne2000->DCR.loop == 0) || (ne2000->TCR.loop_cntl != 0))
|
|
{
|
|
free(qp);
|
|
return;
|
|
}
|
|
ne2000_rx_frame(ne2000,&qp->data,qp->len);
|
|
ne2000_log("ne2000 inQ:%d got a %dbyte packet @%d\n",QueuePeek(slirpq),qp->len,qp);
|
|
free(qp);
|
|
}
|
|
fizz++;
|
|
if (fizz>1200)
|
|
{
|
|
fizz=0;slirp_tic();
|
|
}
|
|
}//end slirp
|
|
else if (net_is_pcap && (net_pcap != NULL))
|
|
{
|
|
if((ne2000->DCR.loop == 0) || (ne2000->TCR.loop_cntl != 0))
|
|
{
|
|
return;
|
|
}
|
|
data=pcap_next(net_pcap,&h);
|
|
if(data==0x0)
|
|
{
|
|
return;
|
|
}
|
|
/* Received. */
|
|
mac_cmp32[0] = *(uint32_t *) (data+6);
|
|
mac_cmp16[0] = *(uint16_t *) (data+10);
|
|
/* Local. */
|
|
mac_cmp32[1] = *(uint32_t *) (maclocal);
|
|
mac_cmp16[1] = *(uint16_t *) (maclocal+4);
|
|
if ((mac_cmp32[0] != mac_cmp32[1]) || (mac_cmp16[0] != mac_cmp16[1]))
|
|
{
|
|
// ne2000_log("ne2000 pcap received a frame %d bytes\n",h.caplen);
|
|
ne2000_rx_frame(ne2000,data,h.caplen);
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef union
|
|
{
|
|
uint32_t addr;
|
|
uint8_t addr_regs[4];
|
|
} bar_t;
|
|
|
|
uint8_t ne2000_pci_regs[256];
|
|
|
|
bar_t ne2000_pci_bar[2];
|
|
|
|
uint32_t bios_addr = 0xD0000;
|
|
uint32_t old_base_addr = 0;
|
|
|
|
uint32_t bios_size = 0;
|
|
uint32_t bios_mask = 0;
|
|
|
|
void ne2000_io_set(uint16_t addr, ne2000_t *ne2000)
|
|
{
|
|
old_base_addr = addr;
|
|
if (network_card_current == 1)
|
|
{
|
|
io_sethandler(addr, 0x0010, ne2000_readb, NULL, NULL, ne2000_writeb, NULL, NULL, ne2000);
|
|
io_sethandler(addr+0x10, 0x0010, ne2000_readb, ne2000_readw, NULL, ne2000_writeb, ne2000_writew, NULL, ne2000);
|
|
io_sethandler(addr+0x1f, 0x0001, ne2000_readb, NULL, NULL, ne2000_writeb, NULL, NULL, ne2000);
|
|
}
|
|
else
|
|
{
|
|
io_sethandler(addr, 0x0010, ne2000_readb, ne2000_readw, ne2000_readl, ne2000_writeb, ne2000_writew, ne2000_writel, ne2000);
|
|
io_sethandler(addr+0x10, 0x0010, ne2000_readb, ne2000_readw, ne2000_readl, ne2000_writeb, ne2000_writew, ne2000_writel, ne2000);
|
|
io_sethandler(addr+0x1f, 0x0001, ne2000_readb, ne2000_readw, ne2000_readl, ne2000_writeb, ne2000_writew, ne2000_writel, ne2000);
|
|
}
|
|
}
|
|
|
|
void ne2000_io_remove(int16_t addr, ne2000_t *ne2000)
|
|
{
|
|
if (network_card_current == 1)
|
|
{
|
|
io_removehandler(addr, 0x0010, ne2000_readb, NULL, NULL, ne2000_writeb, NULL, NULL, ne2000);
|
|
io_removehandler(addr+0x10, 0x0010, ne2000_readb, ne2000_readw, NULL, ne2000_writeb, ne2000_writew, NULL, ne2000);
|
|
io_removehandler(addr+0x1f, 0x0001, ne2000_readb, NULL, NULL, ne2000_writeb, NULL, NULL, ne2000);
|
|
}
|
|
else
|
|
{
|
|
io_removehandler(addr, 0x0010, ne2000_readb, ne2000_readw, ne2000_readl, ne2000_writeb, ne2000_writew, ne2000_writel, ne2000);
|
|
io_removehandler(addr+0x10, 0x0010, ne2000_readb, ne2000_readw, ne2000_readl, ne2000_writeb, ne2000_writew, ne2000_writel, ne2000);
|
|
io_removehandler(addr+0x1f, 0x0001, ne2000_readb, ne2000_readw, ne2000_readl, ne2000_writeb, ne2000_writew, ne2000_writel, ne2000);
|
|
}
|
|
}
|
|
|
|
uint8_t ne2000_pci_read(int func, int addr, void *p)
|
|
{
|
|
ne2000_t *ne2000 = (ne2000_t *) p;
|
|
|
|
// ne2000_log("NE2000 PCI read %08X\n", addr);
|
|
switch (addr)
|
|
{
|
|
case 0x00:
|
|
return 0xec;
|
|
case 0x01:
|
|
return 0x10;
|
|
|
|
case 0x02:
|
|
return 0x29;
|
|
case 0x03:
|
|
return 0x80;
|
|
|
|
case 0x2C:
|
|
return 0xF4;
|
|
case 0x2D:
|
|
return 0x1A;
|
|
case 0x2E:
|
|
return 0x00;
|
|
case 0x2F:
|
|
return 0x11;
|
|
|
|
case 0x04:
|
|
return ne2000_pci_regs[0x04]; /*Respond to IO and memory accesses*/
|
|
case 0x05:
|
|
return ne2000_pci_regs[0x05];
|
|
|
|
case 0x07:
|
|
return 2;
|
|
|
|
case 0x08:
|
|
return 0; /*Revision ID*/
|
|
case 0x09:
|
|
return 0; /*Programming interface*/
|
|
|
|
case 0x0B:
|
|
return ne2000_pci_regs[0x0B];
|
|
|
|
case 0x10:
|
|
return 1; /*I/O space*/
|
|
case 0x11:
|
|
return ne2000_pci_bar[0].addr_regs[1];
|
|
case 0x12:
|
|
return ne2000_pci_bar[0].addr_regs[2];
|
|
case 0x13:
|
|
return ne2000_pci_bar[0].addr_regs[3];
|
|
|
|
case 0x30:
|
|
return ne2000_pci_bar[1].addr_regs[0] & 0x01; /*BIOS ROM address*/
|
|
case 0x31:
|
|
return (ne2000_pci_bar[1].addr_regs[1] & bios_mask) | 0x18;
|
|
case 0x32:
|
|
return ne2000_pci_bar[1].addr_regs[2];
|
|
case 0x33:
|
|
return ne2000_pci_bar[1].addr_regs[3];
|
|
|
|
case 0x3C:
|
|
return ne2000_pci_regs[0x3C];
|
|
case 0x3D:
|
|
return ne2000_pci_regs[0x3D];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void ne2000_update_bios(ne2000_t *ne2000)
|
|
{
|
|
int reg_bios_enable;
|
|
|
|
// reg_bios_enable = ne2000_pci_regs[0x30];
|
|
reg_bios_enable = 1;
|
|
|
|
/* PCI BIOS stuff, just enable_disable. */
|
|
if (!disable_netbios && reg_bios_enable)
|
|
{
|
|
mem_mapping_enable(&ne2000->bios_rom.mapping);
|
|
mem_mapping_set_addr(&ne2000->bios_rom.mapping, bios_addr, 0x10000);
|
|
ne2000_log("Network BIOS now at: %08X\n", bios_addr);
|
|
}
|
|
else
|
|
{
|
|
mem_mapping_disable(&ne2000->bios_rom.mapping);
|
|
if (network_card_current == 2) ne2000_pci_bar[1].addr = 0;
|
|
}
|
|
}
|
|
|
|
void ne2000_pci_write(int func, int addr, uint8_t val, void *p)
|
|
{
|
|
ne2000_t *ne2000 = (ne2000_t *) p;
|
|
|
|
switch (addr)
|
|
{
|
|
case 0x04:
|
|
ne2000_io_remove(ne2000->base_address, ne2000);
|
|
if (val & PCI_COMMAND_IO)
|
|
{
|
|
ne2000_io_set(ne2000->base_address, ne2000);
|
|
}
|
|
ne2000_pci_regs[addr] = val;
|
|
break;
|
|
|
|
case 0x10:
|
|
val &= 0xfc;
|
|
val |= 1;
|
|
case 0x11: case 0x12: case 0x13:
|
|
/* I/O Base set. */
|
|
/* First, remove the old I/O, if old base was >= 0x280. */
|
|
ne2000_io_remove(ne2000->base_address, ne2000);
|
|
/* Then let's set the PCI regs. */
|
|
ne2000_pci_bar[0].addr_regs[addr & 3] = val;
|
|
/* Then let's calculate the new I/O base. */
|
|
ne2000->base_address = ne2000_pci_bar[0].addr & 0xff00;
|
|
/* Log the new base. */
|
|
ne2000_log("NE2000 RTL8029AS PCI: New I/O base is %04X\n" , ne2000->base_address);
|
|
/* We're done, so get out of the here. */
|
|
return;
|
|
|
|
case 0x30: case 0x31: case 0x32: case 0x33:
|
|
ne2000_pci_bar[1].addr_regs[addr & 3] = val;
|
|
ne2000_pci_bar[1].addr_regs[1] &= bios_mask;
|
|
bios_addr = ne2000_pci_bar[1].addr & 0xffffe000;
|
|
ne2000_pci_bar[1].addr &= 0xffffe000;
|
|
ne2000_pci_bar[1].addr |= 0x1801;
|
|
ne2000_update_bios(ne2000);
|
|
return;
|
|
|
|
/* Commented out until an APIC controller is emulated for the PIIX3,
|
|
otherwise the RTL-8029/AS will not get an IRQ on boards using the PIIX3. */
|
|
#if 0
|
|
case 0x3C:
|
|
ne2000_pci_regs[addr] = val;
|
|
if (val != 0xFF)
|
|
{
|
|
ne2000_log("NE2000 IRQ now: %i\n", val);
|
|
ne2000_setirq(ne2000, val);
|
|
}
|
|
return;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void ne2000_rom_init(ne2000_t *ne2000, char *s)
|
|
{
|
|
FILE *f = fopen(s, "rb");
|
|
uint32_t temp;
|
|
if(!f)
|
|
{
|
|
disable_netbios = 1;
|
|
ne2000_update_bios(ne2000);
|
|
return;
|
|
}
|
|
fseek(f, 0, SEEK_END);
|
|
temp = ftell(f);
|
|
fclose(f);
|
|
bios_size = 0x10000;
|
|
if (temp <= 0x8000)
|
|
{
|
|
bios_size = 0x8000;
|
|
}
|
|
if (temp <= 0x4000)
|
|
{
|
|
bios_size = 0x4000;
|
|
}
|
|
if (temp <= 0x2000)
|
|
{
|
|
bios_size = 0x2000;
|
|
}
|
|
bios_mask = (bios_size >> 8) & 0xff;
|
|
bios_mask = (0x100 - bios_mask) & 0xff;
|
|
|
|
rom_init(&ne2000->bios_rom, s, 0xd0000, bios_size, bios_size - 1, 0, MEM_MAPPING_EXTERNAL);
|
|
}
|
|
|
|
static char errbuf[32768];
|
|
|
|
void *ne2000_init()
|
|
{
|
|
int rc;
|
|
int config_net_type;
|
|
int net_type;
|
|
int irq;
|
|
int pcap_device_available = 0;
|
|
int is_rtl8029as = 0;
|
|
ne2000_t *ne2000 = malloc(sizeof(ne2000_t));
|
|
memset(ne2000, 0, sizeof(ne2000_t));
|
|
|
|
if (PCI && (network_card_current == 2))
|
|
{
|
|
is_rtl8029as = 1;
|
|
}
|
|
else
|
|
{
|
|
network_card_current = 1;
|
|
is_rtl8029as = 0;
|
|
}
|
|
|
|
if (is_rtl8029as)
|
|
{
|
|
ne2000->base_address = 0x340;
|
|
}
|
|
else
|
|
{
|
|
ne2000->base_address = device_get_config_int("addr");
|
|
}
|
|
|
|
disable_netbios = device_get_config_int("disable_netbios");
|
|
|
|
irq = device_get_config_int("irq");
|
|
ne2000_setirq(ne2000, irq);
|
|
|
|
config_net_type = device_get_config_int("net_type");
|
|
/* Network type is now specified in device config. */
|
|
net_is_pcap = config_net_type ? 0 : 1;
|
|
if(!strcmp("nothing", config_get_string(NULL, "pcap_device", "nothing")))
|
|
{
|
|
net_is_pcap = 0;
|
|
pcap_device_available = 0;
|
|
}
|
|
else
|
|
{
|
|
pcap_device_available = 1;
|
|
}
|
|
ne2000_log("net_is_pcap = %i\n", net_is_pcap);
|
|
|
|
if (is_rtl8029as)
|
|
{
|
|
pci_add(ne2000_pci_read, ne2000_pci_write, ne2000);
|
|
}
|
|
|
|
ne2000_io_set(ne2000->base_address, ne2000);
|
|
|
|
memcpy(ne2000->physaddr, maclocal, 6);
|
|
|
|
if (!disable_netbios)
|
|
{
|
|
ne2000_rom_init(ne2000, "roms/ne2000.rom");
|
|
|
|
if (is_rtl8029as)
|
|
{
|
|
mem_mapping_disable(&ne2000->bios_rom.mapping);
|
|
}
|
|
}
|
|
|
|
if (is_rtl8029as)
|
|
{
|
|
ne2000_pci_regs[0x04] = 1;
|
|
ne2000_pci_regs[0x05] = 0;
|
|
|
|
ne2000_pci_regs[0x07] = 2;
|
|
|
|
/* Network controller. */
|
|
ne2000_pci_regs[0x0B] = 2;
|
|
|
|
ne2000_pci_bar[0].addr_regs[0] = 1;
|
|
|
|
if (disable_netbios)
|
|
{
|
|
ne2000_pci_bar[1].addr = 0;
|
|
bios_addr = 0;
|
|
}
|
|
else
|
|
{
|
|
ne2000_pci_bar[1].addr = 0x000F8000;
|
|
ne2000_pci_bar[1].addr_regs[1] = bios_mask;
|
|
ne2000_pci_bar[1].addr |= 0x1801;
|
|
bios_addr = 0xD0000;
|
|
}
|
|
|
|
// ne2000_pci_regs[0x3C] = ide_ter_enabled ? 11 : 10;
|
|
ne2000_pci_regs[0x3C] = irq;
|
|
pclog("RTL8029AS IRQ: %i\n", ne2000_pci_regs[0x3C]);
|
|
ne2000_pci_regs[0x3D] = 1;
|
|
|
|
memset(rtl8029as_eeprom, 0, 128);
|
|
rtl8029as_eeprom[0x76] = rtl8029as_eeprom[0x7A] = rtl8029as_eeprom[0x7E] = 0x29;
|
|
rtl8029as_eeprom[0x77] = rtl8029as_eeprom[0x7B] = rtl8029as_eeprom[0x7F] = 0x80;
|
|
rtl8029as_eeprom[0x78] = rtl8029as_eeprom[0x7C] = 0x10;
|
|
rtl8029as_eeprom[0x79] = rtl8029as_eeprom[0x7D] = 0xEC;
|
|
}
|
|
|
|
ne2000_reset(ne2000, BX_RESET_HARDWARE);
|
|
vlan_handler(ne2000_poller, ne2000);
|
|
|
|
ne2000_log("ne2000 %s init 0x%X %d\tnet_is_pcap is %d\n",is_rtl8029as ? "pci" : "isa",ne2000->base_address,device_get_config_int("irq"),net_is_pcap);
|
|
|
|
//need a switch statment for more network types.
|
|
if (!net_is_pcap)
|
|
{
|
|
initialize_slirp:
|
|
ne2000_log("ne2000 initalizing SLiRP\n");
|
|
net_is_pcap=0;
|
|
rc=slirp_init();
|
|
ne2000_log("ne2000 slirp_init returned: %d\n",rc);
|
|
if (!rc)
|
|
{
|
|
ne2000_log("ne2000 slirp initalized!\n");
|
|
|
|
net_slirp_inited = 1;
|
|
slirpq = QueueCreate();
|
|
fizz=0;
|
|
ne2000_log("ne2000 slirpq is %x\n",&slirpq);
|
|
}
|
|
else
|
|
{
|
|
net_slirp_inited = 0;
|
|
if (pcap_device_available)
|
|
{
|
|
net_is_pcap = 1;
|
|
goto initialize_pcap;
|
|
}
|
|
else
|
|
{
|
|
ne2000_log("Neither SLiRP nor PCap is available on your host, disabling network adapter...\n");
|
|
free(ne2000);
|
|
network_card_current = 0;
|
|
resetpchard();
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
initialize_pcap:
|
|
ne2000_log("ne2000 initalizing libpcap\n");
|
|
|
|
ne2000_log("ne2000 Pcap version [%s]\n",pcap_lib_version());
|
|
|
|
if((net_pcap=pcap_open_live(config_get_string(NULL,"pcap_device","nothing"),1518,1,15,errbuf))==0)
|
|
{
|
|
ne2000_log("ne2000 pcap_open_live error on %s!\n",config_get_string(NULL,"pcap_device","whatever the ethernet is"));
|
|
net_is_pcap=0;
|
|
return(ne2000); // YUCK!!!
|
|
}
|
|
|
|
//Time to check that we are in non-blocking mode.
|
|
rc=pcap_getnonblock(net_pcap,errbuf);
|
|
ne2000_log("ne2000 pcap is currently in %s mode\n",rc? "non-blocking":"blocking");
|
|
switch(rc)
|
|
{
|
|
case 0:
|
|
ne2000_log("ne2000 Setting interface to non-blocking mode..");
|
|
rc = pcap_setnonblock(net_pcap,1,errbuf);
|
|
if (rc==0)
|
|
{ // no errors!
|
|
ne2000_log("..");
|
|
rc=pcap_getnonblock(net_pcap,errbuf);
|
|
if(rc == 1)
|
|
{
|
|
ne2000_log("..!",rc);
|
|
net_is_pcap=1;
|
|
}
|
|
else
|
|
{
|
|
ne2000_log("\tunable to set pcap into non-blocking mode!\nContinuining without pcap.\n");
|
|
net_is_pcap=0;
|
|
}
|
|
} // end set nonblock
|
|
else
|
|
{
|
|
ne2000_log("There was an unexpected error of [%s]\n\nexiting.\n",errbuf);net_is_pcap=0;}
|
|
ne2000_log("\n");
|
|
break;
|
|
case 1:
|
|
ne2000_log("non blocking\n");
|
|
break;
|
|
default:
|
|
ne2000_log("this isn't right!!!\n");
|
|
net_is_pcap=0;
|
|
break;
|
|
}
|
|
if (net_is_pcap)
|
|
{
|
|
struct bpf_program fp;
|
|
char filter_exp[255];
|
|
ne2000_log("ne2000 Building packet filter...");
|
|
sprintf(filter_exp,"( ((ether dst ff:ff:ff:ff:ff:ff) or (ether dst %02x:%02x:%02x:%02x:%02x:%02x)) and not (ether src %02x:%02x:%02x:%02x:%02x:%02x) )", \
|
|
maclocal[0], maclocal[1], maclocal[2], maclocal[3], maclocal[4], maclocal[5],\
|
|
maclocal[0], maclocal[1], maclocal[2], maclocal[3], maclocal[4], maclocal[5]);
|
|
|
|
//I'm doing a MAC level filter so TCP/IP doesn't matter.
|
|
if (pcap_compile(net_pcap, &fp, filter_exp, 0, 0xffffffff) == -1)
|
|
{
|
|
ne2000_log("\nne2000 Couldn't compile filter\n");
|
|
}
|
|
else
|
|
{
|
|
ne2000_log("...");
|
|
if (pcap_setfilter(net_pcap, &fp) == -1)
|
|
{
|
|
ne2000_log("\nError installing pcap filter.\n");
|
|
}//end of set_filter failure
|
|
else
|
|
{
|
|
ne2000_log("...!\n");
|
|
}
|
|
}
|
|
ne2000_log("ne2000 Using filter\t[%s]\n",filter_exp);
|
|
}
|
|
else
|
|
{
|
|
pcap_device_available = 0;
|
|
goto initialize_slirp;
|
|
}
|
|
ne2000_log("ne2000 net_is_pcap is %d and net_pcap is %x\n",net_is_pcap,net_pcap);
|
|
} // end pcap setup
|
|
|
|
ne2000_log("ne2000 is_pcap %d\n", net_is_pcap);
|
|
return ne2000;
|
|
}
|
|
|
|
void ne2000_close(void *p)
|
|
{
|
|
ne2000_t *ne2000 = (ne2000_t *)p;
|
|
ne2000_io_remove(ne2000->base_address, ne2000);
|
|
free(ne2000);
|
|
|
|
if(!net_is_pcap)
|
|
{
|
|
QueueDestroy(slirpq);
|
|
slirp_exit(0);
|
|
net_slirp_inited=0;
|
|
ne2000_log("ne2000 exiting slirp\n");
|
|
}
|
|
else if (net_is_pcap && (net_pcap != NULL))
|
|
{
|
|
pcap_close(net_pcap);
|
|
ne2000_log("ne2000 closing pcap\n");
|
|
}
|
|
ne2000_log("ne2000 close\n");
|
|
}
|
|
|
|
static device_config_t ne2000_config[] =
|
|
{
|
|
{
|
|
.name = "addr",
|
|
.description = "Address",
|
|
.type = CONFIG_BINARY,
|
|
.type = CONFIG_SELECTION,
|
|
.selection =
|
|
{
|
|
{
|
|
.description = "0x280",
|
|
.value = 0x280
|
|
},
|
|
{
|
|
.description = "0x300",
|
|
.value = 0x300
|
|
},
|
|
{
|
|
.description = "0x320",
|
|
.value = 0x320
|
|
},
|
|
{
|
|
.description = "0x340",
|
|
.value = 0x340
|
|
},
|
|
{
|
|
.description = "0x360",
|
|
.value = 0x360
|
|
},
|
|
{
|
|
.description = "0x380",
|
|
.value = 0x380
|
|
},
|
|
{
|
|
.description = ""
|
|
}
|
|
},
|
|
.default_int = 0x300
|
|
},
|
|
{
|
|
.name = "irq",
|
|
.description = "IRQ",
|
|
.type = CONFIG_SELECTION,
|
|
.selection =
|
|
{
|
|
{
|
|
.description = "IRQ 3",
|
|
.value = 3
|
|
},
|
|
{
|
|
.description = "IRQ 5",
|
|
.value = 5
|
|
},
|
|
{
|
|
.description = "IRQ 7",
|
|
.value = 7
|
|
},
|
|
{
|
|
.description = "IRQ 10",
|
|
.value = 10
|
|
},
|
|
{
|
|
.description = "IRQ 11",
|
|
.value = 11
|
|
},
|
|
{
|
|
.description = ""
|
|
}
|
|
},
|
|
.default_int = 10
|
|
},
|
|
{
|
|
.name = "net_type",
|
|
.description = "Network type",
|
|
.type = CONFIG_BINARY,
|
|
.type = CONFIG_SELECTION,
|
|
.selection =
|
|
{
|
|
{
|
|
.description = "PCap",
|
|
.value = 0
|
|
},
|
|
{
|
|
.description = "SLiRP",
|
|
.value = 1
|
|
},
|
|
{
|
|
.description = ""
|
|
}
|
|
},
|
|
.default_int = 0
|
|
},
|
|
{
|
|
.name = "disable_netbios",
|
|
.description = "Network bios",
|
|
.type = CONFIG_BINARY,
|
|
.type = CONFIG_SELECTION,
|
|
.selection =
|
|
{
|
|
{
|
|
.description = "Enabled",
|
|
.value = 0
|
|
},
|
|
{
|
|
.description = "Disabled",
|
|
.value = 1
|
|
},
|
|
{
|
|
.description = ""
|
|
}
|
|
},
|
|
.default_int = 0
|
|
},
|
|
{
|
|
.type = -1
|
|
}
|
|
};
|
|
|
|
static device_config_t rtl8029as_config[] =
|
|
{
|
|
{
|
|
.name = "irq",
|
|
.description = "IRQ",
|
|
.type = CONFIG_SELECTION,
|
|
.selection =
|
|
{
|
|
{
|
|
.description = "IRQ 3",
|
|
.value = 3
|
|
},
|
|
{
|
|
.description = "IRQ 5",
|
|
.value = 5
|
|
},
|
|
{
|
|
.description = "IRQ 7",
|
|
.value = 7
|
|
},
|
|
{
|
|
.description = "IRQ 10",
|
|
.value = 10
|
|
},
|
|
{
|
|
.description = "IRQ 11",
|
|
.value = 11
|
|
},
|
|
{
|
|
.description = ""
|
|
}
|
|
},
|
|
.default_int = 10
|
|
},
|
|
{
|
|
.name = "net_type",
|
|
.description = "Network type",
|
|
.type = CONFIG_BINARY,
|
|
.type = CONFIG_SELECTION,
|
|
.selection =
|
|
{
|
|
{
|
|
.description = "PCap",
|
|
.value = 0
|
|
},
|
|
{
|
|
.description = "SLiRP",
|
|
.value = 1
|
|
},
|
|
{
|
|
.description = ""
|
|
}
|
|
},
|
|
.default_int = 0
|
|
},
|
|
{
|
|
.name = "disable_netbios",
|
|
.description = "Network bios",
|
|
.type = CONFIG_BINARY,
|
|
.type = CONFIG_SELECTION,
|
|
.selection =
|
|
{
|
|
{
|
|
.description = "Enabled",
|
|
.value = 0
|
|
},
|
|
{
|
|
.description = "Disabled",
|
|
.value = 1
|
|
},
|
|
{
|
|
.description = ""
|
|
}
|
|
},
|
|
.default_int = 0
|
|
},
|
|
{
|
|
.type = -1
|
|
}
|
|
};
|
|
|
|
device_t ne2000_device =
|
|
{
|
|
"Novell NE2000",
|
|
0,
|
|
ne2000_init,
|
|
ne2000_close,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
ne2000_config
|
|
};
|
|
|
|
device_t rtl8029as_device =
|
|
{
|
|
"Realtek RTL8029AS",
|
|
0,
|
|
ne2000_init,
|
|
ne2000_close,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
rtl8029as_config
|
|
};
|
|
|
|
//SLIRP stuff
|
|
int slirp_can_output(void)
|
|
{
|
|
return net_slirp_inited;
|
|
}
|
|
|
|
void slirp_output (const unsigned char *pkt, int pkt_len)
|
|
{
|
|
struct queuepacket *p;
|
|
p=(struct queuepacket *)malloc(sizeof(struct queuepacket));
|
|
p->len=pkt_len;
|
|
memcpy(p->data,pkt,pkt_len);
|
|
QueueEnter(slirpq,p);
|
|
ne2000_log("ne2000 slirp_output %d @%d\n",pkt_len,p);
|
|
}
|
|
|
|
// Instead of calling this and crashing some times
|
|
// or experencing jitter, this is called by the
|
|
// 60Hz clock which seems to do the job.
|
|
void slirp_tic()
|
|
{
|
|
int ret2,nfds;
|
|
struct timeval tv;
|
|
fd_set rfds, wfds, xfds;
|
|
int timeout;
|
|
nfds=-1;
|
|
|
|
if(net_slirp_inited)
|
|
{
|
|
FD_ZERO(&rfds);
|
|
FD_ZERO(&wfds);
|
|
FD_ZERO(&xfds);
|
|
timeout=slirp_select_fill(&nfds,&rfds,&wfds,&xfds); // this can crash
|
|
|
|
if(timeout<0)
|
|
{
|
|
timeout=500;
|
|
}
|
|
|
|
tv.tv_sec=0;
|
|
tv.tv_usec = timeout; // basilisk default 10000
|
|
|
|
ret2 = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
|
|
if(ret2>=0)
|
|
{
|
|
slirp_select_poll(&rfds, &wfds, &xfds);
|
|
}
|
|
//ne2000_log("ne2000 slirp_tic()\n");
|
|
} // end if slirp inited
|
|
}
|